
MaXX Settings - Configuration Management Simplified

MaXX Settings
Configuration Management
Architecture & Technical Specifications

Version RC1

MaXX Interactive Desktop © 2021 - All rights reserved. Page 1

MaXX Settings - Configuration Management Simplified

Versions

Version Date Author(s) Description

0.10 2020-06-06 Eric Masson Initial and ongoing work.

0.90 2020-12-29 Eric Masson Change version scheme.

0.91 2020-12-30 Eric Masson Remove duplicated information, move out implementation details
to another document.

0.92 2020-12-31 Eric Masson Restructure and relocation of Choices, more cleanup, typo and text
improvements.

0.93 2021-01-02 Eric Masson Improve User Experience section.

0.94 2021-01-06 Eric Masson Complete documentation separation with Instrumentations Guide

0.95 2021-01-09 Eric Masson Improving Instrument definition, adding to Requirements and
Architecture sections.

0.96 2021-03-03 Eric Masson Adding new props: UserInterfaceAccent, WindowManagerAccent,
ModernLookAndFeel, ThinWidgetMode & FlatMenuMode.Logical

0.97 2021-03-14 Eric Masson Changing Gauge values to Float

0.98 2021-04-07 Eric Masson Adding SmoothText, DesktopAccent & cleanup duplicated

0.99 2021-04-15 Eric Masson Improve and simplify CLI section

RC1 2021-05-06 Eric Masson Refactoring of Choice and Introduction of Catalog. Add diagrams
and small corrections here and there to make this document as
sharp as possible.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 2

MaXX Settings - Configuration Management Simplified

Table of Content
Table of Content 3

Synopsys 5

Requirements 5

Architecture 6
Development and Execution Platform 6
Instrumentation Data Persistence 6

Database 6
Instrumentations 7

Instrumentation Class Diagram 8

Naming Conventions 8

Definitions 9
Structural Element 9
Elementary... 9

Class 9
Group 9
Schema 9
Attributes 10

Mandatory Attributes 10
Stereotype 11

Simple Stereotype 11
Complex Stereotype 11
Choice Stereotype 13

1+1+1 > 3 14

How does it work? 15
Testing 1,2,3… 15

MaXX Desktop HOME 15
MaXX Settings System wide Root Directory 15

Instruments 16
Classification 16
System Wide Instruments 16

System Wide Nomenclature 17
User Preference 17

User Preference Nomenclature 17

User Experience Instruments 18
Simple Instrument 18
Simple Choice Instrument 19
Complex Command Choice Instrument 20
Desktop User Experience Instruments 21

MaXX Interactive Desktop © 2021 - All rights reserved. Page 3

MaXX Settings - Configuration Management Simplified

Command Line Interface - CLI 23
CLI Commands and Parameters 24

CLI Search Mechanism 24
CLI Interaction Modes 24

CLI Options 24
Standard Mode 24
Admin Mode 24

Administrative CLI Commands 25
INIT Command 25

Parameters 25
CREATE Command 26

Parameters 26
Instrument Input File Format 26
Create Input File attributes 26

UPDATE Command 27
Parameters 27
Instrument Input File Format 27
Update Input File attributes 27

Standard CLI Commands 28
SET Command 28

Parameters 28
SET CLI Command 28

GET Command 29
Parameters 29
GET CLI Command 29

RESET Command 30
Parameters 30
RESET CLI Command 30

Index and Lookup Mechanism 31
Lookup By UUID 31
Lookup By Instrument Name 31

MaXX Interactive Desktop © 2021 - All rights reserved. Page 4

MaXX Settings - Configuration Management Simplified

Synopsys
MaXX Settings is a dynamic configuration management subsystem designed from the ground up with simplicity in mind while not
sacrificing flexibility and extensibility. MaXX Settings comes with its own CLI interface allowing simple management, automation via
scripting, inline-query and easy application integration. MaXX Settings also provides Java and C++ binding making it super easy to
integrate within most modern applications. MaXX Settings allow the definition of System wide setting, we call them Instruments, and
user’s overridables called User Preferences.

This document will explain all there is to know about MaXX Settings Architecture & Technical Specifications and how to get
Started.

For in-depth instrumentation and implementation details, refer to the MaXX Settings Instrumentations Guide document.

Requirements
One of the benefits of starting fresh is the fact that we can start with a blank slate, put forward clear intents, express technical
requirements and build an architecture early on in the design process.

Here are the requirements that MaXX Settings must strive to enforce or provide:
● Retrieve information as fast as possible (flat lookup speed curve).
● Provide different levels of verbosity (admin vs normal user).
● Software design based on current/modern technologies while future proofing the code with a component/modular approach.
● Use SOLID Principles (most): Single responsibility, open-close, interface segregation and dependency inversion.
● Favor simplicity over complexity.
● Support multiple OS.
● Provide a Command Line Interface (CLI) to administer, query and set data.
● Be human friendly with its interfaces.
● Provide an API for C++ and Java clients.
● Provide user based authentication.
● Support UTF-16 for its internal String encoding.
● Support hierarchical data structure suited for a dynamic typed configuration management system for Desktop, Application

and FileType instrumentations.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 5

https://docs.google.com/document/d/1CHn8D8yemroFZUEGFpu9lJWZ6Yg4KAjHBzTJ9GxqENY/edit?usp=sharing

MaXX Settings - Configuration Management Simplified

Architecture
The Architecture on which MaXX Settings is built follows the Client/Server model, where the Client is represented by Users using a
CLI type interface or Applications using an API both interacting with the Server. The Server provides the functionality to manage
configuration instrumentations.

The diagram illustrates the overall architecture of MaXX Settings.

Development and Execution Platform
Java 8 was selected for the first implementation of the CLI Engine for its richness in features, robustness, maturity and special affinity
with server/service type APIs and prebuilt components. The GraalVM was selected for its ability to compile Java bytecode into native
code and run applications much faster. The optimizations offered by GraalVM have the added benefits to reduce startup and execution
speed quite considerably.

Instrumentation Data Persistence
All information managed by the CLI Engine is persisted into regular files of different natures. No external dependency required for the
database.

