BIRD 3.1.3 User's Guide

Ondrej Filip <feela@network.cz>, Martin Mares <mjQucw.cz>, Maria Matejka <mqg@jmgq.cz>, Ondrej

Zajicek <santiago@crfreenet.org>

This document contains user documentation for the BIRD Internet Routing Daemon project.

Contents

Introduction

1.1 What is BIRD o e
1.2 Imstalling BIRD 0 e
1.3 Running BIRD 0. e
1.4 Privileges o e

Architecture

2.1 Routing tables e
2.2 Routes and network types Lo
2.3 Protocols and channels
2.4 Graceful restart L L e e e
2.5 MPLS . . e e e

Configuration

3.1 Imtroduction
3.2 Global options e
3.3 Routing table options L
3.4 Protocol options
3.5 Channel options L e
3.6 MPLS options e

Remote control

4.1 OVEIVIEW . . v v o e e e e e e e e e e e
4.2 Configuration L
4.3 Usage o e

Filters

5.1 Introduction e e e e
5.2 Datatypes
5.3 Operatorso e e
5.4 Control structures e e e
5.5 Route attributes L e e e
5.6 Other statements e e e e

Protocols

6.1 Aggregator
6.2 Babel e
6.3 BED . . e e
6.4 BGP . . . e
6.5 BMP . e e
6.6 Device e e
6.7 Direct e
6.8 Kernel e
6.9 L3VPN . . e
6.10 MRT . . . o e e e
6.11 OSPE e e e
6.12 Pipe L e e e

10
10
10
13
15
17
19

21
21
21
21

25
25
26
30
31
32
33

CONTENTS 3

6.13 RAAV e 78
6.14 RIP e 82
6.15 RPKI e 86
6.16 Static e e 90
7 Conclusions 95
7.1 Future work L e e 95

7.2 Getting more help L e 95

Chapter 1: Introduction

1.1 What is BIRD

The name ‘BIRD’ is actually an acronym standing for ‘BIRD Internet Routing Daemon’. Let’s take a closer
look at the meaning of the name:

BIRD: Well, we think we have already explained that. It’s an acronym standing for ‘BIRD Internet Routing
Daemon’, you remember, don’t you? :-)

Internet Routing: It’s a program (well, a daemon, as you are going to discover in a moment) which works
as a dynamic router in an Internet type network (that is, in a network running either the IPv4 or the IPv6
protocol). Routers are devices which forward packets between interconnected networks in order to allow
hosts not connected directly to the same local area network to communicate with each other. They also
communicate with the other routers in the Internet to discover the topology of the network which allows
them to find optimal (in terms of some metric) rules for forwarding of packets (which are called routing
tables) and to adapt themselves to the changing conditions such as outages of network links, building of new
connections and so on. Most of these routers are costly dedicated devices running obscure firmware which
is hard to configure and not open to any changes (on the other hand, their special hardware design allows
them to keep up with lots of high-speed network interfaces, better than general-purpose computer does).
Fortunately, most operating systems of the UNIX family allow an ordinary computer to act as a router and
forward packets belonging to the other hosts, but only according to a statically configured table.

A Routing Daemon is in UNIX terminology a non-interactive program running on background which does
the dynamic part of Internet routing, that is it communicates with the other routers, calculates routing
tables and sends them to the OS kernel which does the actual packet forwarding. There already exist other
such routing daemons: routed (RIP only), GateD (non-free), Zebra and MRTD, but their capabilities are
limited and they are relatively hard to configure and maintain.

BIRD is an Internet Routing Daemon designed to avoid all of these shortcomings, to support all the routing
technology used in the today’s Internet or planned to be used in near future and to have a clean extensible
architecture allowing new routing protocols to be incorporated easily. Among other features, BIRD supports:

e both IPv4 and IPv6 protocols

e multiple routing tables

e the Border Gateway Protocol (BGPv4)

¢ the Routing Information Protocol (RIPv2, RIPng)

e the Open Shortest Path First protocol (OSPFv2, OSPFv3)

e the Babel Routing Protocol

e the Router Advertisements for IPv6 hosts

e a virtual protocol for exchange of routes between different routing tables on a single host
e a command-line interface allowing on-line control and inspection of status of the daemon

e soft reconfiguration (no need to use complex online commands to change the configuration, just edit
the configuration file and notify BIRD to re-read it and it will smoothly switch itself to the new
configuration, not disturbing routing protocols unless they are affected by the configuration changes)

e a powerful language for route filtering

BIRD has been developed at the Faculty of Math and Physics, Charles University, Prague, Czech Republic
as a student project. It can be freely distributed under the terms of the GNU General Public License.

BIRD has been designed to work on all UNIX-like systems. It has been developed and tested under Linux
2.0 to 2.6, and then ported to FreeBSD, NetBSD and OpenBSD, porting to other systems (even non-UNIX
ones) should be relatively easy due to its highly modular architecture.

BIRD 1.x supported either IPv4 or IPv6 protocol, but had to be compiled separately for each one. BIRD 2

4

http://www.zebra.org
http://sourceforge.net/projects/mrt

1.2. Installing BIRD 5

supports both of them with a possibility of further extension. BIRD 2 supports Linux at least 3.16, FreeBSD
10, NetBSD 7.0, and OpenBSD 5.8. Anyway, it will probably work well also on older systems.

1.2 Installing BIRD

On a recent UNIX system with GNU development tools (GCC, binutils, m4, make) and Perl, installing
BIRD should be as easy as:

./configure

make

make install

vi /usr/local/etc/bird.conf
bird

You can use ./configure --help to get a list of configure options. The most important ones are:
--with-protocols= to produce a slightly smaller BIRD executable by configuring out routing protocols
you don’t use, and --prefix= to install BIRD to a place different from /usr/local.

1.3 Running BIRD

You can pass several command-line options to bird:

-c config name

use given configuration file instead of prefiz/etc/bird.conf.
-d

enable debug messages to stderr, and run bird in foreground.

=D filename of debug log
enable debug messages to given file.

-f
run bird in foreground.
-g group
use that group ID, see the next section for details.
-h, —-help
display command-line options to bird.
-1
look for a configuration file and a communication socket in the current working directory instead of in
default system locations. However, paths specified by options -c, -s have higher priority.
P

just parse the config file and exit. Return value is zero if the config file is valid, nonzero if there are
some errors.

-P name of PID file
create a PID file with given filename.

-R
apply graceful restart recovery after start.

-s name of communication socket
use given filename for a socket for communications with the client, default is prefix/var/run/bird.ctl.

-u user
drop privileges and use that user ID, see the next section for details.

1.4. Privileges 6

--version
display bird version.

BIRD writes messages about its work to log files or syslog (according to config).

1.4 Privileges

BIRD, as a routing daemon, uses several privileged operations (like setting routing table and using raw
sockets). Traditionally, BIRD is executed and runs with root privileges, which may be prone to security
problems. The recommended way is to use a privilege restriction (options -u, -g). In that case BIRD is
executed with root privileges, but it changes its user and group ID to an unprivileged ones, while using
Linux capabilities to retain just required privileges (capabilities CAP_NET_*). Note that the control socket
is created before the privileges are dropped, but the config file is read after that. The privilege restriction is
not implemented in BSD port of BIRD.

An unprivileged user (as an argument to —u options) may be the user nobody, but it is suggested to use a
new dedicated user account (like bird). The similar considerations apply for the group option, but there is
one more condition — the users in the same group can use birdc to control BIRD.

Finally, there is a possibility to use external tools to run BIRD in an environment with restricted privileges.
This may need some configuration, but it is generally easy — BIRD needs just the standard library, privileges
to read the config file and create the control socket and the CAP_NET_* capabilities.

Chapter 2: Architecture

2.1 Routing tables

The heart of BIRD is a routing table. BIRD has several independent routing tables; each of them contains
routes of exactly one nettype (see below). There are two default tables — master4 for IPv4 routes and
master6 for IPv6 routes. Other tables must be explicitly configured.

These routing tables are not kernel forwarding tables. No forwarding is done by BIRD. If you want to forward
packets using the routes in BIRD tables, you may use the Kernel protocol (see below) to synchronize them
with kernel FIBs.

Every nettype defines a (kind of) primary key on routes. Every route source can supply one route for every
possible primary key; new route announcement replaces the old route from the same source, keeping other
routes intact. BIRD always chooses the best route for each primary key among the known routes and keeps
the others as suboptimal. When the best route is retracted, BIRD re-runs the best route selection algorithm
to find the current best route.

The global best route selection algorithm is (roughly) as follows:

e Preferences of the routes are compared.
e Source protocol instance preferences are compared.

e If source protocols are the same (e.g. BGP vs. BGP), the protocol’s route selection algorithm is
invoked.

e If source protocols are different (e.g. BGP vs. OSPF), result of the algorithm is undefined.

Usually, a routing table just chooses a selected route from a list of entries for one network. Optionally, these
lists of entries are kept completely sorted (according to preference or some protocol-dependent metric). See
sorted (p.14) table option for details.

2.2 Routes and network types

BIRD works with several types of routes. Some of them are typical IP routes, others are better described as
forwarding rules. We call them all routes, regardless of this difference.

Every route consists of several attributes (read more about them in the Route attributes (p.32) section);
the common for all routes are:

e IP address of router which told us about this route
e Source protocol instance
e Route preference

e Optional attributes defined by protocols

Other attributes depend on nettypes. Some of them are part of the primary key, these are marked (PK).

2.2.1 1IPv4 and IPv6 routes

The traditional routes. Configuration keywords are ipv4 and ipvé.

e (PK) Route destination (IP prefix together with its length)

¢ Route next hops (see below)

2.2. Routes and network types 8

2.2.2 IPv6 source-specific routes

The TPv6 routes containing both destination and source prefix. They are used for source-specific routing
(SSR), also called source-address dependent routing (SADR), see RFC 8043. Currently limited mostly to
the Babel protocol. Configuration keyword is ipv6 sadr.

e (PK) Route destination (IP prefix together with its length)
¢ (PK) Route source (IP prefix together with its length)

e Route next hops (see below)

2.2.3 VPN IPv4 and IPv6 routes

Routes for IPv4 and IPv6 with VPN Route Distinguisher (RFC 4364). Configuration keywords are vpn4
and vpn6.

e (PK) Route destination (IP prefix together with its length)
¢ (PK) Route distinguisher (according to RFC 4364)

e Route next hops

2.2.4 Route Origin Authorization for IPv4 and IPv6

These entries can be used to validate route origination of BGP routes. A ROA entry specifies prefixes which
could be originated by an AS number. Their keywords are road and roa6.

e (PK) IP prefix together with its length
e (PK) Matching prefix maximal length
e (PK) AS number

2.2.5 Flowspec for IPv4 and IPv6

Flowspec rules are a form of firewall and traffic flow control rules distributed mostly via BGP. These rules
may help the operators stop various network attacks in the beginning before eating up the whole bandwidth.
Configuration keywords are flow4 and flow6.

e (PK) IP prefix together with its length
e (PK) Flow definition data

e Flow action (encoded internally as BGP communities according to RFC 8955)

2.2.6 MPLS switching rules

MPLS routes control MPLS forwarding in the same way as IP routes control IP forwarding. MPLS-aware
routing protocols produce both labeled IP routes and corresponding MPLS routes. Configuration keyword
is mpls.

e (PK) MPLS label

e Route next hops

http://www.rfc-editor.org/info/rfc8043
http://www.rfc-editor.org/info/rfc4364
http://www.rfc-editor.org/info/rfc4364
http://www.rfc-editor.org/info/rfc8955

2.3. Protocols and channels 9

2.2.7 Route next hops

This is not a nettype. The route next hop is a complex attribute common for many nettypes as you can see
before. Every next hop has its assigned device (either assumed from its IP address or set explicitly). It may
have also an IP address and an MPLS stack (one or both independently). Maximal MPLS stack depth is
set (in compile time) to 8 labels.

Every route (when eligible to have a next hop) can have more than one next hop. In that case, every next
hop has also its weight.

2.3 Protocols and channels

BIRD protocol is an abstract class of producers and consumers of the routes. Each protocol may run in
multiple instances and bind on one side to route tables via channels, on the other side to specified listen
sockets (BGP), interfaces (Babel, OSPF, RIP), APIs (Kernel, Direct), or nothing (Static, Pipe).

There are also two protocols that do not have any channels — BFD and Device. Both of them are kind of
service for other protocols.

Each protocol is connected to a routing table through a channel. Some protocols support only one channel
(OSPF, RIP), some protocols support more channels (BGP, Direct). Each channel has two filters which can
accept, reject and modify the routes. An export filter is applied to routes passed from the routing table to
the protocol, an import filter is applied to routes in the opposite direction.

2.4 Graceful restart

When BIRD is started after restart or crash, it repopulates routing tables in an uncoordinated manner, like
after clean start. This may be impractical in some cases, because if the forwarding plane (i.e. kernel routing
tables) remains intact, then its synchronization with BIRD would temporarily disrupt packet forwarding
until protocols converge. Graceful restart is a mechanism that could help with this issue. Generally, it
works by starting protocols and letting them repopulate routing tables while deferring route propagation
until protocols acknowledge their convergence. Note that graceful restart behavior have to be configured
for all relevant protocols and requires protocol-specific support (currently implemented for Kernel and BGP
protocols), it is activated for particular boot by option -R.

Some protocols (e.g. BGP) could be restarted gracefully after both intentional outage and crash, while
others (e.g. OSPF) after intentional outage only. For planned graceful restart, BIRD must be shut down by
graceful restart (p.24) command instead of regular down (p.24) command. In this way routing neighbors
are notified about planned graceful restart and routes are kept in kernel table after shutdown.

2.5 MPLS

Multiprotocol Label Switching (MPLS) is a networking technology which works below IP routing but above
the link (e.g. ethernet) layer. It is described in RFC 3031.

In regular IP forwarding, the destination address of a packet is independently examined in each hop, a route
with longest prefix match is selected from the routing table, and packet is processed accordingly. In general,
there is no difference between border routers and internal routers w.r.t. IP forwarding.

In MPLS forwarding, when a packet enters the network, it is classified (based on destination address, ingress
interface and other factors) into one of forwarding equivalence classes (FECs), then a header with a MPLS
label identifying the FEC is attached to it, and the packet is forwarded. In internal routers, only the MPLS
label is examined, the matching MPLS route is selected from the MPLS routing table, and the packet is
processed accordingly. The specific value of MPLS label has local meaning only and may change between
hops (that is why it is called label switching). When the packet leaves the network, the MPLS header is
removed.

The advantage of the MPLS approach is that other factors than the destination address can be considered
and used consistently in the whole network, for example IP traffic with multiple overlapping private address
ranges could be mixed together, or particular paths for specific flows could be defined. Another advantage
is that MPLS forwarding by internal routers can be much simpler than IP forwarding, as instead of the

http://www.rfc-editor.org/info/rfc3031

2.5. MPLS 10

longest prefix match algorithm it uses simpler exact match for MPLS route selection. The disadvantage is
additional complexity in signaling. For further details, see RFC 3031.

MPLS-aware routing protocols not only distribute IP routing information, but they also distribute labels.
Therefore, they produce labeled routes - routes representing label switched paths (LSPs) through the MPLS
domain. Such routes have IP prefix and next hop address like regular (non-labeled) routes, but they also
have local MPLS label (in route attribute mpls_label (p. 33)) and outgoing MPLS label (as a part of the next
hop). They are stored in regular IP routing tables.

Labeled routes are used for exchange of routing information between routing protocols and for ingress (IP
-> MPLS) forwarding, but they are not directly used for MPLS forwarding. For that purpose MPLS routes
(p.7) are used. These are routes that have local MPLS label as a primary key and they are stored in the
MPLS routing table.