Database
The database file format is implemented using fixed length field strategy to ensure simplicity with high performance seek speed. The
design of the database file allows an all in memory lookup operations. Saved information into the database is kept to a minimum as it
is mostly to provide lookup mechanism.

A generic interface is defined to ensure proper use and evolution. It also follows the OpenClose and Interface segregation SOLID
Principles.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 6

https://www.graalvm.org/

MaXX Settings - Configuration Management Simplified

Here’s the Java IDatabase Interface defining the core functionality offered.

package com.maxxinteractive.msettings.database;

import org.jetbrains.annotations.NotNull;

/**
* MaXX Settings System wide Database specifications
* @author Eric Masson
* @version 1.0
*/
public interface IDatabase {

boolean createDB(boolean forceCreation);

void openDB();

boolean isOpen();

void closeDB();

boolean put(IndexEntry entry);

String findByUUID(@NotNull String uuid);

String findByHashFilename(@NotNull String hashDirectory);

boolean lookup(@NotNull String lookup);
}

Instrumentations
The actual instrumentation data is saved on the disk using an individual file for each Instrument. The directory structure strategy for
organizing the instrumentation is kept to a minimum and is designed to support hashed directory structure. The hashing is calculated
from the unique instrument name and mapped onto a four (4) level hashing.

For example, the instrument Desktop.Mouse.Acceleration would have the calculated hashed directory structure /3b/2a/d4/d6. Then
the instrument’s file will be placed into that directory structure. The main goal here is efficiency by providing a consistently fast
lookup mechanism. More on that throughout the document.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 7

MaXX Settings - Configuration Management Simplified

Instrumentation Class Diagram

Naming Conventions
Lowercase is a naming convention in which a name formed of a single word is written all letters in lowercase.
Example: name, version, uuid, etc.

Uppercase is a naming convention in which a name formed of a single word is written all letters in uppercase.
Example: HOME, SHELL, PATH, etc.

Titlecase is a naming convention in which a name is written with all letters in lowercase except its first letter, which is uppercase. It
follows a more natural style. No blank space allowed.
Example: Chars, Dimension, Geometry, etc.

Camelcase is a naming convention in which a name is formed of multiple words that are joined together as a single word with the
first letter of each of the multiple words capitalized so that each word that makes up the name can easily be read. No blank space
allowed.
Example: maximumSize, backgroundColor, darkColor, etc.

The table below lists the naming convention used in MaXX Settings.

Convention Samples

Attribute One or multiple words in camelcase without blank space.. version, maxDuration, defaultAppName

Stereotype One word in the titlecase without blank space. Chars, Geometry, Image

Schema Name Multiple words with no blank space where each word is in the
titlecase. The last word usually defines the Schema’s
Stereotype name.

TextColor, DoubleClickGauge,
AccelerationGauge

Schema Filename Multiple words with no blank space where each word is in the
titlecase. The last word usually defines the Schema’s
Stereotype name and is separated with a period.

Username.Chars, DoubleClick.Gauge,
Acceleration.Gauge

MaXX Interactive Desktop © 2021 - All rights reserved. Page 8

MaXX Settings - Configuration Management Simplified

Definitions

Structural Element
At the heart of MaXX Settings is the notion of Instrument representing the notion of a configuration setting containing mandatory
attributes and operational validation rules that guarantee consistency in its data usages. An Instrument is composed of the three
structural elements Class, Group and Schema. Each structural element belongs to a fixed hierarchical level facilitating clear
classification and grouping of information in a natural and human readable way. Remember an Instrument has meaning only when it
is composed of its three structural elements. Otherwise, they are just Classes containing Groups, Groups containing Schemas.

The diagram illustrates the hierarchical structure that makes up MaXX Settings Instrument.

Elementary...
Let’s explore each structural element definition, their intent and how they all fit together.

Class
A Class sits at the top of the element food chain and is used to classify and organize Groups with their respective Schemas into
meaningful collections of hierarchical information sets. As of MaXX Desktop v2.2, MaXX Settings supports three (3) types of
classification: Desktop, Application and FileType. Desktop class of Instruments are used for the control of the User Experience aspect
of the MaXX Desktop, whereas Application helps with the definitions of actions (open, view, edit, etc) per application and FileType
defines MIME file-types and binds Application with their file-types.

Group
A Group is attached to a single Class while it defines a logical configurable grouping notion or thing such as ‘Mouse’ or ‘Background’.
Groups do not store information for themselves, but rather serve the purpose of a placeholder grouping any number of Schemas
under one logical unit. Group is giving context to Schema similarly to the Class classifying Groups.

Schema
Schema is the last and the most important structural element of an Instrument. Schema is always attached to a single Group and it
contains actual data defining as a whole a behavior characteristics, or an attitude. We call this behavior a Stereotype. But to keep
things simple, a Schema is a text file that contains attributes governed by a Stereotype.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 9

MaXX Settings - Configuration Management Simplified

Attributes
An Attribute is the lowest level of granularity possible under everything MaXX Settings controls. Attributes are defined as key-value
pairs for Schema properties. Below is the list of mandatory attributes for every Schema.

Mandatory Attributes

Attribute Description Example

version Version identifier used when parsing and interpreting the
Schema file.

version=1.0

uuid Universally Unique IDentifier (UUID v4) is a 128-bit long
value (36 chars length) used for reliably identifying
information.

uuid=553e9f88-32c9-4477-910a-66fbeb104e3c

stereotype Stereotype name describing the Schema. It’s like a data
contract in a way.

stereotype=Dimension

name The given name. to the Schema. Name must be unique and
is case sensitive.

name=Desktop.Mouse.Acceleration

default Define a default value when a user Preference is unset or
resetted to its initial value.

default=0

MaXX Interactive Desktop © 2021 - All rights reserved. Page 10

MaXX Settings - Configuration Management Simplified

Stereotype
Stereotype is a very powerful feature that helps define Schema characteristics with a set of standardized attributes, with optional
validation rules, that help constrain and enforce proper usage with predictable outcomes. Stereotypes can even be used to behaviour
modeling, but let’s keep that for the future. We use Stereotypes in MaXX Settings to enforce a consistent definition and usage of
important information within Schema files.

Every Schema under MaXX Settings is categorized as either a Simple or Complex Stereotype. To ensure consistency and
predictability, a Schema must clearly define under which version its data-contract is based on and must contain an Universally Unique
IDentifier (UUID v4) to uniquely identify itself, a Stereotype used by the Schema and finally an unique name. Those attributes are
mandatory in all Schema files.

Refer to the two following tables below for more details on both Simple and Complex Stereotypes.

Simple Stereotype
As the name suggests, Simple Stereotypes are used to represent simple basic value type notions. At the exception of Chars
Stereotype, none of the Simple Stereotypes supports validation rules.

Simple Stereotypes supported in MaXX Settings (inherits all Mandatory Attributes)

Schema Description Attributes Example

Chars Represents a sequence of characters. The encoding attribute is
mandatory and is set to UTF-8 by default. The maxLength is optional
and when present helps constraining the size of both default and value
attributes. The size is calculated using (octets/bytes) with the character
encoding.

default=null
encoding=UTF-8*
maxLength

stereotype=Chars
value=Space1999
encoding=UTF-8
maxLength=256

Number Represents an unsigned integer numerical value. default=0 stereotype=Number
value=12344

Decimal Represents an unsigned numerical value with decimal single precision. default=0.0 stereotype=Decimal
value=13.467

Logical Represents a boolean value of either true or false. default=false stereotype=Logical
value=true

* mandatory attribute

Complex Stereotype
A Complex Stereotype is used to represent complex value notions that requires several input parameters and generally used
validation rules for its default and value attributes.

Complex Stereotypes supported in MaXX Settings (inherits all Mandatory Attributes)

Name Description Attributes Example

Choice[TYPE] Represents a typed indexed container of values. In most
programming languages, they are called arrays. The type attribute
defines the option's subtype. Type can either be Chars for simple
value or Catalog where the options are stored into another
Schema. Each option[] entry is a possible choice. The default and
value attributes are indexes pointing back to the Choice’s option[]
array. Index starts at 0.

default=0 !
type=Chars * !
option[i] * !

stereotype=Choice
value=1
type=Chars
option[0]=foo
option[1]=bar

MaXX Interactive Desktop © 2021 - All rights reserved. Page 11

MaXX Settings - Configuration Management Simplified

Dimension Represents a two dimensional measurement composed of width
and height as positive only single precision decimals.

default=1.0x1.0 ! stereotype=Dimension
value=290.0x100.0

Location Represents a 2D location composed of X and Y as signed integers. default=+0+0 ! stereotype=Location
value=+1090-300

Geometry Represents a two dimensional measurement composed of width
and height as integers and 2D location composed of X and Y as
integers for a pixel drawable.

default=1x1+0+0 ! stereotype=Geometry
value=290x100+1090+300

Gauge Represents a single value measurement (as of linear scalar)
according to predefined minimum, maximum and an incremental
value as scale. Mouse Sensitivity user preference is using Gauge
for example.
→ The default and value are specific to each Gauge but their
values must be between the minimum and maximum.

default=1.0 !
minimum=1.0 *
maximum=10.0 *
scale=1.0 * !

stereotype=Gauge
value=7.0
minimum=1.0
maximum=10.0
scale=1.0

Color Represents a Color commonly used in user preferences.
BackgroundColor is such an example. Color is composed of a
mandatory colorSpace and optional attribute alpha. The attribute
value is populated with matching colorSpace color components
separated with comma. → No Default value.

default !
colorSpace*
alpha

stereotype=Color
default=255,255,255
value=127,231,48
colorSpace=RGB255
alpha=1.0

Image Represents an Image user preference. BackgroundImage is such an
example. Image is composed of a mandatory filePath with the
optional attributes crop, dimension, resizeTo which can be used to
apply a transformation on the original size. The attribute value is
populated with the image filename.→ No Default value.

filePath*
dimension
crop
resizeTo

stereotype=Image
default=image.png
value=image.png
filePath=/temp
dimension=256x256

Typeface Represents a Typeface used in user preference. TerminalFont is
such an example. Typeface is composed of mandatory font name
and a size with the optional style, weight and slant attributes. The
attribute value is generated from a concatenation of all present
attributes and cannot be set directly.
→ Both default and value attributes are using fully qualified
format and here’s an example:
Noto:size=10:slant=Italic:weight=Medium

font*
size*
style
weight
slant

stereotype=Typeface
default=Mono:size=10
font=Noto Sans
size=12
?value=Noto Sans:size=12

Command Represents an executable Command used to launch an
application. A Command is composed of the mandatory attributes
execName and execPath, and optional attributes execParams,
envBinaryPath, envLibraryPath and geometry. The attribute value
is generated from the concatenation of execPath with execName
and cannot be set directly.
→ Both default and value attributes are using a fully qualified
command line format and here’s an example:
/usr/bin/nedit file.txt -s param
[execPath]execName [execPrams]

execName*
execPath*
execParams
envBinaryPath
envLibraryPath
geometry

stereotype=Command
default=/usr/bin/nedit
execName=xnedit
execPath=/opt/MaXX/bin
*value=/opt/MaXX/bin/xnedit

Application Represent a list of Command names for specific application’s
actions such as: open, view, edit, etc. The default attribute is
pointing to the default action (open) action when no other actions
are provided.
→ Default value is the “open” action

viewCommand
editCommand

stereotype=Application
default=?
value=Desktop.Editor.Nedit
openCommand=Desktop.Editor.N
edit

* mandatory attribute in User Preferences
! updatable default value via CLI

MaXX Interactive Desktop © 2021 - All rights reserved. Page 12

MaXX Settings - Configuration Management Simplified

Choice Stereotype
Choice Stereotype is a special type of Stereotype that fulfills the single purpose of providing predefined System wide Choices. Many
of those Choices are used throughout the Desktop User Experience Instruments.

Schema Option Type Options

Language.Choice Chars ...

KeyboardInput.Choice Chars ...

DefaultSoundOutput.Choice Chars ...

SGIScheme.Choice Chars ...