In BIRD, the whole process generally works this way: A MPLS-aware routing protocol (say BGP) receives
routing information including remote label. It produces a route with attribute mpls_policy (p. 33) specifying
desired MPLS label policy (p.20). Such route then passes the import filter (which could modify the MPLS
label policy or perhaps assign a static label) and when it is accepted, a local MPLS label is selected (according
to the label policy) and attached to the route, producing labeled route. When a new MPLS label is allocated,
the MPLS-aware protocol automatically produces corresponding MPLS route. When all labeled routes that
use specific local MPLS label are retracted, the corresponding MPLS route is retracted too.

There are three important concepts for MPLS in BIRD: MPLS domains, MPLS tables and MPLS channels.
MPLS domain represents an independent label space, all MPLS-aware protocols are associated with some
MPLS domain. It is responsible for label management, handling label allocation requests from MPLS-aware
protocols. MPLS table is just a routing table for MPLS routes. Routers usually have one MPLS domain
and one MPLS table, with Kernel protocol to export MPLS routes into kernel FIB.

MPLS channels make protocols MPLS-aware, they are responsible for keeping track of active FECs (and cor-
responding allocated labels), selecting FECs / local labels for labeled routes, and maintaining correspondence
between labeled routes and MPLS routes.

Note that local labels are allocated to individual MPLS-aware protocols and therefore it is not possible to
share local labels between different protocols.

http://www.rfc-editor.org/info/rfc3031

Chapter 3: Configuration

3.1 Introduction

BIRD is configured using a text configuration file. Upon startup, BIRD reads prefiz/etc/bird.conf (unless
the -c command line option is given). Configuration may be changed at user’s request: if you modify the
config file and then signal BIRD with SIGHUP, it will adjust to the new config. Then there’s the client which
allows you to talk with BIRD in an extensive way.

In the config, everything on a line after # or inside /* */ is a comment, whitespace characters are treated
as a single space. If there’s a variable number of options, they are grouped using the { } brackets. Each
option is terminated by a ;. Configuration is case sensitive. There are two ways how to name symbols (like
protocol names, filter names, constants etc.). You can either use a simple string starting with a letter (or
underscore) followed by any combination of letters, numbers and underscores (e.g. R123, my_filter, bgp5)
or you can enclose the name into apostrophes (?) and than you can use any combination of numbers, letters,
underscores, hyphens, dots and colons (e.g. ’1:strange-name’, ’~NAME-’, ’cool::name’).

Here is an example of a simple config file. It enables synchronization of routing tables with OS kernel, learns
network interfaces and runs RIP on all network interfaces found.

protocol kernel {

ipvd {
export all; # Default is export none
3
persist; # Don’t remove routes on BIRD shutdown
3
protocol device {
}
protocol rip {
ipvd {
import all;
export all;
3

interface "x";

3.2 Global options

include "filename";
This statement causes inclusion of a new file. The filename could also be a wildcard, in that case
matching files are included in alphabetic order. The maximal depth is 8. Note that this statement can
be used anywhere in the config file, even inside other options, but always on the beginning of line. In
the following example, the first semicolon belongs to the include, the second to ipv6 table. If the
tablename.conf contains exactly one token (the name of the table), this construction is correct:

ipv6 table
include "tablename.conf";;

log "filename" [limit "backup"] | fixed "filename" size | syslog [name name] | stderr | udp
address [port port] all|{ list of classes }
Set logging of messages having the given class (either all or { error|trace [, ...] } etc.) into
selected destination - a file specified as a filename string (with optional log rotation information),
syslog (with optional name argument), the stderr output, or as a UDP message (in RFC 3164 syslog
format).

11

http://www.rfc-editor.org/info/rfc3164

3.2. Global options 12

Classes are: info, warning, error and fatal for messages about local problems, debug for debugging
messages, trace when you want to know what happens in the network, remote for messages about
misbehavior of remote machines, auth about authentication failures, bug for internal BIRD bugs.

Logging directly to file supports basic log rotation — there is an optional log file limit and a backup
filename, when log file reaches the limit, the current log file is renamed to the backup filename and a
new log file is created. It’s also possible to log to a single file behaving as a ring buffer with a fixed
size.

You may specify more than one log line to establish logging to multiple destinations. Default: log
everything to the system log, or to the debug output if debugging is enabled by -d/-D command-line
option.

debug protocols all|off|{ states|routes|filters|interfaces|events|packets [, ...] }
Set global defaults of protocol debugging options. See debug (p.15) in the following section. Default:
off.

debug channels all|off|{ states|routes|filters|events [, ...] }
Set global defaults of channel debugging options. See debug (p.17) in the channel section. Default:
off.

debug tables allloff|{ states|routes|filters|events [, ...] }
Set global defaults of table debugging options. See debug (p.15) in the table section. Default: off.

debug commands number
Control logging of client connections (0 for no logging, 1 for logging of connects and disconnects, 2 and
higher for logging of all client commands). Default: 0.

debug latency all|off|{ ping|wakeup|scheduling|sockets|events|timers }
Activate tracking of internal scheduler actions. This is a developer and technical support tool for cases
when internal events are missed. You should keep this off unless you know what you are doing. Default:
off.

debug latency limit time
If debug latency is enabled, this option allows to specify a limit for elapsed time. Events exceeding
the limit are logged. Default: 1 s.

watchdog warning time
Set time limit for I/O loop cycle. If one iteration took more time to complete, a warning is logged.
Default: 5 s.

watchdog timeout time
Set time limit for I/O loop cycle. If the limit is breached, BIRD is killed by abort signal. The timeout
has effective granularity of seconds, zero means disabled. Default: disabled (0).

mrtdump "filename"
Set MRTdump file name. This option must be specified to allow MRTdump feature. Default: no dump
file.

mrtdump protocols allloff|{ states|messages [, ...] }
Set global defaults of MRTdump options. See mrtdump in the following section. Default: off.

filter name local variables{ commands }
Define a filter. You can learn more about filters in the following chapter.

function name (parameters) [-> return type 1 local variables { commands }
Define a function. You can learn more about functions in the following chapter.

protocol rip|ospf|bgp|... [name [from name2]] { protocol options }
Define a protocol instance called name (or with a name like ”rip5” generated automatically if you
don’t specify any name). You can learn more about configuring protocols in their own chapters. When
from name2 expression is used, initial protocol options are taken from protocol or template name2
You can run more than one instance of most protocols (like RIP or BGP). By default, no instances are
configured.

3.2. Global options 13

template rip|ospflbgp|... [name [from name2l] { protocol options }
Define a protocol template instance called name (or with a name like "bgpl” generated automatically
if you don’t specify any name). Protocol templates can be used to group common options when many
similarly configured protocol instances are to be defined. Protocol instances (and other templates) can
use templates by using from expression and the name of the template. At the moment templates (and
from expression) are not implemented for OSPF protocol.

define constant = expression
Define a constant. You can use it later in every place you could use a value of the same type. Be-
sides, there are some predefined numeric constants based on /etc/iproute2/rt_* files. A list of defined
constants can be seen (together with other symbols) using ’show symbols’ command.

attribute type name
Declare a custom route attribute. You can set and get it in filters like any other route attribute. This
feature is intended for marking routes in import filters for export filtering purposes instead of locally
assigned BGP communities which have to be deleted in export filters.

router id number | IPvj address
Set BIRD’s router ID. It’s a 4-byte non-zero integer that should be unique within an AS. Default: the
lowest IPv4 address of the router.

router id from [-] ["mask" 1 [prefizx 1 [, ...]
Set BIRD’s router ID based on an IPv4 address of an interface specified by an interface pattern. See
interface (p.16) section for detailed description of interface patterns with extended clauses.

hostname "name"
Set hostname. Default: node name as returned by ‘uname -n’.

graceful restart wait number
During graceful restart recovery, BIRD waits for convergence of routing protocols. This option allows
to specify a timeout for the recovery to prevent waiting indefinitely if some protocols cannot converge.
Default: 240 seconds.

timeformat route|protocol|base|log "formatl" [limit "format2"]
This option allows to specify a format of date/time used by BIRD. The first argument specifies for
which purpose such format is used. route is a format used in 'show route’ command output, protocol

is used in ’show protocols’ command output, base is used for other commands and log is used in a log
file.

" format1” is a format string using strftime(8) notation (see man strftime for details). It is extended
to support sub-second time part with variable precision (up to microseconds) using ”%f” conversion
code (e.g., "%T. %31 is hh:mm:ss.sss time). limit and ” format2” allow to specify the second format
string for times in past deeper than limit seconds.

There are several shorthands: iso long is a ISO 8601 date/time format (YYYY-MM-DD hh:mm:ss)
that can be also specified using "%F %T". Similarly, iso long ms and iso long us are ISO 8601
date/time formats with millisecond or microsecond precision. iso short is a variant of ISO 8601 that
uses just the time format (hh:mm:ss) for near times (up to 20 hours in the past) and the date format
(YYYY-MM-DD) for far times. This is a shorthand for "%T" 72000 "%F". And there are also iso
short ms and iso short us high-precision variants of that.

By default, BIRD uses the iso short ms format for route and protocol times, and the iso long
ms format for base and log times.

nettype table name [{ option; [...] }]
Define a new routing table. The default routing tables master4 and master6 are defined implicitly,
other routing tables have to be defined by this option. See the routing table configuration section
(p.13) for routing table options.

mpls domain name [{ option; [...1 } 1]
Define a new MPLS domain. MPLS domains represent independent label spaces and are responsible
for MPLS label management. All MPLS-aware protocols are associated with some MPLS domain. See
the MPLS configuration section (p.19) for MPLS domain options.

3.3. Routing table options 14

eval expr
Evaluates given filter expression. It is used by the developers for testing of filters.

3.2.1 Thread setup

BIRD runs in several threads. There is one main thread, taking care about startup, shutdown,
(re)configuration, CLI and several protocols which have not yet been updated to run in other threads.
Then there are several thread groups, running the rest.

Default thread group is worker. This group runs (by default) BGP, BMP, MRT, Pipe and RPKI. Also the
routing table maintenance routines run in these threads. For BFD, there is another thread group called
express, with minimal latency, expecting all tasks to be extremely fast. The threads are started as soon as
some work is required from them, therefore if you don’t configure BFD, the express thread won’t start.

Any configuration of thread groups must be strictly placed before any table or protocol configuration, as
these depend on the thread group existence.

Thread groups are configured by writing thread group name {} blocks, which contain the following options:

threads number
Set how many threads should BIRD spawn in this thread group. Every thread can utilize one complete
CPU core. You probably want to keep at least one free core for other processes. The maximum feasible
thread count heavily depends on the actual workload and must be determined by testing or estimation.
Default: 1

default bool
Mark this thread group as default. There must be exactly one thread group marked as default. Default
default thread group: worker

max latency time
Set maximum latency for the thread group. The group tries to dispatch every event before this time
elapses. Setting this too low causes BIRD to spend lots of time on overhead and fill logs with reports.
Setting this too high causes BIRD to hold locks for long times. Do not change unless you know what
you are doing. Default: 1 s for worker, 10 ms for express.

min time time
Set minimum awarded loop execution time for the thread group. This is an internal performance
tuning knob which may change between minor versions. Do not change unless you know what you are
doing. Default: 10 ms for worker, 1 ms for express.

max time time
Set maximum awarded loop execution time for the thread group. This is an internal performance
tuning knob which may change between minor versions. Do not change unless you know what you are
doing. Default: 300 ms for worker, 10 ms for express.

wakeup time time
Set maximum sleep time for the thread group. Every thread will wake up after this time even if no
work is requested. This is an internal IO loop knob which may change between minor versions. Do
not change unless you know what you are doing. Default: 31415 s for worker, 60 s for express.

There is also a ”simple” thread group setting. If you write threads number on top level, it is equivalent
to setting the worker group thread count to that number, and the express group thread count to one. This
setting is deprecated and may disappear in some future version.

3.3 Routing table options

Most routing tables do not need any options and are defined without an option block, but there are still some
options to tweak routing table behavior. Note that implicit tables (master4 and master6) can be redefined
in order to set options.

3.3. Routing table options 15

sorted switch
Usually, a routing table just chooses the selected (best) route from a list of routes for each network,
while keeping remaining routes unsorted. If enabled, these lists of routes are kept completely sorted
(according to preference or some protocol-dependent metric).

This is needed for some protocol features (e.g. secondary option of BGP protocol, which allows to
accept not just a selected route, but the first route (in the sorted list) that is accepted by filters), but
it is incompatible with some other features (e.g. deterministic med option of BGP protocol, which
activates a way of choosing selected route that cannot be described using comparison and ordering).
Minor advantage is that routes are shown sorted in show route, minor disadvantage is that it is slightly
more computationally expensive. Default: off.

trie switch
BIRD routing tables are implemented with hash tables, which is efficient for exact-match lookups, but
inconvenient for longest-match lookups or interval lookups (finding superprefix or subprefixes). This
option activates additional trie structure that is used to accelerate these lookups, while using the hash
table for exact-match lookups.

This has advantage for RPKI (p. 86) (on ROA tables), for recursive next-hops (p. 54) (on IGP tables),
and is required for flowspec validation (p.55) (on base IP tables). Another advantage is that interval
results (like from show route in ... command) are lexicographically sorted. The disadvantage is
that trie-enabled routing tables require more memory, which may be an issue especially in multi-table
setups. Default: off.

gc threshold number
Specify a minimum amount of removed networks that triggers a garbage collection (GC) cycle. Default:
1000.

gc period time
Specify a period of time between consecutive GC cycles. When there is a significant amount of route
withdraws, GC cycles are executed repeatedly with given period time (with some random factor).
When there is just small amount of changes, GC cycles are not executed. In extensive route server
setups, running GC on hundreds of full BGP routing tables can take significant amount of time,
therefore they should use higher GC periods. Default: adaptive, based on number of routing tables in
the configuration. From 10 s (with <= 25 routing tables) up to 600 s (with >= 1500 routing tables).

cork threshold number number
Too many pending exports may lead to memory bloating. In such cases, BIRD tries to relieve the
memory pressure by pausing some routines until the queue sizes get low enough. This option allows
the user to set the thresholds; first value is the low threshold (when to resume), the second one is the
high threshold (when to pause). The higher is the threshold, the more memory can get used. In most
cases, the defaults should work for you but if you experience memory bloating on import surges, this
knob is the first to turn down. Default: 333300 1011010.

export settle time time time
Minimum and maximum settle times, respectively, for export announcements. When multiple routes
are changing, this mechanism waits for the changes to settle before waking up sleeping export threads
but if the changes are coming steadily, BIRD isn’t waiting forever; at most the maximum time. Default
values: 1 ms 100 ms. You have to always provide both values.

route refresh export settle time time time
Minimum and maximum settle times, respectively, for export announcements (the same as above),
valid when any channel is currently doing a route refresh. This serves a purpose of even more aggresive
change bundling, knowing that there is some active process generating changes in a fast pace. If you
don’t want this feature, set this to the same values as export settle time (p.55). Default values: 100
ms 3 s.

digest settle time &ime time
Minimum and maximum settle times, respectively, for table change digests. This settle time applies
to ROA table changes where a trie is generated containing all changed ROAs to automatically reload
depending channels. Default values: 1 s 20 s.

3.4. Protocol options 16

debug allloff|{ states|routes|events [, ...] }
Set table debugging options. Each table can write some trace messages into log with category trace.
You can request all trace messages or select some types: states for table state changes and auxiliary
processes, routes for auxiliary route notifications (next hop update, flowspec revalidation) and events
for more detailed auxiliary routine debug. See also channel debugging option (p.17). Default: off.

thread group name
Assign this table’s maintenance tasks to this thread group. Default: worker.