IconSortBy.Choice Chars Name, Type, Size, CreationDate, ModifiedDate

IconViewAs.Choice Chars Icon, List, Detail

WinEditor.Choice Command Nedit, XNedit, Gedit

FileBrowser.Choice Command Rox-filer, fm

ImageViewer.Choice Command Feh, Eog

ImageEditor.Choice Command Gimp

WebBrowser.Choice Command Firefox, Chrome

EmailClient.Choice Command Thunderbird, Evolution

MediaViewer.Choice Command Vlc, ffplay

VectorEditor.Choice Command Inkscape

PDFViewer.Choice Command Xpdf, Evince

BackgroundColors.Choice Color ...

BackgroundImages.Choice Image ...

Refer to the MaXX Settings Instrumentations Guide document for more details.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 13

MaXX Settings - Configuration Management Simplified

1+1+1 > 3
When you combine those three structural elements together, you get an Instrument that can fulfil two purposes. First it defines at a
System wide level what each instrumentation is (with the help of Schema and Stereotype), and second how it helps manage
live/runtime user data as User Preferences. All System wide Instruments are stored within the system’s $MAXX_SETTINGS
directory. In practice, end-users are only exposed to a tiny portion of what Instruments can do, and this is intentional. KISS approach…
However MaXX Settings power-users or administrators are able to tap into the full power of different types of User Preference,
Instrument, Choices, Schema and Stereotypes.

Let’s put all of what we learned so far in practice with the real life Instrument, Desktop.Mouse.Acceleration. This Instrument is
defined as a Gauge Stereotype and its Schema defines the minimum, maximum, scale and default attributes. Its runtime counterpart
is an User Preference of the same name to keep things simple. All User Preferences are stored within the user’s
$HOME/.maxxdesktop directory.

Our Desktop.Mouse.Acceleration Instrument stores its data-contract through a Schema file and its User Preference counterpart only
stores the runtime overridable Schema’s attributes and a chosen value by the end-user. The Gauge Stereotype enforces compliance
based on the Stereotype defined behavior and optional validation rules. As you can see, there is a clear separation of responsibility
between the definition, validation and utilization.

If you are familiar with Object-Oriented Programming, then a Schema is like a Class definition and an User Preference is the instance
of that Class which contains live data. Schema provides similar data encapsulation mechanisms found in C++ and other OO
programming languages. This responsibility of validation and compliance are handled by the Stereotype.

As a safeguard, Schema files are only editable by superuser privilege level. Therefore, we recommend using the provided Command
Line Interface (CLI) tool to make any modification, addition or deletion. Refer to the CLI section for more detail.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 14

MaXX Settings - Configuration Management Simplified

How does it work?
Let’s dive into how MaXX Settings’s Configuration Management works under the hood.

Testing 1,2,3…
First we assume that MaXX Desktop v.2.2 or above is installed and running on your system. To confirm, login into a MaXX Interactive
Desktop session from the login manager and follow the instructions.

MaXX Desktop HOME
You may launch the Winterm application (Terminal app) from Toolchest or from the Winterm icon on the Desktop. Then, from the new
Winterm window, type the command echo $MAXX_HOME. If you get something similar to the example below, congratulations MaXX
Desktop is properly configured and running. If not, you may consult our online documentation at https://maxxinteractive.com

The $MAXX_HOME Environment Variable defined the location of your MaXX Desktop installation Root directory.

Test your MaXX Desktop Installation

</home/userbob1> $ echo $MAXX_HOME
/opt/MaXX
</home/userbob1> $ tellversion

MaXX Settings System wide Root Directory
Following the same logic, MaXX Settings defines its own Environment Variable, $MAXX_SETTINGS which points to the location
where MaXX Settings stores all its System wide files. Normally, MaXX Settings is installed inside the MaXX Desktop HOME directory
and its Environment Variable is defaulted to: $MAXX_HOME/share/msettings.

Test System wide MaXX Settings Installation

</home/userbob1> $ echo $MAXX_SETTINGS
/opt/MaXX/share/msettings
</home/userbob1> $

We are all set, let’s dive into it.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 15

https://maxxinteractive.com

MaXX Settings - Configuration Management Simplified

Instruments
In this section, we go over the nuts and bolts regarding different categories of Instruments under MaXX Settings and how they can
be used to create a dynamic configuration management system.

Instrument Categories

Category Scope Class Name Group Name

User Experience System Wide Instruments
User Preference Instruments

Desktop Mouse
KeyboardSettings
KeyboardShortcuts
Background
DtUtilities
Window
Settings
Colors
DtSounds
Localization
Text
FontRendering
UserInterface
FileManager
IconCatalog

FileTypes FileTypes ...

Applications Application WinEditor
ImageEditor
ImageViewer
...

Classification
One of the main design goals of MaXX Settings is to retrieve information as fast as possible and without introducing too much
complexity in the process. So for this important performance requirement alone, MaXX Settings must provide an efficient mechanism
for classifying and retrieving information. It is known that Instruments are made of a Class.Group.Schema structure could be mapped
directly onto the file system with physical directories and files. Instead, MaXX Settings use an ultra fast computable hashcode of the
Instrument’s name, then mapped into a hashed directory structure. This allows lightning fast lookup regardless of the number of
stored elements and is less prone to manual human intervention (messing things up). This is the way...

Instrument Structure vs. real-life

System Wide Instruments
As we saw previously, MaXX Settings Root directory is defined by the Environmental Variable $MAXX_SETTINGS. Therefore all
MaXX Settings Instruments are stored in the $MAXX_SETTINGS/Instruments directory. Those Instruments are called System wide
Instruments, they are read-only for normal users and only modifiable via the Administrative Command Line Interface with superuser
privilege.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 16

MaXX Settings - Configuration Management Simplified

System Wide Nomenclature

Let's explore the System wide Instrument Desktop.Mouse.Acceleration and its various properties.