3.4 Protocol options

For each protocol instance, you can configure a bunch of options. Some of them (those described in this
section) are generic, some are specific to the protocol (see sections talking about the protocols).

Several options use a switch argument. It can be either on, yes or a numeric expression with a non-zero
value for the option to be enabled or off, no or a numeric expression evaluating to zero to disable it. An
empty switch is equivalent to on (”silence means agreement”).

disabled switch
Disables the protocol. You can change the disable/enable status from the command line interface
without needing to touch the configuration. Disabled protocols are not activated. Default: protocol is
enabled.

restart time limit {time
Set time limit for subsequent automatic restarts of the protocol. If the protocol hits the limit (with
a restart action) before this time elapses from starting the protocol, the protocol is disabled with an
error message in the config file. This doesn’t apply to manual restarts or reconfiguration. Default: 5 s.

debug all|off|{ states|routes|filters|interfaces|events|packets [, ...] }

Set protocol debugging options. If asked, each protocol is capable of writing trace messages about its
work to the log (with category trace). You can either request printing of all trace messages or only of
the selected types: states for protocol state changes (protocol going up, down, starting, stopping etc.),
routes for routes exchanged with the routing table, filters for details on route filtering, interfaces
for interface change events sent to the protocol, events for events internal to the protocol and packets
for packets sent and received by the protocol. Classes routes and filters can be also set per-channel
using channel debugging option (p.17)) Default: off.

mrtdump all|off|{ states|messages [, ...] }
Set protocol MRTdump flags. MRTdump is a standard binary format for logging information from
routing protocols and daemons. These flags control what kind of information is logged from the protocol
to the MRTdump file (which must be specified by global mrtdump option, see the previous section).
Although these flags are similar to flags of debug option, their meaning is different and protocol-specific.
For BGP protocol, states logs BGP state changes and messages logs received BGP messages. Other
protocols does not support MRTdump yet.

router id number | IPvj address
This option can be used to override global router id for a given protocol. Default: uses global router
id.

hostname "name"
This option can be used to override global hostname for a given protocol. Default: uses global hostname.

description "text"
This is an optional description of the protocol. It is displayed as a part of the output of 'show protocols
all’ command.

vrf "text"|default
Associate the protocol with specific VRF. The protocol will be restricted to interfaces assigned to the
VRF and will use sockets bound to the VRF. A corresponding VRF interface must exist on OS level.
For kernel protocol, an appropriate table still must be explicitly selected by table option.

3.4. Protocol options 17

By selecting default, the protocol is associated with the default VRF; i.e., it will be restricted to
interfaces not assigned to any regular VRF. That is different from not specifying vrf at all, in which
case the protocol may use any interface regardless of its VRF status.

Note that for proper VRF support it is necessary to use Linux kernel version at least 4.14, older versions
have limited VRF implementation. Before Linux kernel 5.0, a socket bound to a port in default VRF
collide with others in regular VRFs. In BGP, this can be avoided by using strict bind (p.47) option.

channel name [{channel config}]
Every channel must be explicitly stated. See the protocol-specific configuration for the list of supported
channel names. See the channel configuration section (p.17) for channel definition.

thread group name
Assign this protocol’s tasks to this thread group. Ignored in protocols not yet updated for the multi-
threaded execution model. Default: worker.

There are several options that give sense only with certain protocols:

interface [-] ["mask" 1 [prefix 1 [, ...] [{ option; [..1 1} 1]
Specifies a set of interfaces on which the protocol is activated with given interface-specific options. A
set of interfaces specified by one interface option is described using an interface pattern. The interface
pattern consists of a sequence of clauses (separated by commas), each clause is a mask specified as a
shell-like pattern. Interfaces are matched by their name.

An interface matches the pattern if it matches any of its clauses. If the clause begins with -, matching
interfaces are excluded. Patterns are processed left-to-right, thus interface "ethO", -"ethx", "x";
means ethQ and all non-ethernets.

Some protocols (namely OSPFv2 and Direct) support extended clauses that may contain a mask, a
prefix, or both of them. An interface matches such clause if its name matches the mask (if specified)
and its address matches the prefix (if specified). Extended clauses are used when the protocol handles
multiple addresses on an interface independently.

An interface option can be used more times with different interface-specific options, in that case for
given interface the first matching interface option is used.

This option is allowed in Babel, BFD, Device, Direct, OSPF, RAdv and RIP protocols. In OSPF
protocol it is used in the area subsection.

Default: none.
Examples:

interface "*" { type broadcast; }; - start the protocol on all interfaces with type broadcast
option.

interface "ethl", "eth4", "eth5" { type ptp; }; - start the protocol on enumerated interfaces
with type ptp option.

interface -192.168.1.0/24, 192.168.0.0/16; - start the protocol on all interfaces that have ad-
dress from 192.168.0.0/16, but not from 192.168.1.0/24.

interface "eth*" 192.168.1.0/24; - start the protocol on all ethernet interfaces that have address
from 192.168.1.0/24.

tx class|dscp number
This option specifies the value of ToS/DS/Class field in IP headers of the outgoing protocol packets.
This may affect how the protocol packets are processed by the network relative to the other network
traffic. With class keyword, the value (0-255) is used for the whole ToS/Class octet (but two bits
reserved for ECN are ignored). With dscp keyword, the value (0-63) is used just for the DS field in
the octet. Default value is OxcO (DSCP 0x30 - CS6).

tx priority number
This option specifies the local packet priority. This may affect how the protocol packets are processed
in the local TX queues. This option is Linux specific. Default value is 7 (highest priority, privileged
traffic).

3.5. Channel options 18

password "password" | bytestring [{ password options } 1]
Specifies a password that can be used by the protocol as a shared secret key. Password option can be
used more times to specify more passwords. If more passwords are specified, it is a protocol-dependent
decision which one is really used. Specifying passwords does not mean that authentication is enabled,
authentication can be enabled by separate, protocol-dependent authentication option.

A password can be specified as a string or as a sequence of hexadecimal digit pairs (bytestring (p. 26)).

This option is allowed in BFD, OSPF, RIP, and Babel protocols. BGP has also password option, but
it is slightly different and described separately. Default: none.

Password option can contain section with some (not necessary all) password sub-options:

id number
ID of the password, (0-255). If it is not specified, BIRD will choose ID based on an order of the
password item in the interface, starting from 1. For example, second password item in one interface
will have default ID 2. ID 0 is allowed by BIRD, but some other implementations may not allow it.
ID is used by some routing protocols to identify which password was used to authenticate protocol
packets.

generate from "time"
The start time of the usage of the password for packet signing. The format of time is YYYY-MM-DD
[hh:mm:ss[.sss]].

generate to "time"
The last time of the usage of the password for packet signing.

accept from "time"
The start time of the usage of the password for packet verification.

accept to "time"
The last time of the usage of the password for packet verification.

from "time"
Shorthand for setting both generate from and accept from.

to "time"
Shorthand for setting both generate to and accept to.

algorithm (keyed md5 | keyed shal | hmac shal | hmac sha256 | hmac sha384 | hmac shab512 |
blake2s128 | blake2s256 | blake2b256 | blake2b512)
The message authentication algorithm for the password when cryptographic authentication is enabled.
The default value depends on the protocol. For RIP and OSPFv2 it is Keyed-MD5 (for compatibility),
for OSPFv3 and Babel it is HMAC-SHA-256.

3.5 Channel options

Every channel belongs to a protocol and is configured inside its block. The minimal channel config is empty,
then it uses default values. The name of the channel implies its nettype. Channel definitions can be inherited
from protocol templates. Multiple definitions of the same channel are forbidden, but channels inherited from
templates can be updated by new definitions.

debug allloff|{ states|routes|filters [, ...] }
Set channel debugging options. Like in protocol debugging (p.15), channels are capable of writing
trace messages about its work to the log (with category trace). You can either request printing of
all trace messages or only of the selected types: states for channel state changes (channel going up,
down, feeding, reloading etc.), routes for routes propagated through the channel, filters for details
on route filtering, remaining debug flags are not used in channel debug. Default: off.

table name
Specify a table to which the channel is connected. Default: the first table of given nettype.

3.5. Channel options 19

preference ecxpr
Sets the preference of routes generated by the protocol and imported through this channel. Default:
protocol dependent.

import all | none | filter name | filter { filter commands } | where boolean filter expression
Specify a filter to be used for filtering routes coming from the protocol to the routing table. all is for
keeping all routes, none is for dropping all routes. Default: all (except for EBGP).

export [in prefix 1 filter
This is similar to the import keyword, except that it works in the direction from the routing table to
the protocol. If in keyword is used, only routes inside the given prefix are exported. Other routes are
completely ignored (e.g. no logging and no statistics). Default: none (except for EBGP and L3VPN).

import keep filtered switch
Usually, if an import filter rejects a route, the route is forgotten. When this option is active, these
routes are kept in the routing table, but they are hidden and not propagated to other protocols. But
it is possible to show them using show route filtered. Note that this option does not work for the
pipe protocol. Default: off.

rpki reload switch

Import or export filters may depend on route RPKI status (using roa_check() or aspa_check()
operators). In contrast to other filter operators, this status for the same route may change as the
content of ROA and ASPA tables changes. When this option is active, BIRD activates automatic
reload of the appropriate subset of prefixes imported or exported by the channels whenever ROA and
ASPA tables are updated (after a short settle time). When disabled, route reloads have to be requested
manually. The option is ignored if neither roa_check() nor aspa_check() is used in channel filters.
Note that for BGP channels, automatic reload requires import table (p.55) or export table (p.55) (for
respective direction). Default: on.

import limit [number | off] [action warn | block | restart | disable]
Specify an import route limit (a maximum number of routes imported from the protocol) and optionally
the action to be taken when the limit is hit. Warn action just prints warning log message. Block action
discards new routes coming from the protocol. Restart and disable actions shut the protocol down like
appropriate commands. Disable is the default action if an action is not explicitly specified. Note that
limits are reset during protocol reconfigure, reload or restart. Default: off.

receive limit [number | off] [action warn | block | restart | disable]
Specify an receive route limit (a maximum number of routes received from the protocol and remem-
bered). It works almost identically to import limit option, the only difference is that if import keep
filtered option is active, filtered routes are counted towards the limit and blocked routes are forgot-
ten, as the main purpose of the receive limit is to protect routing tables from overflow. Import limit,
on the contrary, counts accepted routes only and routes blocked by the limit are handled like filtered
routes. Default: off.

export limit [number | off] [action warn | block | restart | disable]
Specify an export route limit, works similarly to the import limit option, but for the routes exported
to the protocol. This option is experimental, there are some problems in details of its behavior —
the number of exported routes can temporarily exceed the limit without triggering it during protocol
reload, exported routes counter ignores route blocking and block action also blocks route updates of
already accepted routes — and these details will probably change in the future. Default: off.

export block number
Set the minimum amount of routes exported at once when feeding or if ‘merge paths‘ or ‘secondary* is
selected. This affects overall latency. Basically, when your export filters are very expensive, processing
the whole block of routes may take too much time. In such cases, you may need to shrink this value
to improve responsiveness. Default: 16384.

This is a trivial example of RIP configured for IPv6 on all interfaces:

3.6. MPLS options 20

protocol rip ng {
ipv6;
interface "x";

}
This is a non-trivial example.

protocol rip ng {

ipvé {
table mytablef;
import filter { ... };
export filter { ... };
import limit 50;

s

interface "x";

}
And this is even more complicated example using templates.

template bgp {
local 198.51.100.14 as 65000;

ipvd {
table mytable4;
import filter { ... };
export none;

3

ipvé {
table mytable6;
import filter { ... };
export none;

3

}

protocol bgp from <
neighbor 198.51.100.130 as 64496;

IPv4 channel is inherited as-is, while IPv6
channel is adjusted by export filter option
ipv6e {

export filter { ... };
3

3.6 MPLS options

The MPLS domain definition is mandatory for a MPLS router. All MPLS channels and MPLS-aware
protocols are associated with some MPLS domain (although usually implicitly with the sole one). In the
MPLS domain definition you can configure details of MPLS label allocation. Currently, there is just one
option, label range.

Note that the MPLS subsystem is experimental, it is likely that there will be some backward-incompatible
changes in the future.

label range name { start number; length number; [...]1 }
Define a new label range, or redefine implicit label ranges static and dynamic. MPLS channels use
configured label ranges for dynamic label allocation, while static label range is used for static label
allocation. The label range definition must specify the extent of the range. By default, the range
static is 16-1000, while the range dynamic is 1000-10000.

3.6. MPLS options 21

MPLS channel should be defined in each MPLS-aware protocol in addition to its regular channels. It
is responsible for label allocation and for announcing MPLS routes to the MPLS routing table. Besides
common channel options (p.17), MPLS channels have some specific options:

domain name
Specify a MPLS domain to which this channel and protocol belongs. Default: The first defined MPLS

domain.

label range name
Use specific label range for dynamic label allocation. Note that static labels always use the range
static. Default: the range dynamic.

label policy static|prefix|aggregate|vrf
Label policy specifies how routes are grouped to forwarding equivalence classes (FECs) and how labels
are assigned to them.

The policy static means no dynamic label allocation is done, and static labels must be set in import
filters using the route attribute mpls_label (p. 33).

The policy prefix means each prefix uses separate label associated with that prefix. When a labeled
route is updated, it keeps the label. This policy is appropriate for IGPs.

The policy aggregate means routes are grouped to FECs according to their next hops (including next
hop labels), and one label is used for all routes in the same FEC. When a labeled route is updated, it
may change next hop, change FEC and therefore change label. This policy is appropriate for BGP.

The policy vrf is only valid in L3VPN protocols. It uses one label for all routes from a VRF, while
replacing the original next hop with lookup in the VRF.

Default: prefix.
This is a trivial example of MPLS setup:

mpls domain mdom {
label range bgprange { start 2000; length 1000; };
}

mpls table mtab;

protocol static {
ipv6;
mpls;

route 2001:db8:1:1/64 mpls 100 via 2001:db8:1:2::1/64 mpls 200;
}

protocol bgp {
regular channels
ipv6 mpls { ... };
vpné mpls { ... };

MPLS channel

mpls {
domain mdom;
table mtab;
label range bgprange;
label policy aggregate;
3

Chapter 4: Remote control

4.1 Overview

You can use the command-line client birdc to talk with a running BIRD. Communication is done using the
appropriate UNIX domain socket. The commands can perform simple actions such as enabling/disabling
of protocols, telling BIRD to show various information, telling it to show routing table filtered by filter,
or asking BIRD to reconfigure. Press ? at any time to get online help. Option -r can be used to enable
a restricted mode of BIRD client, which allows just read-only commands (show ...). Option -v can be
passed to the client, to make it dump numeric return codes along with the messages. You do not necessarily
need to use birdc to talk to BIRD, your own applications could do that, too — the format of communication
between BIRD and birdc is stable (see the programmer’s documentation).

There is also lightweight variant of BIRD client called birdcl, which does not support command line
editing and history and has minimal dependencies. This is useful for running BIRD in resource constrained
environments, where Readline library (required for regular BIRD client) is not available.

4.2 Configuration

By default, BIRD opens bird.ctl UNIX domain socket and the CLI tool connects to it. If changed on the
command line by the -s option, BIRD or the CLI tool connects there instead.

It’s also possible to configure additional remote control sockets in the configuration file by cli "name" {
options }; and you can open how many sockets you wish. There are no checks whether the user configured
the same socket multiple times and BIRD may behave weirdly if this happens. On shutdown, the additional
sockets get removed immediately and only the main socket stays until the very end. If there are no options,
the braces may be omitted.

Options:

restrict
Set the socket to be restricted as if the user always sent the restrict command after connecting. The
user may still overload the daemon by requesting insanely complex filters so you shouldn’t expose this
socket to public even if restricted.

v2 attributes
Display the names and composition of route attributes the same way as BIRD 2 does. This is a
compatibility option for easier transition from BIRD 2 to BIRD 3.

4.3 Usage

Here is a brief list of supported functions.

Note: Many commands have the name of the protocol instance as an argument. This argument can be
omitted if there exists only a single instance.

show status
Show router status, that is BIRD version, uptime and time from last reconfiguration.

show interfaces [summary]
Show the list of interfaces. For each interface, print its type, state, MTU and addresses assigned.

show protocols [all]
Show list of protocol instances along with tables they are connected to and protocol status, possibly
giving verbose information, if all is specified.

reload bgp [in|out] [namel
Manually request (in) or send (out) route refresh (or both) on the given BGP protocol(s).

22

4.3.

Usage 23

show

show

show

show

show

show

show

show

show

show

show

ospf interface [namel ["interface"]
Show detailed information about OSPF interfaces.

ospf neighbors [namel] ["interface"]
Show a list of OSPF neighbors and a state of adjacency to them.

ospf state [all] [namel

Show detailed information about OSPF areas based on a content of the link-state database. It shows
network topology, stub networks, aggregated networks and routers from other areas and external routes.
The command shows information about reachable network nodes, use option all to show information
about all network nodes in the link-state database.

ospf topology [alll [namel
Show a topology of OSPF areas based on a content of the link-state database. It is just a stripped-down
version of 'show ospf state’.

ospf 1lsadb [global | area id | link] [type number] [lsid id] [self | router id]

[name]
Show contents of an OSPF LSA database. Options could be used to filter entries.

rip interfaces [name] ["interface"]
Show detailed information about RIP interfaces.

rip neighbors [namel ["interface"]
Show a list of RIP neighbors and associated state.

static [namel
Show detailed information about static routes.

bfd sessions [name] [address (IP|prefiz)] [(interface|dev) "name"] [ipv4|ipvé]
[direct|multihop] [all]

Show information about BFD sessions. Options could be used to filter entries, or in the case of the
option all to give verbose output.

symbols [table|filter|function|protocol|template|roa|symbol]
Show the list of symbols defined in the configuration (names of protocols, routing tables etc.).

route [[(for|in)] prefiz|for IP] [table (¢|all)] [(import|export) table p.c] [filter
f|where cond] [(export|preexport|noexport) pl [protocol pl [(stats|count)] [options]
Show contents of specified routing tables, that is routes, their metrics and (in case the all switch is
given) all their attributes.

You can specify a prefiz if you want to print routes for a specific network. If you use for prefiz or
IP, you’ll get the entry which will be used for forwarding of packets to the given destination. Finally,
if you use in prefix, you get all prefixes covered by the given prefix. By default, all routes for each
network are printed with the selected one at the top, unless primary is given in which case only the
selected route is shown.

The show route command can process one or multiple routing tables. The set of selected tables is
determined on three levels: First, tables can be explicitly selected by table switch, which could be
used multiple times, all tables are specified by table all. Second, tables can be implicitly selected
by channels or protocols that are arguments of several other switches (e.g., export, protocol). Last,
the set of default tables is used: master4, master6 and each first table of any other network type.

There are internal tables when (import|export) table options are used for some channels. They can
be selected explicitly with (import|export) table switch, specifying protocol p and channel name c.

You can also ask for printing only routes processed and accepted by a given filter (filter name or
filter { filter } or matching a given condition (where condition).

The export, preexport and noexport switches ask for printing of routes that are exported to the
specified protocol or channel. With preexport, the export filter of the channel is skipped. With
noexport, routes rejected by the export filter are printed instead. Note that routes not exported for

4.3. Usage 24

other reasons (e.g. secondary routes or routes imported from that protocol) are not printed even with
noexport. These switches also imply that associated routing tables are selected instead of default ones.

You can also select just routes added by a specific protocol. protocol p. This switch also implies that
associated routing tables are selected instead of default ones.

If BIRD is configured to keep filtered routes (see import keep filtered option), you can show them
instead of routes by using filtered switch.

The stats switch requests showing of route statistics (the number of networks, number of routes before
and after filtering). If you use count instead, only the statistics will be printed.

mrt dump table name|"pattern" to "filename" [filter f|where c]
Dump content of a routing table to a specified file in MRT table dump format. See MRT protocol
(p.67) for details.

configure [soft] ["config file"] [timeout [number]]
Reload configuration from a given file. BIRD will smoothly switch itself to the new configuration,
protocols are reconfigured if possible, restarted otherwise. Changes in filters usually lead to restart of
affected protocols.

The previous configuration is saved and the user can switch back to it with configure undo (p.23)
command. The old saved configuration is released (even if the reconfiguration attempt fails due to e.g.
a syntax error).

If soft option is used, changes in filters does not cause BIRD to restart affected protocols, therefore
already accepted routes (according to old filters) would be still propagated, but new routes would be
processed according to the new filters.

If timeout option is used, config timer is activated. The new configuration could be either confirmed
using configure confirm command, or it will be reverted to the old one when the config timer expires.
This is useful for cases when reconfiguration breaks current routing and a router becomes inaccessible
for an administrator. The config timeout expiration is equivalent to configure undo command. The
timeout duration could be specified, default is 300 s.

configure confirm
Deactivate the config undo timer and therefore confirm the current configuration.

configure undo
Undo the last configuration change and smoothly switch back to the previous (stored) configuration.
If the last configuration change was soft, the undo change is also soft. There is only one level of undo,
but in some specific cases when several reconfiguration requests are given immediately in a row and
the intermediate ones are skipped then the undo also skips them back.

configure check ["config file"]
Read and parse given config file, but do not use it. useful for checking syntactic and some semantic
validity of an config file.

enable|disable|restart name|"pattern"|all
Enable, disable or restart a given protocol instance, instances matching the pattern or all instances.

reload filters [in|out] (name|"pattern"|all) [partial prefix]
Reload a given protocol instance, that means re-import routes from the protocol instance and re-
export preferred routes to the instance. If in or out options are used, the command is restricted to
one direction (re-import or re-export).

This command is useful if appropriate filters have changed but the protocol instance was not restarted
(or reloaded), therefore it still propagates the old set of routes. For example when configure soft
command was used to change filters.

If partial prefix option is used, only corresponding routes are reloaded. Protocol BGP does partial
reload only if it has import table enabled, otherwise partial reload for BGP is refused.

Re-export always succeeds, but re-import is protocol-dependent and might fail (for example, if BGP
neighbor does not support route-refresh extension). In that case, re-export is also skipped. Note that
for the pipe protocol, both directions are always reloaded together (in or out options are ignored in
that case).

4.3. Usage 25

timeformat "formatl" [limit "format2"]
Override format of date/time used by BIRD in this CLI session.

Meaning of ” format1”, limit, and ” format2” is the same as in the timeformat (p.12) configuration
option. Also, the same iso ... shorthands may be used.

down
Shut BIRD down.

graceful restart
Shut BIRD down for graceful restart. See graceful restart (p.8) section for details.

debug protocol|pattern|all all|off|{ states|routes|filters|events|packets [, ...] }
Control protocol debugging.

dump resources|sockets|ao keys|events|interfaces|neighbors|attributes|routes|protocols "file"
Creates the given file (it must not exist) and dumps contents of internal data structures there. By
sending SIGUSRI1, you get all of these concatenated to bird.dump in the current directory. The file is
only readable for the user running the daemon. The format of dump files is internal and could change
in the future without any notice.

echo all|off|{ list of log classes } [buffer-size]
Control echoing of log messages to the command-line output. See log option (p.10) for a list of log
classes.

eval expr
Evaluate given expression.

Chapter 5: Filters

5.1 Introduction

BIRD contains a simple programming language. (No, it can’t yet read mail :-). There are two objects in this
language: filters and functions. Filters are interpreted by BIRD core when a route is being passed between
protocols and routing tables. The filter language contains control structures such as if’s and switches, but
it allows no loops. An example of a filter using many features can be found in filter/test.conf.

Filter gets the route, looks at its attributes and modifies some of them if it wishes. At the end, it decides
whether to pass the changed route through (using accept) or whether to reject it. A simple filter looks
like this:

filter not_too_far

{
int var;
if defined(rip_metric) then
var = rip_metric;
else {
var = 1;
rip_metric = 1;
X
if rip_metric > 10 then
reject "RIP metric is too big";
else
accept "ok";
}

As you can see, a filter has a header, a list of local variables, and a body. The header consists of the filter
keyword followed by a (unique) name of filter. The list of local variables consists of type name; pairs where
each pair declares one local variable. The body consists of { statements }. Each statement is terminated
by a ;. You can group several statements to a single compound statement by using braces ({ statements })
which is useful if you want to make a bigger block of code conditional.

BIRD supports functions, so that you don not have to repeat the same blocks of code over and over. Functions
can have zero or more parameters and they can have local variables. If the function returns value, then you
should always specify its return type. Direct recursion is possible. Function definitions look like this:

function name() -> int

{
int local_variable;
int another_variable = 5;
return 42;
}
function with_parameters(int parameter) -> pair
{
print parameter;
return (1, 2);
}

Like in C programming language, variables are declared inside function body, either at the beginning, or
mixed with other statements. Declarations may contain initialization. You can also declare variables in nested
blocks, such variables have scope restricted to such block. There is a deprecated syntax to declare variables
after the function line, but before the first {. Functions are called like in C: name () ; with_parameters(5) ;.
Function may return values using the return [ezpr]/ command. Returning a value exits from current function
(this is similar to C).

Filters are defined in a way similar to functions except they cannot have explicit parameters and cannot
return. They get a route table entry as an implicit parameter, it is also passed automatically to any functions

26

5.2.

Data types 27

called. The filter must terminate with either accept or reject statement. If there is a runtime error in

filter,

the route is rejected.

A nice trick to debug filters is to use show route filter name from the command line client. An example
session might look like:

5.2

pavel@bug:~/bird$./birdc -s bird.ctl
BIRD 0.0.0 ready.
bird> show route

10.0.0.0/8 dev eth0 [directl 23:21] (240)
195.113.30.2/32 dev tunll [directl 23:21] (240)
127.0.0.0/8 dev lo [directl 23:21] (240)

bird> show route 7

show route [<prefix>] [table <t>] [filter <f>] [all] [primary]...
bird> show route filter { if 127.0.0.5 ~ net then accept; }
127.0.0.0/8 dev lo [directl 23:21] (240)

bird>

Data types

Each variable and each value has certain type. Booleans, integers and enums are incompatible with each
other (that is to prevent you from shooting oneself in the foot).

bool

int

pair

quad

This is a boolean type, it can have only two values, true and false. Boolean is the only type you can
use in if statements.

This is a general integer type. It is an unsigned 32bit type; i.e., you can expect it to store values from
0 to 4294967295. Overflows are not checked. You can use 0x1234 syntax to write hexadecimal values.

This is a pair of two short integers. Each component can have values from 0 to 65535. Literals of
this type are written as (1234,5678). The same syntax can also be used to construct a pair from two
arbitrary integer expressions (for example (1+2,a)).

Operators .asn and .data can be used to extract corresponding components of a pair: (asn, data).

This is a dotted quad of numbers used to represent router IDs (and others). Each component can have
a value from 0 to 255. Literals of this type are written like IPv4 addresses.

string

This is a string of characters. There are no ways to modify strings in filters. You can pass them between
functions, assign them to variables of type string, print such variables, use standard string comparison
operations (e.g. =, !=, <, >, <=, >=), but you can’t concatenate two strings. String literals are
written as "This is a string constant". Additionally matching (*, !~) operators could be used
to match a string value against a shell pattern (represented also as a string).

bytestring

This is a sequence of arbitrary bytes. There are no ways to modify bytestrings in filters. You can pass
them between functions, assign them to variables of type bytestring, print such values, and compare
bytestings (=, !=).

Bytestring literals are written as a sequence of hexadecimal digit pairs, optionally colon-
separated. A Dbytestring specified this way must be either at least 16 bytes (32 digits)
long, or prefixed by the hex: prefix: 01:23:45:67:89:ab:cd:ef:01:23:45:67:89:ab:cd:ef,
0123456789abcdef0123456789abcdef, hex:, hex:12:34:56, hex:12345678.

A bytestring can be made from a hex string using from hex() function. Source strings can use any
number of dots, colons, hyphens and spaces as byte separators: from hex(" 12.34 56:78 ab-cd-ef
n) .

5.2. Data types 28

ip

This type can hold a single IP address. The IPv4 addresses are stored as IPv4-Mapped IPv6 addresses
so one data type for both of them is used. Whether the address is IPv4 or not may be checked by
.is_v4 which returns a bool. IP addresses are written in the standard notation (10.20.30.40 or
fec0:3:4::1). You can apply special operator .mask(number) on values of type ip. It masks out all
but first number bits from the IP address. So 1.2.3.4.mask(8) = 1.0.0.0 is true.

prefix

rd

ec

1c

This type can hold a network prefix consisting of IP address, prefix length and several other values.
This is the key in route tables.

Prefixes may be of several types, which can be determined by the special operator .type. The type
may be:

NET_IP4 and NET_IP6 prefixes hold an IP prefix. The literals are written as ipaddress/pzlen. There
are two special operators on these: .ip which extracts the IP address from the pair, and .len, which
separates prefix length from the pair. So 1.2.0.0/16.1len = 16 is true.

NET_IP6_SADR nettype holds both destination and source IPv6 prefix. The literals are written as
ipaddress/pxlen from ipaddress/pxlen, where the first part is the destination prefix and the second
art is the source prefix. They support the same operators as IP prefixes, but just for the destination
part. They also support .src and .dst operators to get respective parts of the address as separate
NET_IP6 values.

NET_VPN4 and NET_VPN6 prefixes hold an IP prefix with VPN Route Distinguisher (RFC 4364). They
support the same special operators as [P prefixes, and also .rd which extracts the Route Distinguisher.
Their literals are written as rd ipprefix

NET_ROA4 and NET_ROA6 prefixes hold an IP prefix range together with an ASN. They support the same
special operators as IP prefixes, and also .maxlen which extracts maximal prefix length, and .asn
which extracts the ASN.

NET_FLOW4 and NET_FLOW6 hold an IP prefix together with a flowspec rule. Filters currently do not
support much flowspec parsing, only .src and .dst operators to get source and destination parts of
the flowspec as separate NET_IP4 / NET_IP6 values.

NET_MPLS holds a single MPLS label and its handling is currently not implemented.

This is a route distinguisher according to RFC 4364. There are three kinds of RDs: asn:32bit int,
asn4 : 16bit int and IPv/ address: 32bit int

This is a specialized type used to represent BGP extended community values. It is essentially a 64bit
value, literals of this type are usually written as (kind, key, wvalue), where kind is a kind of extended
community (e.g. rt / ro for a route target / route origin communities), the format and possible values
of key and value are usually integers, but it depends on the used kind. Similarly to pairs, ECs can
be constructed using expressions for key and value parts, (e.g. (ro, myas, 3*10), where myas is an
integer variable).

This is a specialized type used to represent BGP large community values. It is essentially a triplet
of 32bit values, where the first value is reserved for the AS number of the issuer, while meaning of
remaining parts is defined by the issuer. Literals of this type are written as (123, 456, 789), with
any integer values. Similarly to pairs, LCs can be constructed using expressions for its parts, (e.g.
(myas, 10+20, 3%10), where myas is an integer variable).