Name Desktop.Mouse.Acceleration

Class Desktop

Group Mouse

Schema Acceleration

Stereotype Gauge

Schema File Acceleration.Gauge

Fully Qualified Name (FQ Name) /Desktop/Mouse/Acceleration.Gauge

Hashed Storage Location /3b/2a/d4/d6

Physical File Path $MAXX_SETTINGS/Instruments/3b/2a/d4/d6/Acceleration.Gauge

User Preference
We know already System wide Instruments are read-only from a normal user point of view since they only define validation rules and
default values. So how do we handle custom preferences for one or multiple users on the same system? The solution is rather simple,
we just don’t use them for say, but rather extend them and reusing the same classification strategy <Class>.<Group>.<Schema> for
storing only the user defined values, but in a user specific location. Basically, they are user-land Instruments that can be editable by
normal users, a.k.a. User Preferences.

By default User Preferences are located inside the $HOME/.maxxdesktop/msettings/Preferences directory and follow the same
storage convention as System wide Instruments.

User Preferences are sharing the same classification and hashed storage location structure as System wide Instruments. This also
means that the calculated hashcodes are the same.

User Preference Nomenclature

Let's explore an User Preference Instrument Desktop.Mouse.Acceleration and its various properties.

Nme Desktop.Mouse.Acceleration

Class Desktop

Group Mouse

Schema Acceleration

Stereotype Gauge

Schema File Acceleration.Gauge

Fully Qualified Name (FQ Name) /Desktop/Mouse/Acceleration.Gauge

Hashed Storage Location /3b/2a/d4/d6

MaXX Interactive Desktop © 2021 - All rights reserved. Page 17

MaXX Settings - Configuration Management Simplified

Physical File Path $HOME/.maxxdesktop/msettings/Preferences/3b/2a/d4/d6/Acceleration.Gauge

User Experience Instruments
This section will briefly explore in much more depth the User Experience Instruments category, their different scopes and how they
can be used. We will look at Catalog as a mechanism to We first look at three (3) real-life examples to better understand the
differences between scopes and their level of flexibility. Then we explore the Desktop User Experience Instruments.

Simple Instrument
This first example describes how MaXX Settings manages a Simple System wide Instrument like as Desktop.Mouse.NaturalScrolling
and how it looks like from the User Preference (scope) perspective as well. This Instrument is a Logical Stereotype, and it is used to
inform users mouse scrolling direction.

Instrument Name: Desktop.Mouse.NaturalScrolling

Type: System wide Type: User Preference

$Root: $MAXX_SETTING/Instruments
$Location: (calculated value)
$Filename: $Root/$Location/NaturalScrolling.Logical

$URoot: $HOME/.maxxdesktop/msettings/Preferences
$ULocation: (calculated value)
$Filename: $URoot/$ULocation/NaturalScrolling.Logical

File content:

version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Mouse.NaturalScrolling
default=false

File content:

version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Mouse.NaturalScrolling
value=true

Important things to remember
1. Both the System wide and User Preference are using the same UUID and name in order to provide a lookup by UUID or

name.

2. The calculated storage location is identical for both. This makes the switch between System wide and User Preference

seamless.

3. The Schema filename is made of the Instrument name with its Stereotype as file extension.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 18

MaXX Settings - Configuration Management Simplified

Simple Choice Instrument
This second example explores the System wide Instrument Desktop.FileManager.IconSortBy which defines the sorting algorithm
used for Icon display in fm, the MaXX Desktop File Manager. The Instrument is a Choice Stereotype, which manages a list of Simple
Chars Stereotype options. Simple Choice Instruments always used Chars as its option type and stored them within the same Schema
file as described below.

Instrument Name: Desktop.FileManager.IconSortBy

Type: Instrument Type: User Preference

$Root: $MAXX_SETTING/Instruments
$Location: (calculated value)
$Filename: $Root/$Location/IconSortBy.Choice

$URoot: $HOME/.maxxdesktop/msettings/Preferences
$ULocation: (calculated value)
$UFilename: $URoot/$ULocation/IconSortBy.Choice

File content:

version=1.0
uuid=e828aeec-de4e-4899-9ebf-14e418570a71
stereotype=Choice
name=Desktop.FileManager.IconSortBy
default=0
type=Chars
option[0]=Name
option[1]=Size
option[2]=Type
option[3]=Date

File content:

version=1.0
uuid=e828aeec-de4e-4899-9ebf-14e418570a71
stereotype=Choice
name=Desktop.FileManager.IconSortBy
type=Chars
value=2

Note:
- In a Simple Choice Instrument, the options are defined as Simple Stereotype Chars.
- Options are stored within the Choice Schema file

MaXX Interactive Desktop © 2021 - All rights reserved. Page 19

MaXX Settings - Configuration Management Simplified

Complex Command Choice Instrument
This third example explores the System wide Instrument Desktop.DtUtilities.WinEditor which defines a list of Default Graphical Text
Editor Applications used throughout the MaXX Desktop. This Instrument is a Choice Stereotype managing a list of Application
Stereotyped as Command options. We call them Complex Choice Instruments because they rely on an additional set of Instruments
and Schemas to fulfil their purposes. They are the same Choices we learned about, but they are also using external Catalogs and a
resolution mechanism that allows dynamic options management. See below for more details, it will make more sense as you read
through a real example.

Instrument Name: Desktop.DtUtilities.WinEditor

Type: Instrument Type: User Preference

$Root: $MAXX_SETTING/Instruments
$Location: (calculated value)
$Filename: $Root/$Location/WinEditor.Choice

$URoot: $HOME/.maxxdesktop/msettings/Preferences
$ULocation: (calculated value)
$UFilename: $URoot/$ULocation/WinEditor.Choice

File content:

version=1.0
uuid=f353b007-0c3b-472f-8c6d-5e4a7e985ee6
stereotype=Choice
type=WinEditor.Catalog
name=Desktop.DtUtilities.WinEditor
default=0

File content:

version=1.0
uuid=f353b007-0c3b-472f-8c6d-5e4a7e985ee6
stereotype=Choice
type=WinEditor.Catalog
name=Desktop.DtUtilities.WinEditor
value=1

In a Complex Choice Instrument, the options are defined in a vim . Schema that is referenced in the Choice’s Schema. This allows for
limitless customizations and extensibility in the future.