Operators .asn, .datal, and .data2 can be used to extract corresponding components of LCs: (asn,
datal , data2).

int|pair|quad|ip|prefix|ec|lc|rd|enun set

Filters recognize several types of sets. Sets are similar to strings: you can pass them around but you
cannot modify them. Literals of type int set look like [1, 2, 5..7]. As you can see, both simple
values and ranges are permitted in sets.

http://www.rfc-editor.org/info/rfc4364
http://www.rfc-editor.org/info/rfc4364

5.2.

Data types 29

enum

For pair sets, expressions like (123,%) can be used to denote ranges (in that case
(123,0)..(123,65535)). You can also use (123,5..100) for range (123,5)..(123,100). You can
also use * and a..b expressions in the first part of a pair, note that such expressions are translated
to a set of intervals, which may be memory intensive. E.g. (*,4..20) is translated to (0,4..20),
(1,4..20), (2,4..20), ... (65535, 4..20).

EC sets use similar expressions like pair sets, e.g. (rt, 123, 10..20) or (ro, 123, *). Expressions
requiring the translation (like (rt, *, 3)) are not allowed (as they usually have 4B range for ASNs).

Also LC sets use similar expressions like pair sets. You can use ranges and wildcards, but if one field
uses that, more specific (later) fields must be wildcards. E.g., (10, 20..30, *) or (10, 20, 30..40)
is valid, while (10, *, 20..30) or (10, 20..30, 40) is not valid.

You can also use named constants or compound expressions for non-prefix set values. However, it must
be possible to evaluate these expressions before daemon boots. So you can use only constants inside
them. Also, in case of compound expressions, they require parentheses around them. E.g.

define one=1;
define myas=64500;

int set odds = [one, (2+1), (6-one), (2%2%2-1), 9, 11];
pair set ps = [(1,one+one), (3,4)..(4,8), (5,%), (6,3..6), (7..9,%) 1;
ec set es = [(rt, myas, *), (rt, myas+2, 0..16%16*16-1)];

Sets of prefixes are special: their literals does not allow ranges, but allows prefix patterns that are
written as ipaddress/pxlen{low, high}. Prefix ipl/lenl matches prefix pattern ip2/len2{l,h} if the
first min(lenl, len2) bits of ipl and ip2 are identical and 1 <= lenl <= h. A valid prefix pattern
has to satisfy low <= high, but pxlen is not constrained by low or high. Obviously, a prefix matches
a prefix set literal if it matches any prefix pattern in the prefix set literal.

There are also two shorthands for prefix patterns: address/len+ is a shorthand for ad-
dress/len{len,mazlen} (where mazlen is 32 for IPv4 and 128 for IPv6), that means network pre-
fix address/len and all its subnets. address/len- is a shorthand for address/len{0,len}, that means
network prefix address/len and all its supernets (network prefixes that contain it).

For example, [1.0.0.0/8, 2.0.0.0/8+, 3.0.0.0/8-, 4.0.0.0/8{16,24}] matches prefix
1.0.0.0/8, all subprefixes of 2.0.0.0/8, all superprefixes of 3.0.0.0/8 and prefixes 4.X.X.X whose
prefix length is 16 to 24. [0.0.0.0/0{20,24}] matches all prefixes (regardless of IP address) whose
prefix length is 20 to 24, [1.2.3.4/32-] matches any prefix that contains IP address 1.2.3.4.
1.2.0.0/16 = [1.0.0.0/8{15,17} 1 is true, but 1.0.0.0/16 ~ [1.0.0.0/8- 1] is false.

Cisco-style patterns like 10.0.0.0/8 ge 16 le 24 can be expressed in BIRD as 10.0.0.0/8{16,24},
192.168.0.0/16 le 24 as 192.168.0.0/16{16,24} and 192.168.0.0/16 ge 24 as
192.168.0.0/16{24,32}.

It is not possible to mix IPv4 and IPv6 prefixes in a prefix set. It is currently possible to mix IPv4
and IPv6 addresses in an ip set, but that behavior may change between versions without any warning;
don’t do it unless you are more than sure what you are doing. (Really, don’t do it.)

Enumeration types are fixed sets of possibilities. You can’t define your own variables of such type, but
some route attributes are of enumeration type. Enumeration types are incompatible with each other.

bgppath

BGP path is a list of autonomous system numbers. You can’t write literals of this type. There are
several special operators on bgppaths:

P .first returns the first ASN (the neighbor ASN) in path P.
P .last returns the last ASN (the source ASN) in path P.
P.last nonaggregated returns the last ASN in the non-aggregated part of the path P.

Both first and last return zero if there is no appropriate ASN, for example if the path contains an
AS set element as the first (or the last) part. If the path ends with an AS set, last_nonaggregated
may be used to get last ASN before any AS set.

5.2. Data types 30

P .len returns the length of path P.
P .empty makes the path P empty. Can’t be used as a value, always modifies the object.
P .prepend(A) prepends ASN A to path P and returns the result.

P .delete(A) deletes all instances of ASN A from from path P and returns the result. A may also be
an integer set, in that case the operator deletes all ASNs from path P that are also members of set A.

P.filter(A) deletes all ASNs from path P that are not members of integer set A, and returns the
result. I.e., filter do the same as delete with inverted set A.

Methods prepend, delete and filter keep the original object intact as long as you use the result
in any way. You can also write e.g. P.prepend(A); as a standalone statement. This variant does
modify the original object with the result of the operation.

bgpmask

BGP masks are patterns used for BGP path matching (using path ~ [= 2 3 5 * =] syntax). The
masks resemble wildcard patterns as used by UNIX shells. Autonomous system numbers match them-
selves, * matches any (even empty) sequence of arbitrary AS numbers and ? matches one arbitrary AS
number. For example, if bgp_path is 4 3 2 1, then: bgp_path ~ [= * 4 3 * =] is true, but bgp_path
~ [= * 4 5 x =] is false. There is also + operator which matches one or multiple instances of previous
expression, e.g. [= 1 2+ 3 =] matches both path 1 2 3 and path 122 2 3, but not 1 3 nor 124 3.
Note that while * and ? are wildcard-style operators, + is regex-style operator.

BGP mask expressions can also contain integer expressions enclosed in parenthesis and integer variables,
for example [= * 4 (1+2) a =]. You can also use ranges (e.g. [= * 3..5 2 100..200 * =]) and
sets (e.g. [=1 2 [3, 5, 71 * =]).

clist
Clist is similar to a set, except that unlike other sets, it can be modified. The type is used for community
list (a set of pairs) and for cluster list (a set of quads). There exist no literals of this type. There are
special operators on clists:

C'.len returns the length of clist C.
C'.empty makes the list C' empty. Can’t be used as a value, always modifies the object.

C.add(P) adds pair (or quad) P to clist C' and returns the result. If item P is already in clist C, it
does nothing. P may also be a clist, in that case all its members are added; i.e., it works as clist union.

C .delete(P) deletes pair (or quad) P from clist C' and returns the result. If clist C' does not contain
item P, it does nothing. P may also be a pair (or quad) set, in that case the operator deletes all items
from clist C' that are also members of set P. Moreover, P may also be a clist, which works analogously;
i.e., it works as clist difference.

C.filter (P) deletes all items from clist C that are not members of pair (or quad) set P, and returns
the result. L.e., filter do the same as delete with inverted set P. P may also be a clist, which works
analogously; i.e., it works as clist intersection.

Methods add, delete and filter keep the original object intact as long as you use the result in any
way. You can also write e.g. P.add(A); as a standalone statement. This variant does modify the
original object with the result of the operation.

C .min returns the minimum element of clist C.
C .max returns the maximum element of clist C.

Operators .min, .max can be used together with filter to extract the community from the specific
subset of communities (e.g. localpref or prepend) without the need to check every possible value (e.g.
filter (bgp_community, [(23456, 1000..1099)]) .min).

eclist
Eclist is a data type used for BGP extended community lists. Eclists are very similar to clists, but
they are sets of ECs instead of pairs. The same operations (like add, delete or ~ and !~ membership
operators) can be used to modify or test eclists, with ECs instead of pairs as arguments.

lclist
Lelist is a data type used for BGP large community lists. Like eclists, Iclists are very similar to
clists, but they are sets of LCs instead of pairs. The same operations (like add, delete or ~ and !~
membership operators) can be used to modify or test lclists, with LCs instead of pairs as arguments.

5.3.

Operators 31

5.3 Operators

The filter language supports common integer operators (+,-,%*,/), parentheses (ax(b+c)), comparison
(a=b, a'!=b, a<b, a>=b).
Logical operations include unary not (!), and (&&), and or (||).

Special operators include (~, !~) for ”is (not) element of a set” operation - it can be used on:

element and set of elements of the same type (returning true if element is contained in the given set)
two strings (returning true if the first string matches a shell-like pattern stored in the second string)
IP and prefix (returning true if IP is within the range defined by that prefix)

prefix and prefix (returning true if the first prefix is more specific than the second one)

bgppath and bgpmask (returning true if the path matches the mask)

number and bgppath (returning true if the number is in the path)

bgppath and int (number) set (returning true if any ASN from the path is in the set)

pair/quad and clist (returning true if the pair/quad is element of the clist)

clist and pair/quad set (returning true if there is an element of the clist that is also a member of the
pair/quad set).

There are also operators related to RPKI infrastructure used to run RFC 6483 route origin validation and
(draft) AS path validation.

roa_check(table) checks the current route in the specified ROA table and returns ROA_UNKNOWN,
ROA_INVALID or ROA_VALID, if the validation result is unknown, invalid, or valid, respectively. The
result is valid if there is a matching ROA, it is invalid if there is either matching ROA with a different
ASN;, or any covering ROA with shorter maximal prefix length.

roa_check(table, prefix, asn) is an explicit version of the ROA check if the user for whatever reason
needs to check a different prefix or different ASN than the default one. The equivalent call of the short
variant is roa_check(table, net, bgp_path.last) and it is faster to call the short variant.

aspa_check_downstream(table) checks the current route in the specified ASPA table and returns
ASPA_UNKNOWN, ASPA_INVALID, or ASPA_VALID if the validation result is unknown, invalid, or valid,
respectively. The result is valid if there is a full coverage of matching ASPA records according to the
Algorithm for Downstream Paths by the (draft). This operator is not present if BGP is not compiled
in.

aspa_check_upstream(table) checks the current route in the specified ASPA table as the former op-
erator, but it applies the (stricter) Algorithm for Upstream Paths by the (draft). This operator is not
present if BGP is not compiled in.

aspa_check(table, path, is_upstream) is an explicit version of the former two ASPA check oper-
ators. The equivalent of aspa_check_downstream is aspa_check(table, bgp_path, false) and for
aspa_check upstrean it is aspa_check(table, bgp_path, true). Note: the ASPA check does not
include the local ASN in the AS path. Also, ASPA_INVALID is returned for an empty AS path or for
AS path containing CONFED_SET or CONFED_SEQUENCE blocks, as the (draft) stipulates.

The following example checks for ROA and ASPA on routes from a customer:

http://www.rfc-editor.org/info/rfc6483

5.4. Control structures 32

roa6 table 16;
aspa table at;
attribute int valid_roa;
attribute int valid_aspa;

filter customer_check {
case roa_check(r6) {
ROA_INVALID: reject "Invalid ROA";
ROA_VALID: valid_roa = 1;
¥

case aspa_check_upstream(at) {
ASPA_INVALID: reject "Invalid ASPA";
ASPA_VALID: valid_aspa = 1;

}

accept;

}

5.4 Control structures

Filters support several control structures: conditions, for loops and case switches.

Syntax of a condition is: if boolean expression then commandT; else commandF ; and you can use {
commandl ; command?2; ... }instead of either command. The else clause may be omitted. If the boolean
expression is true, commandT is executed, otherwise commandF' is executed.

For loops allow to iterate over elements in compound data like BGP paths or community lists. The syntax is:
for [type 1 wariable in expr do command; and you can also use compound command like in conditions.
The expression is evaluated to a compound data, then for each element from such data the command is
executed with the item assigned to the variable. A variable may be an existing one (when just name is used)
or a locally defined (when type and name is used). In both cases, it must have the same type as elements.

The case is similar to case from Pascal. Syntax is case expr { else: | set-body_expr /: statement
; [... 1 }. The expression after case can be of any type that could be a member of a set, while the
set_body_expr before : can be anything (constants, intervals, expressions) that could be a part of a set literal.
One exception is prefix type, which can be used in sets bud not in case structure. Multiple commands must
be grouped by {}. If ezpr matches one of the : clauses, the statement or block after it is executed. If expr
matches neither of the : clauses, the statement or block after else: is executed.

Here is example that uses if and case structures:

if 1234 = i then printn "."; else {
print "not 1234";
print "You need {} around multiple commands";

}

for int asn in bgp_path do {

printn "ASN: ", asn;

if asn < 65536 then print " (2B)"; else print " (4B)";
}

case argl {
2: { print "two"; print "Multiple commands must brace themselves."; }
3 .. 5: print "three to five";
else: print "something else";

5.5. Route attributes 33

5.5 Route attributes

A filter is implicitly passed a route, and it can access its attributes just like it accesses variables. There
are common route attributes, protocol-specific route attributes and custom route attributes. Most common
attributes are mandatory (always defined), while remaining are optional. Attempts to access undefined
attribute result in a runtime error; you can check if an attribute is defined by using the defined(attribute
) operator. One notable exception to this rule are attributes of bgppath and *clist types, where undefined
value is regarded as empty bgppath/*clist for most purposes.

Attributes can be defined by just setting them in filters. Custom attributes have to be first declared by
attribute (p.12) global option. You can also undefine optional attribute back to non-existence by using the
unset (attribute) operator.

Common route attributes are:

prefix net
The network prefix or anything else the route is talking about. The primary key of the routing table.
Read-only. (See the chapter about routes (p.6).)

int preference
Preference of the route.

1p from
The router which the route has originated from.

wp gw
Next hop packets routed using this route should be forwarded to.

string proto
The name of the protocol which the route has been imported from. Read-only.

enum source
what protocol has told me about this route. Possible values: RTS_STATIC, RTS_INHERIT, RTS_DEVICE,
RTS_RIP, RTS_OSPF, RTS_OSPF_TA, RTS_OSPF_EXT1, RTS_OSPF_EXT2, RTS_BGP, RTS_PIPE, RTS_BABEL.

enum dest
Type of destination the packets should be sent to (RTD-ROUTER for forwarding to a neighboring router,
RTD_DEVICE for routing to a directly-connected network, RTD_MULTIPATH for multipath destinations,
RTD_BLACKHOLE for packets to be silently discarded, RTD_UNREACHABLE, RTD_PROHIBIT for packets that
should be returned with ICMP host unreachable / ICMP administratively prohibited messages). Can
be changed, but only to RTD_BLACKHOLE, RTD_UNREACHABLE or RTD_PROHIBIT.

string ifname
Name of the outgoing interface. Sink routes (like blackhole, unreachable or prohibit) and multipath
routes have no interface associated with them, so ifname returns an empty string for such routes.
Setting it would also change route to a direct one (remove gateway).

int ifindex
Index of the outgoing interface. System wide index of the interface. May be used for interface matching,
however indexes might change on interface creation/removal. Zero is returned for routes with undefined
outgoing interfaces. Read-only.

it weight
Multipath weight of route next hops. Valid values are 1-256. Reading returns the weight of the first
next hop, setting it sets weights of all next hops to the specified value. Therefore, this attribute is
not much useful for manipulating individual next hops of an ECMP route, but can be used in BGP
multipath setup to set weights of individual routes that are merged to one ECMP route during export
to the Kernel protocol (with active marge paths (p.63) option).

it gwmpls
Outgoing MPLS label attached to route (i.e., incoming MPLS label on the next hop router for this
label-switched path). Reading returns the label value and setting it sets it to the start of the label
stack. Setting implicit-NULL label (3) disables the MPLS label stack. Only the first next hop and only

5.6. Other statements 34

one label in the label stack supported right now. This is experimental option, will be likely changed
in the future to handle full MPLS label stack.

it igp-metric
The optional attribute that can be used to specify a distance to the network for routes that do not
have a native protocol metric attribute (like ospf_metricl for OSPF routes). It is used mainly by
BGP to compare internal distances to boundary routers (see below).

int mpls_label
Local MPLS label attached to the route. This attribute is produced by MPLS-aware protocols for
labeled routes. It can also be set in import filters to assign static labels, but that also requires static
MPLS label policy.

enum mpls_policy
For MPLS-aware protocols, this attribute defines which MPLS label policy (p.20) will be used
for the route. It can be set in import filters to change it on per-route basis. Valid values are
MPLS_POLICY_NONE (no label), MPLS_POLICY_STATIC (Static label), MPLS_POLICY_PREFIX (per-prefix la-
bel), MPLS_POLICY_AGGREGATE (aggregated label), and MPLS_POLICY_VRF (per-VRF label). See MPLS
label policy (p.20) for details.

int mpls_class
When MPLS label policy (p.20) is set to aggregate, it may be useful to apply more fine-grained
aggregation than just one based on next hops. When routes have different value of this attribute, they
will not be aggregated under one local label even if they have the same next hops.

Protocol-specific route attributes are described in the corresponding protocol sections.

5.6 Other statements

The following statements are available:

variable = expr
Set variable (or route attribute) to a given value.

accept|reject [expr]
Accept or reject the route, possibly printing ezpr.

return expr
Return ezpr from the current function, the function ends at this point.

print|printn expr [, expr...]
Prints given expressions; useful mainly while debugging filters. The printn variant does not terminate
the line.

Chapter 6: Protocols

6.1 Aggregator

6.1.1 Introduction

The Aggregator protocol explicitly merges routes by the given rules. There are four phases of aggregation.
First routes are filtered, then sorted into buckets, then buckets are merged and finally the results are filtered
once again. Aggregating an already aggregated route is forbidden.

This is an experimental protocol, use with caution.

6.1.2 Configuration

table table
The table from which routes are exported to get aggregated.

export ...
A standard channel’s export clause, defining which routes are accepted into aggregation.

aggregate on expr | attribute [, ...]
All the given filter expressions and route attributes are evaluated for each route. Then routes are sorted
into buckets where all values are the same. Note: due to performance reasons, all filter expressions
must return a compact type, e.g. integer, a BGP (standard, extended, large) community or an IP
address. If you need to compare e.g. modified AS Paths in the aggregation rule, you can define a
custom route attribute and set this attribute in the export filter. For now, it’s mandatory to say net
here, we can’t merge prefixes yet.

merge by { filter code }
The given filter code has an extra symbol defined: routes. By iterating over routes, you get all the
routes in the bucket and you can construct your new route. All attributes selected in aggregate on
are already set to the common values. For now, it’s not possible to use a named filter here. You have
to finalize the route by calling accept.

import ...
Filter applied to the route after merge by. Here you can use a named filter.

peer table table
The table to which aggregated routes are imported. It may be the same table as table.

6.1.3 Example

protocol aggregator {
table master6;
export where defined(bgp_path);
/* Merge all routes with the same AS Path length */
aggregate on net, bgp_path.len;
merge by {
for route r in routes do {
if ! defined(bgp_path) then { bgp_path = r.bgp_path }
bgp_community = bgp_community.add(r.bgp_community) ;
}
accept;
I
import all;
peer table agr_result;

35

6.2. Babel 36

6.2 Babel

6.2.1 Introduction

The Babel protocol (RFC 8966) is a loop-avoiding distance-vector routing protocol that is robust and efficient
both in ordinary wired networks and in wireless mesh networks. Babel is conceptually very simple in its
operation and ”just works” in its default configuration, though some configuration is possible and in some
cases desirable.

The Babel protocol is dual stack; i.e., it can carry both IPv4 and IPv6 routes over the same IPv6 transport.
For sending and receiving Babel packets, only a link-local IPv6 address is needed.

BIRD implements an extension for IPv6 source-specific routing (SSR or SADR), but must be configured
accordingly to use it. SADR~enabled Babel router can interoperate with non-SADR Babel router, but the
later would ignore routes with specific (non-zero) source prefix.

6.2.2 Configuration

The Babel protocol support both IPv4 and IPv6 channels; both can be configured simultaneously. It can also
be configured with IPv6 SADR (p.7) channel instead of regular IPv6 channel, in such case SADR support
is enabled. Babel supports no global configuration options apart from those common to all other protocols,
but supports the following per-interface configuration options:

protocol babel [<name>] {
ipv4 { <channel config> };
ipv6 [sadr] { <channel config> };
randomize router id <switch>;
interface <interface pattern> {
type wired|wireless|tunnel;
rxcost <number>;
limit <number>;
hello interval <time>;
update interval <time>;
port <number>;
tx class|dscp <number>;
tx priority <number>;
rx buffer <number>;
tx length <number>;
check link <switch>;
next hop ipv4 <address>;
next hop ipv6 <address>;
next hop prefer nativel|ipv6;
extended next hop <switch>;
rtt cost <number>;
rtt min <time>;
rtt max <time>;
rtt decay <number>;
send timestamps <switch>;
authentication none|mac [permissive];
password "<text>";
password "<text>" {
id <number>;
generate from "<date>";
generate to "<date>";
accept from "<date>";
accept to '"<date>";
from "<date>";
to "<date>";
algorithm (hmac shal | hmac sha256 | hmac sha384 |

http://www.rfc-editor.org/info/rfc8966

6.2. Babel 37

hmac sha512 | blake2s128 | blake2s256 | blake2b256 | blake2b512);
};
};
}

ipv4d | ipv6 [sadr] channel config
The supported channels are IPv4, IPv6, and IPv6 SADR.

randomize router id switch
If enabled, Bird will randomize the top 32 bits of its router ID whenever the protocol instance starts
up. If a Babel node restarts, it loses its sequence number, which can cause its routes to be rejected
by peers until the state is cleared out by other nodes in the network (which can take on the order of
minutes). Enabling this option causes Bird to pick a random router ID every time it starts up, which
avoids this problem at the cost of not having stable router IDs in the network. Default: no.

type wired|wireless|tunnel
This option specifies the interface type: Wired, wireless or tunnel. On wired interfaces a neighbor is
considered unreachable after a small number of Hello packets are lost, as described by 1imit option.
On wireless interfaces the ETX link quality estimation technique is used to compute the metrics of
routes discovered over this interface. This technique will gradually degrade the metric of routes when
packets are lost rather than the more binary up/down mechanism of wired type links. A tunnel is like
a wired interface, but turns on RTT-based metrics with a default cost of 96. Default: wired.

rxcost number
This option specifies the nominal RX cost of the interface. The effective neighbor costs for route
metrics will be computed from this value with a mechanism determined by the interface type. Note
that in contrast to other routing protocols like RIP or OSPF, the rxcost specifies the cost of RX
instead of TX, so it affects primarily neighbors’ route selection and not local route selection. Default:
96 for wired interfaces, 256 for wireless.

limit number
BIRD keeps track of received Hello messages from each neighbor to establish neighbor reachability.
For wired type interfaces, this option specifies how many of last 16 hellos have to be correctly received
in order to neighbor is assumed to be up. The option is ignored on wireless type interfaces, where
gradual cost degradation is used instead of sharp limit. Default: 12.

hello interval time s|ms
Interval at which periodic Hello messages are sent on this interface, with time units. Default: 4 seconds.

update interval time s|ms
Interval at which periodic (full) updates are sent, with time units. Default: 4 times the hello interval.

port number
This option selects an UDP port to operate on. The default is to operate on port 6696 as specified in
the Babel RFC.

tx class|dscp|priority number
These options specify the ToS/DiffServ/Traffic class/Priority of the outgoing Babel packets. See tx
class (p. 16) common option for detailed description.

rx buffer number
This option specifies the size of buffers used for packet processing. The buffer size should be bigger
than maximal size of received packets. The default value is the interface MTU, and the value will be
clamped to a minimum of 512 bytes + IP packet overhead.

tx length number
This option specifies the maximum length of generated Babel packets. To avoid IP fragmentation, it
should not exceed the interface MTU value. The default value is the interface MTU value, and the
value will be clamped to a minimum of 512 bytes + IP packet overhead.

6.2. Babel 38

check link switch
If set, the hardware link state (as reported by OS) is taken into consideration. When the link disappears
(e.g. an ethernet cable is unplugged), neighbors are immediately considered unreachable and all routes
received from them are withdrawn. It is possible that some hardware drivers or platforms do not
implement this feature. Default: yes.

next hop ipv4 address
Set the IPv4 next hop address advertised for (IPv4) routes advertised on this interface. Default: the
preferred IPv4 address of the interface.

next hop ipv6 address
Set the IPv6 next hop address advertised for routes advertised on this interface. If not set, the same
link-local address that is used as the source for Babel packets will be used. In normal operation, it
should not be necessary to set this option.

next hop prefer native|ipv6
By default, BIRD prefers to advertise IPv4 routes with an IPv4 next hop address, using an IPv6 next
hop address only when IPv4 addresses are absent from the interface. When set to ipv6, BIRD will
advertise IPv4 routes with an IPv6 next hop address even when IPv4 addresses are present on the
interface (assuming the option extended next hop (p.37) is enabled). Default: native.

extended next hop switch
Specify whether BIRD should allow IPv4 routes with an IPv6 next hop, as described in RFC 9229.
Note that when both IPv4 and IPv6 next hops are available, the option next hop prefer (p.37) controls
which one is advertised. Default: yes.

rtt cost number

The RTT-based cost that will be applied to all routes from each neighbour based on the measured
RTT to that neighbour. If this value is set, timestamps will be included in generated Babel Hello and
IHU messages, and (if the neighbours also have timestamps enabled), the RTT to each neighbour will
be computed. An additional cost is added to a neighbour if its RT'T is above the rtt min (p.37) value
configured on the interface. The added cost scales linearly from 0 up to the RTT cost configured in
this option; the full cost is applied if the neighbour RTT reaches the RTT configured in the rtt max
(p.-37) option (and for all RTTs above this value). Default: 0 (disabled), except for tunnel interfaces,
where it is 96.

rtt min time s|ms
The minimum RTT above which the RTT cost will start to be applied (scaling linearly from zero up
to the full cost). Default: 10 ms

rtt max time s|ms
The maximum RTT above which the full RTT cost will start be applied. Default: 120 ms

rtt decay number
The decay factor used for the exponentional moving average of the RTT samples from each neighbour,
in units of 1/256. Higher values discards old RTT samples faster. Must be between 1 and 256. Default:
42

send timestamps switch
Whether to send the timestamps used for RTT calculation on this interface. Sending the timestamps
enables peers to calculate an RTT to this node, even if no RTT cost is applied to the route metrics.
Default: yes.

authentication nonelmac [permissive]
Selects authentication method to be used. none means that packets are not authenticated at all, mac
means MAC authentication is performed as described in RFC 8967. If MAC authentication is selected,
the permissive suffix can be used to select an operation mode where outgoing packets are signed, but
incoming packets will be accepted even if they fail authentication. This can be useful for incremental
deployment of MAC authentication across a network. If MAC authentication is selected, a key must
be specified with the password configuration option. Default: none.

http://www.rfc-editor.org/info/rfc9229
http://www.rfc-editor.org/info/rfc8967

6.3. BFD 39

password "text"
Specifies a password used for authentication. See the password (p.17) common option for a detailed
description. The Babel protocol will only accept HMAC-based algorithms or one of the Blake algo-
rithms, and the length of the supplied password string must match the key size used by the selected
algorithm.

6.2.3 Attributes

Babel defines just one attribute: the internal babel metric of the route. It is exposed as the babel metric
attribute and has range from 1 to infinity (65535).

6.2.4 Example

protocol babel {

interface "ethx" {
type wired;

};

interface "wlanO", "wlanl" {
type wireless;
hello interval 1;
rxcost 512;

};

interface "tap0";

This matches the default of babeld: redistribute all addresses
configured on local interfaces, plus re-distribute all routes received
from other babel peers.

ipvd {

export where (source = RTS_DEVICE) || (source = RTS_BABEL);
};
ipvé {

export where (source = RTS_DEVICE) || (source = RTS_BABEL);
};

6.2.5 Known issues

When retracting a route, Babel generates an unreachable route for a little while (according to RFC). The
interaction of this behavior with other protocols is not well tested and strange things may happen.

6.3 BFD

6.3.1 Introduction

Bidirectional Forwarding Detection (BFD) is not a routing protocol itself, it is an independent tool providing
liveness and failure detection. Routing protocols like OSPF and BGP use integrated periodic ”hello” messages
to monitor liveness of neighbors, but detection times of these mechanisms are high (e.g. 40 seconds by default
in OSPF, could be set down to several seconds). BFD offers universal, fast and low-overhead mechanism for
failure detection, which could be attached to any routing protocol in an advisory role.

BFD consists of mostly independent BFD sessions. Each session monitors an unicast bidirectional path
between two BFD-enabled routers. This is done by periodically sending control packets in both directions.
BFD does not handle neighbor discovery, BFD sessions are created on demand by request of other protocols
(like OSPF or BGP), which supply appropriate information like IP addresses and associated interfaces.

6.3. BFD 40

When a session changes its state, these protocols are notified and act accordingly (e.g. break an OSPF
adjacency when the BFD session went down).

BIRD implements basic BED behavior as defined in RFC 5880 (some advanced features like the echo mode
are not implemented), IP transport for BFD as defined in RFC 5881 and RFC 5883 and interaction with
client protocols as defined in RFC 5882.

BFD packets are sent with a dynamic source port number. Linux systems use by default a bit different dy-
namic port range than the IANA approved one (49152-65535). If you experience problems with compatibility,
please adjust /proc/sys/net/ipv4/ip_local port_range.

6.3.2 Configuration

BFD configuration consists mainly of multiple definitions of interfaces. Most BFD config options are session
specific. ' When a new session is requested and dynamically created, it is configured from one of these
definitions. For sessions to directly connected neighbors, interface definitions are chosen based on the
interface associated with the session, while multihop definition is used for multihop sessions. If no definition
is relevant, the session is just created with the default configuration. Therefore, an empty BFD configuration
is often sufficient.

Note that to use BFD for other protocols like OSPF or BGP, these protocols also have to be configured
to request BFD sessions, usually by bfd option. In BGP case, it is also possible to specify per-peer BFD
session options (e.g. rx/tx intervals) as a part of the bfd option.

A BFD instance not associated with any VRF handles session requests from all other protocols, even ones
associated with a VRF. Such setup would work for single-hop BFD sessions if net.ipv4.udp_13mdev_accept
sysctl is enabled, but does not currently work for multihop sessions. Another approach is to configure multiple
BFD instances, one for each VRF (including the default VRF). Each BFD instance associated with a VRF
(regular or default) only handles session requests from protocols in the same VRF.

Some of BFD session options require time value, which has to be specified with the appropriate unit: number
s|ms|us. Although microseconds are allowed as units, practical minimum values are usually in order of tens
of milliseconds.