Instrument Name: Application.WinEditor.XNEdit Catalog Name: WinEditor.Catalog

Type: Instrument Type: Catalog

$Root: $MAXX_SETTING/Instruments
$Classification: (calculated value)
$Filename: $Root/$Location/XNEdit.Command

$Root: $MAXX_SETTING/Catalogs
$Filename: $Root/$/WinEditor.Catalog

File content:

version=1.0
uuid=034d3104-fba0-4e1d-9530-d2e948de000b
stereotype=Command
name=XNEdit
execPath=$MAXX_BIN/xnedit
execParams=

File content:

version=1.0
uuid=fc3bbe1a-da71-47c7-ba81-f759579990dc
stereotype=Catalog
name=Command
option[0]=@Application.WinEditor.XNEdit
option[1]=@Application.WinEditor.Gedit

MaXX Interactive Desktop © 2021 - All rights reserved. Page 20

MaXX Settings - Configuration Management Simplified

Desktop User Experience Instruments

Class Group Schema

Desktop Mouse Acceleration.Gauge
Threshold.Gauge
LeftHanded.Logical
WheelMouseScroll.Logical
DoubleClick.Gauge
NaturalScrolling.Logical

Keyboard KeyClick.Logical
KeyRepeat.Logical
RepeatSpeed.Gauge
RepeatDelay.Gauge

Background BackgroundColors.Choice
BackgroundImages.Choice
DarkBackground.Logical
Pattern1.Color
Pattern2.Color
Pattern3.Color

DtUtilities FileBrowser.Choice
WinEditor.Choice
TextEditor.Choice
WebBrowser.Choice
EmailClient.Choice
ImageEditor.Choice
ImageViewer.Choice
MediaViewer.Choice
VectorEditor.Choice
PDFViewer.Choice

Window ToolchestHorizontal.Logical
KeyboardFocus.Logical
DisplayOverview.Logical
MoveOpaqueWindow.Logical
OutlineThickness.Gauge
WindowManagerAccent.Color
AutoWindowPlacement.Logical
SaveWindowsDesks.Logical

Settings DesktopIconSize.Gauge
DesktopIconAlignGrid.Logical
DesktopAccent.Color
ToolchestSoundEffect.Logical
IconAsThumbnailImage.Logical
ShowLaunchEffect.Logical
MakeDeleteInstantly.Logical
WarnOnFileOverwrite.Logical
DisplayApplicationErrors.Logical
EnableRemoteDisplay.Logical

Colors SGIScheme.Choice
SgiDarkScheme.Logical
UserInterfaceAccent.Color

Sounds MuteSystem.Logical
StartupShutdownTunes.Logical
DesktopSounds.Logical
SystemAlertsSounds.Logical
KeyboardBell.Logical
KeyClickVolume.Gauge
DefaultSoundOutput.Choice

MaXX Interactive Desktop © 2021 - All rights reserved. Page 21

MaXX Settings - Configuration Management Simplified

Localization Language.Choice
KeyboardInput.Choice

FileManager DisplayShelf.Logical
DisplayContent.Logical
DisplaySearchFilters.Logical
KeepLayoutOpenInPlace.Logical
IconSortBy.Choice
IconViewAs.Choice
TruncateNames.Logical
ThumbnailImages.Logical
AlignToGrid.Logical
DisplayHiddenFiles.Logical
DefaultIconSize.Gauge

IconCatalog KeepLayoutOpenInPlace.Logical
IconSortBy.Choice
IconViewAs.Choice
TruncateNames.Logical
ThumbnailImages.Logical
AlignToGrid.Logical
DefaultIconSize.Gauge

Text SmallText.Font
NormalText.Font
LargeText.Font
Terminal.Font
WindowTitle.Font
WindowIconTitle.Font
IconText.Font
SmoothText.Logical

FontRendering XftAutoHint.Logical
XftLcdFilter.Choice
XftHintStyle.Choice
XftHinting.Logical
XftAntialias.Logical
XftRgba.Choice

UserInterface ModernLookAndFeel.Logical
ThinWidgetMode.Logical
FlatMenuMode.LogicalBonjour

Refer to the MaXX Settings Instrumentation Guide for the complete and up to date list of all User Experience Instrumentation.

MaXX Interactive Desktop © 2021 - All rights reserved. Page 22

MaXX Settings - Configuration Management Simplified

Command Line Interface - CLI
MaXX Settings has its own Command Line Interface or commonly called CLI that supports interrogation and edition of settings in a
human friendly way. The Standard CLI executable is called msettings and the Administrative CLI called ms and both can be found in
the $MAXX_BIN directory. For example msettings could be used in a shell script to expand the current setting for the
Desktop.DtUtilities.ImageEditor Instrument, or directly from the command-line, in Toolchest menus or even in Rox-Filer “Set Run
Action”. MaXX Settings is also integrated with all aspects of the MaXX Interactive Desktop configuration and User’s Preference
Panels.

From a shell script - launching the default Graphical Text Editor

#!/bin/bash

Exec `msettings GET -n Desktop.DtUtilities.WinEditor`

From command-line - fetching from MaXX Settings the default Image Editor

$ msettings GET Desktop.DtUtilities.ImgEditor

/usr/bin/gimp

From Toolchest Menu - launching the default Graphical Text Editor

"Text Editor" f.checkexec.sh.le "`msettings G Desktop.DtUtilities.WinEditor`"

From ROX-Filer set ‘Run Action’ - setting the default Graphical Text Editor to launch for text/plain MIME type

MaXX Interactive Desktop © 2021 - All rights reserved. Page 23

MaXX Settings - Configuration Management Simplified

CLI Commands and Parameters
This section will focus on the usage of MaXX Settings Command Line Interface or CLI with examples, commands and parameters
documentation making your usage easier.

CLI Search Mechanism
MaXX Settings CLI provides two ways of searching for Instruments. First, it supports search by Instrument’s Universal Unique
IDentifier (UUID v4) and the second by Instrument’s Name such as Desktop.Mouse.Acceleration. MaXX Settings relies on internal
indexes to make the search lightning fast regardless of the size of your data-set. It is recommended to always use the CLI interface or
one of the Java/C++ APIs when interacting with MaXX Settings. No manually hacking.