Beware, all BFD instances pick up requests and sessions asynchronously, and any instance can pick up any
matching request, regardless of the order in the configuration file. There may be a future update, allowing
for strict matching, yet for now, we do not have such an option.

protocol bfd [<name>] {
accept [ipv4|ipv6] [direct|multihop];
strict bind <switch>;
zero udp6 checksum rx <switch>;
interface <interface pattern> {
interval <time>;
min rx interval <time>;
min tx interval <time>;
idle tx interval <time>;
multiplier <number>;
passive <switch>;
authentication none;
authentication simple;
authentication [meticulous] keyed md5|shal;
password "<text>";
password "<text>" {
id <number>;
generate from "<date>";
generate to "<date>";
accept from "<date>";
accept to "<date>";
from "<date>";
to "<date>";

http://www.rfc-editor.org/info/rfc5880
http://www.rfc-editor.org/info/rfc5881
http://www.rfc-editor.org/info/rfc5883
http://www.rfc-editor.org/info/rfc5882

6.3. BFD 41

3

multihop {
interval <time>;
min rx interval <time>;
min tx interval <time>;
idle tx interval <time>;
multiplier <number>;
passive <switch>;

3

neighbor <ip> [dev "<interface>"] [local <ip>] [multihop <switch>];

}

accept [ipv4|ipv6] [direct|multihop]
A BFD protocol instance accepts (by default) all BFD session requests (with regard to VRF restrictions,
see above). This option controls whether IPv4 / IPv6 and direct / multihop session requests are
accepted (and which listening sockets are opened). It can be used, for example, to configure separate
BFD protocol instances for IPv4 and for IPv6 sessions.

strict bind switch
Specify whether each BFD interface should use a separate listening socket bound to its local address,
or just use a shared listening socket accepting all addresses. Binding to a specific address could be
useful in cases like running multiple BIRD instances on a machine, each handling a different set of
interfaces. Default: disabled.

zero udp6 checksum rx switch
UDP checksum computation is optional in IPv4 while it is mandatory in IPv6. Some BFD implemen-
tations send UDP datagrams with zero (blank) checksum even in IPv6 case. This option configures
BFD listening sockets to accept such datagrams. It is available only on platforms that support the
relevant socket option (e.g. UDP_NO_CHECK6_RX on Linux). Default: disabled.

interface pattern [, ...1 { options }
Interface definitions allow to specify options for sessions associated with such interfaces and also may
contain interface specific options. See interface (p.16) common option for a detailed description of
interface patterns. Note that contrary to the behavior of interface definitions of other protocols,
BFD protocol would accept sessions (in default configuration) even on interfaces not covered by such
definitions.

multihop { options }
Multihop definitions allow to specify options for multihop BFD sessions, in the same manner as
interface definitions are used for directly connected sessions. Currently only one such definition
(for all multihop sessions) could be used.

neighbor ip [dev "interface"]l [local ip] [multihop switch]
BFD sessions are usually created on demand as requested by other protocols (like OSPF or BGP). This
option allows to explicitly add a BFD session to the specified neighbor regardless of such requests.

The session is identified by the IP address of the neighbor, with optional specification of used interface
and local IP. By default the neighbor must be directly connected, unless the session is configured as
multihop. Note that local IP must be specified for multihop sessions.

Session specific options (part of interface and multihop definitions):

interval time
BFD ensures availability of the forwarding path associated with the session by periodically sending
BFD control packets in both directions. The rate of such packets is controlled by two options, min
rx interval and min tx interval (see below). This option is just a shorthand to set both of these
options together.

min rx interval time
This option specifies the minimum RX interval, which is announced to the neighbor and used there to
limit the neighbor’s rate of generated BFD control packets. Default: 10 ms.

6.3. BFD 42

min tx interval time
This option specifies the desired TX interval, which controls the rate of generated BFD control packets
(together with min rx interval announced by the neighbor). Note that this value is used only if the
BFD session is up, otherwise the value of idle tx interval is used instead. Default: 100 ms.

idle tx interval time
In order to limit unnecessary traffic in cases where a neighbor is not available or not running BFD, the
rate of generated BFD control packets is lower when the BFD session is not up. This option specifies
the desired TX interval in such cases instead of min tx interval. Default: 1 s.

multiplier number
Failure detection time for BFD sessions is based on established rate of BFD control packets (min rx/tx
interval) multiplied by this multiplier, which is essentially (ignoring jitter) a number of missed packets
after which the session is declared down. Note that rates and multipliers could be different in each
direction of a BFD session. Default: 5.

passive switch
Generally, both BFD session endpoints try to establish the session by sending control packets to the
other side. This option allows to enable passive mode, which means that the router does not send BFD
packets until it has received one from the other side. Default: disabled.

authentication none
No passwords are sent in BFD packets. This is the default value.

authentication simple
Every packet carries 16 bytes of password. Received packets lacking this password are ignored. This
authentication mechanism is very weak.

authentication [meticulous] keyed md5|shal
An authentication code is appended to each packet. The cryptographic algorithm is keyed MD5 or
keyed SHA-1. Note that the algorithm is common for all keys (on one interface), in contrast to OSPF
or RIP, where it is a per-key option. Passwords (keys) are not sent open via network.

The meticulous variant means that cryptographic sequence numbers are increased for each sent packet,
while in the basic variant they are increased about once per second. Generally, the meticulous variant
offers better resistance to replay attacks but may require more computation.

password "text"
Specifies a password used for authentication. See password (p.17) common option for detailed de-
scription. Note that password option algorithm is not available in BFD protocol. The algorithm is
selected by authentication option for all passwords.

6.3.3 Example

protocol bfd {

interface "ethx" {
min rx interval 20 ms;
min tx interval 50 ms;
idle tx interval 300 ms;

};

interface "grex" {
interval 200 ms;
multiplier 10;
passive;

};

multihop {
interval 200 ms;
multiplier 10;

};

6.4. BGP 43

neighbor 192.168.1.10;
neighbor 192.168.2.2 dev "eth2";
neighbor 192.168.10.1 local 192.168.1.1 multihop;

6.4 BGP

The Border Gateway Protocol is the routing protocol used for backbone level routing in the today’s Internet.
Contrary to other protocols, its convergence does not rely on all routers following the same rules for route
selection, making it possible to implement any routing policy at any router in the network, the only restriction
being that if a router advertises a route, it must accept and forward packets according to it.

BGP works in terms of autonomous systems (often abbreviated as AS). Each AS is a part of the network
with common management and common routing policy. It is identified by a unique 16-bit number (ASN).
Routers within each AS usually exchange AS-internal routing information with each other using an interior
gateway protocol (IGP, such as OSPF or RIP). Boundary routers at the border of the AS communicate
global (inter-AS) network reachability information with their neighbors in the neighboring AS’es via exterior
BGP (eBGP) and redistribute received information to other routers in the AS via interior BGP (iBGP).

Each BGP router sends to its neighbors updates of the parts of its routing table it wishes to export along
with complete path information (a list of AS’es the packet will travel through if it uses the particular route)
in order to avoid routing loops.

6.4.1 Supported standards
e RFC 4271 — Border Gateway Protocol 4 (BGP)
e RFC 1997 — BGP Communities Attribute
e RFC 2385 — Protection of BGP Sessions via TCP MD5 Signature
e RFC 2545 — Use of BGP Multiprotocol Extensions for IPv6
e RFC 2918 — Route Refresh Capability
e RFC 3107 — Carrying Label Information in BGP
e RFC 4360 — BGP Extended Communities Attribute
e RFC 4364 — BGP/MPLS IPv4 Virtual Private Networks
o REFC 4456 — BGP Route Reflection
e RFC 4486 — Subcodes for BGP Cease Notification Message
e RFC 4659 — BGP/MPLS IPv6 Virtual Private Networks
o RFC 4724 — Graceful Restart Mechanism for BGP
e RFC 4760 — Multiprotocol extensions for BGP
e RFC 4798 — Connecting IPv6 Islands over IPv4 MPLS
e RFC 5065 — AS confederations for BGP
e RFC 5082 — Generalized TTL Security Mechanism
e RFC 5492 — Capabilities Advertisement with BGP
e RFC 8955 — Dissemination of Flow Specification Rules for IPv4
e RFC 8956 — Dissemination of Flow Specification Rules for IPv6

e RFC 5668 — 4-Octet AS Specific BGP Extended Community

http://www.rfc-editor.org/info/rfc4271
http://www.rfc-editor.org/info/rfc1997
http://www.rfc-editor.org/info/rfc2385
http://www.rfc-editor.org/info/rfc2545
http://www.rfc-editor.org/info/rfc2918
http://www.rfc-editor.org/info/rfc3107
http://www.rfc-editor.org/info/rfc4360
http://www.rfc-editor.org/info/rfc4364
http://www.rfc-editor.org/info/rfc4456
http://www.rfc-editor.org/info/rfc4486
http://www.rfc-editor.org/info/rfc4659
http://www.rfc-editor.org/info/rfc4724
http://www.rfc-editor.org/info/rfc4760
http://www.rfc-editor.org/info/rfc4798
http://www.rfc-editor.org/info/rfc5065
http://www.rfc-editor.org/info/rfc5082
http://www.rfc-editor.org/info/rfc5492
http://www.rfc-editor.org/info/rfc8955
http://www.rfc-editor.org/info/rfc8956
http://www.rfc-editor.org/info/rfc5668

6.4. BGP 44

e RFC 5925 — TCP Authentication Option

e RFC 6286 — AS-Wide Unique BGP Identifier

e RFC 6608 — Subcodes for BGP Finite State Machine Error

e RFC 6793 — BGP Support for 4-Octet AS Numbers

e RFC 7311 — Accumulated IGP Metric Attribute for BGP

e RFC 7313 — Enhanced Route Refresh Capability for BGP

e RFC 7606 — Revised Error Handling for BGP UPDATE Messages

e RFC 7911 — Advertisement of Multiple Paths in BGP

e RFC 7947 — Internet Exchange BGP Route Server

e RFC 8092 — BGP Large Communities Attribute

e RFC 8212 — Default EBGP Route Propagation Behavior without Policies
e RFC 8654 — Extended Message Support for BGP

e RFC 8950 — Advertising IPv4 NLRI with an IPv6 Next Hop

e RFC 9003 — Extended BGP Administrative Shutdown Communication

e RFC 9072 — Extended Optional Parameters Length for BGP OPEN Message
e RFC 9117 — Revised Validation Procedure for BGP Flow Specifications

e RFC 9234 — Route Leak Prevention and Detection Using Roles

e RFC 9494 — Long-Lived Graceful Restart for BGP

e RFC 9687 — Send Hold Timer

6.4.2 Route selection rules

BGP doesn’t have any simple metric, so the rules for selection of an optimal route among multiple BGP
routes with the same preference are a bit more complex and they are implemented according to the following
algorithm. It starts the first rule, if there are more "best” routes, then it uses the second rule to choose
among them and so on.

e Prefer route with the highest Local Preference attribute.

e Prefer route with the shortest AS path.

Prefer IGP origin over EGP and EGP origin over incomplete.

Prefer the lowest value of the Multiple Exit Discriminator.

e Prefer routes received via eBGP over ones received via iBGP.

Prefer routes with lower internal distance to a boundary router.

Prefer the route with the lowest value of router ID of the advertising router.

6.4.3 IGP routing table

BGP is mainly concerned with global network reachability and with routes to other autonomous systems.
When such routes are redistributed to routers in the AS via BGP, they contain IP addresses of a boundary
routers (in route attribute NEXT_HOP). BGP depends on existing IGP routing table with AS-internal routes
to determine immediate next hops for routes and to know their internal distances to boundary routers for
the purpose of BGP route selection. In BIRD, there is usually one routing table used for both IGP routes
and BGP routes.

http://www.rfc-editor.org/info/rfc5925
http://www.rfc-editor.org/info/rfc6286
http://www.rfc-editor.org/info/rfc6608
http://www.rfc-editor.org/info/rfc6793
http://www.rfc-editor.org/info/rfc7311
http://www.rfc-editor.org/info/rfc7313
http://www.rfc-editor.org/info/rfc7606
http://www.rfc-editor.org/info/rfc7911
http://www.rfc-editor.org/info/rfc7947
http://www.rfc-editor.org/info/rfc8092
http://www.rfc-editor.org/info/rfc8212
http://www.rfc-editor.org/info/rfc8654
http://www.rfc-editor.org/info/rfc8950
http://www.rfc-editor.org/info/rfc9003
http://www.rfc-editor.org/info/rfc9072
http://www.rfc-editor.org/info/rfc9117
http://www.rfc-editor.org/info/rfc9234
http://www.rfc-editor.org/info/rfc9494
http://www.rfc-editor.org/info/rfc9687

6.4. BGP 45

6.4.4 Protocol configuration

Each instance of the BGP corresponds to one neighboring router. This allows to set routing policy and all
the other parameters differently for each neighbor using the following configuration parameters:

protocol bgp [<name>] {
ipv4|ipv6l... {
<channel-options>
mandatory <switch>;
next hop keep <switch>|ibgp|ebgp;
next hop self <switch>|ibgplebgp;
next hop address <ip>;
next hop prefer global;
link local next hop format nativel|singlel|double;
gateway direct|recursive;
igp table <name>;
import table <switch>;
export table <switch>;
secondary <switch>;
validate <switch>;
base table <name>;
extended next hop <switch>;
require extended next hop <switch>;
add paths <switch>|rx|tx;
require add paths <switch>;
aigp <switch>|originate;
cost <number>;
graceful restart <switch>;
long lived graceful restart <switch>;
long lived stale time <number>;
min long lived stale time <number>;
max long lived stale time <number>;
3
local [<ip>] [port <number>] [as <number>];
neighbor [<ip> | range <prefix>] [port <number>] [as <number>] [internal|externall];
interface "<text>";
direct;
multihop [<number>];
source address <ip>;
dynamic name "<text>";
dynamic name digits <number>;
strict bind <switch>;
free bind <switch>;
check link <switch>;
bfd <switch>|graceful| { <bfd-options> };
ttl security <switch>;
authentication none|md5|ao;
password "<text>";
keys {
key {
id <number>;
send id <number>;
recv id <number>;
secret "<text>"|<bytestring>;
algorithm (hmac md5 | hmac shal | hmac sha224 | hmac sha256 |
hmac sha384 | hmac sha512 | cmac aesl128);
preferred;
deprecated;

6.4. BGP

46

};

};

setkey <switch>;

passive <switch>;

confederation <number>;

confederation member <switch>;

rr client <switch>;

rr cluster id <number>|<IPv4 address>;
rs client <switch>;

allow bgp_local_pref <switch>;

allow bgp_med <switch>;

allow local as [<number>];

allow as sets <switch>;

enforce first as <switch>;

enable route refresh <switch>;

require route refresh <switch>;

enable enhanced route refresh <switch>;
require enhanced route refresh <switch>;
graceful restart <switch>|aware;
graceful restart time <number>;

min graceful restart time <number>;
max graceful restart time <number>;
require graceful restart <switch>;
long lived graceful restart <switch>|aware;
long lived stale time <number>;

min long lived stale time <number>;
max long lived stale time <number>;
require long lived graceful restart <switch>;
interpret communities <switch>;

enable as4 <switch>;

require as4 <switch>;

enable extended messages <switch>;
require extended messages <switch>;
capabilities <switch>;

advertise hostname <switch>;

require hostname <switch>;

disable after error <switch>;

disable after cease <switch>|<set-of-flags>;
hold time <number>;

min hold time <number>;

startup hold time <number>;

keepalive time <number>;

min keepalive time <number>;

send hold time <number>;

connect delay time <number>;

connect retry time <number>;

error wait time <number>, <number>;
error forget time <number>;

path metric <switch>;

med metric <switch>;

deterministic med <switch>;

igp metric <switch>;

prefer older <switch>;

default bgp_med <number>;

default bgp_local_pref <number>;

local role <role-name>;

6.4. BGP 47

require roles <switch>;

}

local [ip] [port number] [as number]

Define which AS we are part of. (Note that contrary to other IP routers, BIRD is able to act as a router
located in multiple AS’es simultaneously, but in such cases you need to tweak the BGP paths manually
in the filters to get consistent behavior.) Optional ip argument specifies a source address, equivalent to
the source address option (see below). Optional port argument specifies the local BGP port instead
of standard port 179. The parameter may be used multiple times with different sub-options (e.g., both
local 10.0.0.1 as 65000; and local 10.0.0.1; local as 65000; are valid). This parameter is
mandatory.

neighbor [ip | range prefir] [port number] [as number] [internallexternall
Define neighboring router this instance will be talking to and what AS it is located in. In case the
neighbor is in the same AS as we are, we automatically switch to IBGP. Alternatively, it is possible
to specify just internal or external instead of AS number, in that case either local AS number, or
any external AS number is accepted. Optionally, the remote port may also be specified. Like local
parameter, this parameter may also be used multiple times with different sub-options. This parameter
is mandatory.