CLI Interaction Modes
For your convenience, MaXX Settings CLI supports two interaction modes, standard and admin. Standard mode is aimed at providing
support for User Preferences whereas the Admin mode is a minimalist interface for Instruments management, with superuser
privilege.

CLI Options
-h, --help Print the help information..
-v, --version Print the version information.
-D, --debug-mode-on Enable debug mode. Extra DEBUG information will be printed out in the console
-s, --silent-mode-off Turn OFF silent mode. This allows normal verbose outputs in the console.

Standard Mode
The Standard CLI Mode provides a simple read and write access to User Preferences without complexity, but with optional powerful
features. A typical MaXX Settings Standard CLI command is named msettings which is composed of a mandatory command to
execute, options (if needed), a number of parameters depending on the command itself and a value. The value can either be a single
name, an uuid or a comma-separated list of key=value pairs.
Standard Mode CLI command format

$ msettings command [options] [params] value

$ msettings command [options] [params] value1,value2,value3

$ msettings command [options] [params] key1=value1,key2=value2

Admin Mode
Admin CLI Mode provides support for Instrument management with superuser privilege. The Admin CLI command is named ms and
follows the same command line scheme as the Standard mode.

Admin Mode CLI command format

$ ms command [options] [params] value

$ ms command [options] [params] value1,value2,value3

$ ms command [options] [params] key1=value1,key2=value2

MaXX Interactive Desktop © 2021 - All rights reserved. Page 24

MaXX Settings - Configuration Management Simplified

Administrative CLI Commands
This section will focus on the administrative aspect of MaXX Settings CLI and the CLI commands that are only available in Admin
mode. All commands require superuser permissions level.

INIT Command
Init command will initialize the directory structure required by MaXX Settings in order to store Instruments and indexes. If the
command was successful, a detailed report of the new MaXX Settings environment will be outputted.

This command is only available in Admin mode and requires superuser permissions level in order to initialize MaXX Settings
System wide data structure.

Parameters
-F, --force Force the initialization over an existing MaXX Settings environment. This will

erase everything stored in the Database and wipe out all Instruments.
Use this with caution.

INIT CLI Command-line example:

$ ms INIT [params]

Examples:

ms INIT --force

MaXX Settings - System wide Directory structure created.
MaXX Settings - System wide Database was successfully initialized.
MaXX Settings - System wide Indexes built and synched.
MaXX Settings - System wide Initialization completed. We are open for business.

Remember to set your MAXX_SETTINGS environment variable to : /opt/MaXX/share/msettings

export MAXX_SETTINGS=/opt/MaXX/share/msettings

ls -l $MAXX_SETTINGS

drwxrwxr-x. 2 root root 6 Jul 7 19:44 Applications
drwxrwxr-x. 2 root root 6 Jul 7 19:44 Choices
drwxrwxr-x. 2 root root 6 Jul 7 19:44 FileTypes
drwxrwxr-x. 2 root root 6 Jul 7 19:44 Instruments

#

MaXX Interactive Desktop © 2021 - All rights reserved. Page 25

MaXX Settings - Configuration Management Simplified

CREATE Command
Create a new global Instrument with a text file as input source and using key=value pairs Stereotype convention. If the command is
successful, then a detailed report of the new Instrument creation will be outputted. To maintain data integrity and unicity, both the
Instrument’s name and UUID will be compared against the existing Instruments.

This command is only available in Admin mode and requires superuser permissions level.

Parameters
-f FILENAME, --filename=FILENAME Filename to use as input. The filename ideally describes the Instrument name,

but must contain the Schema type name as extension.
-A key=value,key=value,key=value,... Attributes in Key/Value pair format separated by comma.

Instrument Input File Format
Filename: DesktopMouse_Acceleration.Gauge

name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
scale=1
default=5

Create Input File attributes
- The uuid attribute is omitted from the input file as it is automatically generated while processing the create-transaction.
- The stereotype attribute can be omitted since the information is already available from the input filename’s last portion.
- The version attribute can be omitted, if not present, the version 1.0 will be assigned at creation.
- The default attribute and all other Schema specific attributes are mandatory for Instrument creation operation.
- The value attribute is never required for any Instrument related operations.

CREATE CLI Command-line examples:

$ ms CREATE [options] [param] filename

Examples:

$ ms CREATE -f ./DesktopMouse_Acceleration.Gauge

version=1.0
uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
stereotype=Gauge
name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
scale=1
default=5

$ ms CREATE -A \
stereotype=Choice,name=Desktop.FileManager.IconSortBy,type=Chars,default=1,option[0]=Name,option[1]=Date

MaXX Interactive Desktop © 2021 - All rights reserved. Page 26

MaXX Settings - Configuration Management Simplified

UPDATE Command
Update an existing global Instrument with a text file as input source using the key=value pairs Stereotype convention. If the command
is successful, then a detailed report of the operation will be outputted. To maintain data integrity, only the editable attributes can be
modified with this operation.

This command is only available in Admin mode and for superuser level users and ONLY a few attributes can be updated. Refer to
the Instruments section for detail.

Parameters
-f FILENAME, --filename=FILENAME Filename to use as input. The filename ideally describes the Instrument name,

but must contain the Schema type name as extension.

Instrument Input File Format
Filename: Desktop.Mouse.Acceleration.Gauge

uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
*scale=2 <- - - VALUE WE WANT TO UPDATE
*default=10 <- - - VALUE WE WANT TO UPDATE

Update Input File attributes
- The uuid and name attributes are mandatory and must both match the existing Instrument in question.
- The stereotype attribute can be omitted since the information is already available within the system.
- The attribute that requires an update. Not all attributes are editable. Consult the Schema’s specification for detail.
- The value attribute is never required for any Instrument related operations.

UPDATE CLI Command-line example:

$ ms UPDATE [options] [param] filename

Examples:

$ ms U -f ./DesktopMouse_Acceleration.Gauge
version=1.0
uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
stereotype=Gauge
name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
scale=2
default=10

MaXX Interactive Desktop © 2021 - All rights reserved. Page 27

MaXX Settings - Configuration Management Simplified

Standard CLI Commands
From this point on, all CLI commands are intended for normal users and they all work in Standard mode. Normal user access
privileges are required.

No initialization required when running Standard CLI Commands. If the user’s MaXX Settings local database and directory structure
are not present at the first invocation, MaXX Settings will install itself properly beforehand, then run the requested command.

SET Command
Set one or many User Preference by providing either the Instrument’s UUID or Name as identifier. The Instrument must be present in
the System wide database. See below for details.

Parameters
-u UUID=value Single Instrument UUID. Should always be the last param.
-u UUID=value,UUID=value,UUID=value Comma-separated list of Instrument UUIDs and their values.
-n name=value Single Instrument name. Should always be the last param.
-n name=value,name=value,name=value Comma-separated list of Instrument names and their values.

SET CLI Command
Command-line examples:

$ msettings SET [options] [params] identifier=value

Examples:

$ msettings SET -u 8f6e1638-91fe-4eae-9876-45a4e6686d74=True
8f6e1638-91fe-4eae-9876-45a4e6686d74=True

$ msettings SET -n Desktop.Mouse.Acceleration=10
Desktop.Mouse.Acceler!nation=10

$ msettings S Desktop.Mouse.Acceleration=False,Desktop.Mouse.Threshold=10
Desktop.Mouse.Acceleration=False
Desktop.Mouse.Threshold=10

MaXX Interactive Desktop © 2021 - All rights reserved. Page 28

MaXX Settings - Configuration Management Simplified

GET Command
Return one or many User Preference by providing either the Instrument’s UUID or Name as identifier. If no User Preference is found,
the command will output nothing unless you turn off silent-mode. The output is customizable as well with a full-detail, key-value or
value only format to cover all integration needs. See below for details.

Parameters
-u UUID, --uuid=UUID Single Instrument UUID. Should always be the last param.
-u UUID,UUID,UUID Comma-separated list of Instrument UUIDs. No space char allowed
-n name --name=NAME Single Instrument name. Should always be the last param.
-n name,name,name Comma-separated list of Instrument names.
-x, --expand-detail Long output format where key=value pair is returned for every match.
-d, --default-value Returns and sets to the default value when the User Preference is not found.
-X, --expand-detail Detailed output format, print all attributes in Key=Value pair for every requested

Instrument.
-x, --value-only Output only the Value for every requested Instrument. This is the DEFAULT

settings.
-K, --key-value Output in key=value format for every requested Instrument.

GET CLI Command
Command-line example:

$ msettings GET [options] [params] identifier(s)

Examples:

$ msettings GET -n Desktop.Mouse.Acceleration
5.0

$ msettings GET -K Desktop.Mouse.Acceleration
value=5.0

$ msettings GET -u 553e9f88-32c9-4477-910a-66fbeb104e3c
5

$ msettings G -X Desktop.Mouse.Acceleration
version=1.0
uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
stereotype=Gauge
name=Desktop.Mouse.Acceleration
minimum=1.0
maximum=20.0
scale=1.0
default=5.0
value=5.0

$ msettings G Desktop.Mouse.LeftHanded,Desktop.Mouse.Acceleration
False
5.0

$ msettings G -K Desktop.Mouse.LeftHanded,Desktop.Mouse.Acceleration
Desktop.Mouse.LeftHanded=False
Desktop.Mouse.Acceleration=5.0

MaXX Interactive Desktop © 2021 - All rights reserved. Page 29

MaXX Settings - Configuration Management Simplified

RESET Command
Reset to factory System-Wide value one or many User Preference by providing either Instrument’s UUID or Name as identifier. If no
User Preference is found, the command will create one and set it to its default value. See below for details.

The RESET CLI command is a great way to do a first-time initialization of User Preferences.

Parameters
-u UUID, --uuid=UUID Single Instrument UUID and its value
-u UUID,UUID,UUID Comma-separated list of Instrument UUIDs.
-n name --name=NAME Single Instrument name and its value.
-n name,name,name Comma-separated list of Instrument names.

RESET CLI Command
Command-line examples:

$ msettings RESET [options] [params] search-criteria

Examples:

$ msettings RESET -u 8f6e1638-91fe-4eae-9876-45a4e6686d74
8f6e1638-91fe-4eae-9876-45a4e6686d74=False

$ msettings RESET -n Desktop.Mouse.Acceleration,Desktop.Mouse.Threshold
Desktop.Mouse.Acceleration=False
Desktop.Mouse.Threshold=5

$ msettings R Desktop.Mouse.LeftHanded
Desktop.Mouse.Acceleration=False

$ msettings R -u 8f6e1638-91fe-4eae-9876-45a4e6686d74
uuid=8f6e1638-91fe-4eae-9876-45a4e6686d74=False

$ msettings R Desktop.Mouse.Acceleration,Desktop.Mouse.Threshold
Desktop.Mouse.Acceleration=False
Desktop.Mouse.Threshold=5

MaXX Interactive Desktop © 2021 - All rights reserved. Page 30

MaXX Settings - Configuration Management Simplified

Index and Lookup Mechanism
Each Instrument under MaXX Settings can be looked up by its Instrument name, its unique ID (UUID) or full filename path. In order to
provide fast and consistent performance, MaXX Settings relies on an internal database to reduce lookup time. This means that adding
manually an Instrument without updating the indexes could result in lookup failures.

We always recommend to use the CLI interface when performing administrative tasks on Instruments. This way the database is kept
in sync with the data and ensures optimal performance.

Lookup By UUID
From the CLI, a lookup to a User Preference by its UUID can be done this way.

$ msettings -X --uuid 76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Colors.SgiDarkScheme
value=True
$
$ msettings --uuid 76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
True
$

Lookup By Instrument Name
From the CLI, a lookup to a User Preference by its Instrument Name can be done this way.

$ msettings -X --name Desktop.Colors.SgiDarkScheme
version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Colors.SgiDarkScheme
value=True
$
$ msettings --name Desktop.Colors.SgiDarkScheme
True
$

MaXX Interactive Desktop © 2021 - All rights reserved. Page 31