It is possible to specify network prefix (with range keyword) instead of explicit neighbor TP address.
This enables dynamic BGP behavior, where the BGP instance listens on BGP port, but new BGP
instances are spawned for incoming BGP connections (if source address matches the network prefix).
It is possible to mix regular BGP instances with dynamic BGP instances and have multiple dynamic
BGP instances with different ranges.

interface "text"
Define interface we should use for link-local BGP IPv6 sessions. Interface can also be specified as a
part of neighbor address (e.g., neighbor fe80::1234%ethO0 as 65000;). The option may also be
used for non link-local sessions when it is necessary to explicitly specify an interface, but only for direct
(not multihop) sessions.

direct
Specify that the neighbor is directly connected. The IP address of the neighbor must be from a directly
reachable IP range (i.e. associated with one of your router’s interfaces), otherwise the BGP session
wouldn’t start but it would wait for such interface to appear. The alternative is the multihop option.
Default: enabled for eBGP.

multihop [number]

Configure multihop BGP session to a neighbor that isn’t directly connected. Accurately, this option
should be used if the configured neighbor IP address does not match with any local network subnets.
Such TP address have to be reachable through system routing table. The alternative is the direct
option. For multihop BGP it is recommended to explicitly configure the source address to have it
stable. Optional number argument can be used to specify the number of hops (used for TTL). Note
that the number of networks (edges) in a path is counted; i.e., if two BGP speakers are separated by
one router, the number of hops is 2. Default: enabled for iBGP.

source address ip
Define local address we should use as a source address for the BGP session. Default: the address of
the local end of the interface our neighbor is connected to.

dynamic name "text"
Define common prefix of names used for new BGP instances spawned when dynamic BGP behavior
is active. Actual names also contain numeric index to distinguish individual instances. Default:
” d b k2
ynbgp™.

dynamic name digits number
Define minimum number of digits for index in names of spawned dynamic BGP instances. E.g., if set
to 2, then the first name would be ”dynbgp01”. Default: 0.

6.4. BGP 48

strict bind switch
Specify whether BGP listening socket should be bound to a specific local address (the same as the
source address) and associated interface, or to all addresses. Binding to a specific address could be
useful in cases like running multiple BIRD instances on a machine, each using its IP address. Note
that listening sockets bound to a specific address and to all addresses collide, therefore either all BGP
protocols (of the same address family and using the same local port) should have set strict bind, or
none of them. Default: disabled.

free bind switch
Use IP_FREEBIND socket option for the listening socket, which allows binding to an IP address not
(yet) assigned to an interface. Note that all BGP instances that share a listening socket should have
the same value of the freebind option. Default: disabled.

check link switch
BGP could use hardware link state into consideration. If enabled, BIRD tracks the link state of the
associated interface and when link disappears (e.g. an ethernet cable is unplugged), the BGP session
is immediately shut down. Note that this option cannot be used with multihop BGP. Default: enabled
for direct BGP, disabled otherwise.

bfd switch|graceful| { options }

BGP could use BFD protocol as an advisory mechanism for neighbor liveness and failure detection. If
enabled, BIRD setups a BFD session for the BGP neighbor and tracks its liveness by it. This has an
advantage of an order of magnitude lower detection times in case of failure. When a neighbor failure
is detected, the BGP session is restarted. Optionally, it can be configured (by graceful argument) to
trigger graceful restart instead of regular restart. It is also possible to specify section with per-peer
BFD session options instead of just the switch argument. All BFD session-specific options are allowed
here. Note that BED protocol also has to be configured, see BFD (p. 38) section for details. Default:
disabled.

ttl security switch
Use GTSM (RFC 5082 - the generalized TTL security mechanism). GTSM protects against spoofed
packets by ignoring received packets with a smaller than expected TTL. To work properly, GTSM
have to be enabled on both sides of a BGP session. If both ttl security and multihop options are
enabled, multihop option should specify proper hop value to compute expected TTL. Kernel support
required: Linux: 2.6.34+ (IPv4), 2.6.35+ (IPv6), BSD: since long ago, IPv4 only. Note that full (ICMP
protection, for example) RFC 5082 support is provided by Linux only. Default: disabled.

authentication none|md5|ao
Selects authentication method to be used. none means that the BGP session is not authenticated
at all. md5 means that the TCP MD5 authentication of BGP sessions (RFC 2385) is used, in that
case the option password (p.47) is used to specify the (single) password. Finally, ao means to use
TCP Authentication Option (TCP-AO, RFC 5925), allowing multiple keys and different cryptographic
algorithms. These are specified using the option keys (p. 47). Note that TCP-AO authentication is not
supported on dynamic BGP sessions. Default: none.

password "text"
Use this password for MD5 authentication of BGP sessions (RFC 2385). When used on BSD systems,
see also setkey option below. Default: no authentication.

setkey switch

On BSD systems, keys for TCP MD5 authentication are stored in the global SA/SP database, which
can be accessed by external utilities (e.g. setkey(8)). BIRD configures security associations in the
SA/SP database automatically based on password options (see above), this option allows to disable
automatic updates by BIRD when manual configuration by external utilities is preferred. Note that
automatic SA/SP database updates are currently implemented only for FreeBSD. Passwords have
to be set manually by an external utility on NetBSD and OpenBSD. Default: enabled (ignored on
non-FreeBSD).

keys { key { [...] }; [..] }
Define a set of cryptographic keys that are used for TCP-AO authentication of BGP sessions (RFC

http://www.rfc-editor.org/info/rfc5082
http://www.rfc-editor.org/info/rfc5082
http://www.rfc-editor.org/info/rfc2385
http://www.rfc-editor.org/info/rfc5925
http://www.rfc-editor.org/info/rfc2385
http://www.rfc-editor.org/info/rfc5925

6.4. BGP 49

5925). Each key has a configuration block with its own sub-options ([send | recv] id, secret,
algorithm, preferred, deprecated).

TCP-AO key has two IDs - for outgoing and incoming direction (Send / Recv ID). Among keys on one
protocol all Send IDs must be unique and all Recv IDs must be unique. They must be in range 0-255
and they can be set independently with key options send id and recv id, or together with option id.
Note that specifying these IDs is mandatory.

Of course, TCP-AO key contains a shared secret key. It is specified by the option secret as a text
string or as a sequence of hexadecimal digit pairs (bytestring (p.26)).

Used cryptographic algorithm can be specified for each key with the option algorithm. Possible
values are: hmac md5, hmac shal, hmac sha224, hmac sha256, hmac sha384, hmac sha512, and cmac
aes128. Default value is hmac shal.

When multiple keys are available, BIRD selects one to advertise as RNext key (the key it prefers to be
used to sign incoming traffic). Keys marked as preferred are selected before unmarked keys, while
keys marked as deprecated are never selected (but still could be used when the other side asks for
them). Therefore, there must be always at least one non-deprecated key.

Currently, only the selected key is used during the initial handshake of session establishment (and
therefore must be known by the other side). This may change in the future.

It is possible to add, remove, or modify keys during reconfiguration without breaking the BGP session.
The recommended way is to refrain from removing a key that is in active use (as reported by Current
key and RNext key in show protocols all), instead marking the key as deprecated on both sides
of the session. It is possible to remove an active key directly, BIRD would forcibly switch to another
key (as long as there is a non-deprecated key that is not added, removed or modified during this
reconfiguration). This is not recommended as it skips the proper key change mechanism and may
switch to a key that is not available to the other side.

Modification of existing keys (except of marking them preferred or deprecated) is equivalent to
removing and then adding them, with the same issues related to removing of active keys.

passive switch
Standard BGP behavior is both initiating outgoing connections and accepting incoming connections.
In passive mode, outgoing connections are not initiated. Default: off.

confederation number
BGP confederations (RFC 5065) are collections of autonomous systems that act as one entity to
external systems, represented by one confederation identifier (instead of AS numbers). This option
allows to enable BGP confederation behavior and to specify the local confederation identifier. When
BGP confederations are used, all BGP speakers that are members of the BGP confederation should
have the same confederation identifier configured. Default: 0 (no confederation).

confederation member switch
When BGP confederations are used, this option allows to specify whether the BGP neighbor is a
member of the same confederation as the local BGP speaker. The option is unnecessary (and ignored)
for IBGP sessions, as the same AS number implies the same confederation. Default: no.

rr client switch
Be a route reflector and treat the neighbor as a route reflection client. Default: disabled.

rr cluster id number | IPvj address
Route reflectors use cluster id to avoid route reflection loops. When there is one route reflector in a
cluster it usually uses its router id as a cluster id, but when there are more route reflectors in a cluster,
these need to be configured (using this option) to use a common cluster id. Clients in a cluster need
not know their cluster id and this option is not allowed for them. Default: the same as router id.

rs client switch
Be a route server and treat the neighbor as a route server client. A route server is used as a replacement
for full mesh EBGP routing in Internet exchange points in a similar way to route reflectors used in
IBGP routing. BIRD does not implement obsoleted RFC 1863, but uses ad-hoc implementation, which
behaves like plain EBGP but reduces modifications to advertised route attributes to be transparent (for

http://www.rfc-editor.org/info/rfc5925
http://www.rfc-editor.org/info/rfc5925
http://www.rfc-editor.org/info/rfc5065
http://www.rfc-editor.org/info/rfc1863

6.4. BGP 50

example does not prepend its AS number to AS PATH attribute and keeps MED attribute). Default:
disabled.

allow bgp_local_pref switch
Standard BGP implementations do not send the Local Preference attribute to EBGP neighbors and
ignore this attribute if received from EBGP neighbors, as per RFC 4271. When this option is enabled
on an EBGP session, this attribute will be sent to and accepted from the peer, which is useful for
example if you have a setup like in RFC 7938. The option does not affect IBGP sessions. Default: off.

allow bgp-med switch
Standard BGP implementations do not propagate the MULTI_EXIT_DESC attribute unless it is con-
figured locally. When this option is enabled on an EBGP session, this attribute will be sent to the
peer regardless, which is useful for example if you have a setup like in RFC 7938. The option does not
affect IBGP sessions. Default: off.

allow local as [number]
BGP prevents routing loops by rejecting received routes with the local AS number in the AS path.
This option allows to loose or disable the check. Optional number argument can be used to specify the
maximum number of local ASNs in the AS path that is allowed for received routes. When the option is
used without the argument, the check is completely disabled and you should ensure loop-free behavior
by some other means. Default: 0 (no local AS number allowed).

allow as sets switch
AS path attribute received with BGP routes may contain not only sequences of AS numbers, but also
sets of AS numbers. These rarely used artifacts are results of inter-AS route aggregation. AS sets are
deprecated (RFC 6472), and likely to be rejected in the future, as they complicate security features
like RPKI validation. When this option is disabled, then received AS paths with AS sets are rejected
as malformed and corresponding BGP updates are treated as withdraws. Default: on.

enforce first as switch
Routes received from an EBGP neighbor are generally expected to have the first (leftmost) AS number
in their AS path equal to the neighbor AS number. This is not enforced by default as there are legitimate
cases where it is not true, e.g. connections to route servers. When this option is enabled, routes with
non-matching first AS number are rejected and corresponding updates are treated as withdraws. The
option is valid on EBGP sessions only. Default: off.

enable route refresh switch

After the initial route exchange, BGP protocol uses incremental updates to keep BGP speakers synchro-
nized. Sometimes (e.g., if BGP speaker changes its import filter, or if there is suspicion of inconsistency)
it is necessary to do a new complete route exchange. BGP protocol extension Route Refresh (RFC
2918) allows BGP speaker to request re-advertisement of all routes from its neighbor. This option
specifies whether BIRD advertises this capability and supports related procedures. Note that even
when disabled, BIRD can send route refresh requests. Disabling Route Refresh also disables Enhanced
Route Refresh. Default: on.

require route refresh switch

If enabled, the BGP Route Refresh capability (RFC 2918) must be announced by the BGP neighbor,
otherwise the BGP session will not be established. Default: off.

enable enhanced route refresh switch
BGP protocol extension Enhanced Route Refresh (RFC 7313) specifies explicit begin and end for Route
Refresh (see previous option), therefore the receiver can remove stale routes that were not advertised
during the exchange. This option specifies whether BIRD advertises this capability and supports
related procedures. Default: on.

require enhanced route refresh switch
If enabled, the BGP Enhanced Route Refresh capability (RFC 7313) must be announced by the BGP
neighbor, otherwise the BGP session will not be established. Default: off.

graceful restart switch|aware
When a BGP speaker restarts or crashes, neighbors will discard all received paths from the speaker,

http://www.rfc-editor.org/info/rfc4271
http://www.rfc-editor.org/info/rfc7938
http://www.rfc-editor.org/info/rfc7938
http://www.rfc-editor.org/info/rfc6472
http://www.rfc-editor.org/info/rfc2918
http://www.rfc-editor.org/info/rfc2918
http://www.rfc-editor.org/info/rfc2918
http://www.rfc-editor.org/info/rfc7313
http://www.rfc-editor.org/info/rfc7313

6.4. BGP o1

which disrupts packet forwarding even when the forwarding plane of the speaker remains intact. RFC
4724 specifies an optional graceful restart mechanism to alleviate this issue. This option controls the
mechanism. It has three states: Disabled, when no support is provided. Aware, when the graceful
restart support is announced and the support for restarting neighbors is provided, but no local graceful
restart is allowed (i.e. receiving-only role). Enabled, when the full graceful restart support is provided
(i.e. both restarting and receiving role). Restarting role could be also configured per-channel. Note
that proper support for local graceful restart requires also configuration of other protocols. Default:
aware.

graceful restart time number
The restart time is announced in the BGP Graceful Restart capability and specifies how long the
neighbor would wait for the BGP session to re-establish after a restart before deleting stale routes.
Default: 120 seconds.

min graceful restart time number
The lower bound for the graceful restart time to override the value received in the BGP Graceful
Restart capability announced by the neighbor. Default: no lower bound.

max graceful restart time number
The upper bound for the graceful restart time to override the value received in the BGP Graceful
Restart capability announced by the neighbor. Default: no upper bound.

require graceful restart switch

If enabled, the BGP Graceful Restart capability (RFC 4724) must be announced by the BGP neighbor,
otherwise the BGP session will not be established. Default: off.

long lived graceful restart switch|aware
The long-lived graceful restart is an extension of the traditional BGP graceful restart (p.49), where
stale routes are kept even after the restart time (p.50) expires for additional long-lived stale time, but
they are marked with the LLGR_STALE community, depreferenced, and withdrawn from routers not
supporting LLGR. Like traditional BGP graceful restart, it has three states: disabled, aware (receiving-
only), and enabled. Note that long-lived graceful restart requires at least aware level of traditional
BGP graceful restart. Default: aware, unless graceful restart is disabled.

long lived stale time number
The long-lived stale time is announced in the BGP Long-lived Graceful Restart capability and specifies
how long the neighbor would keep stale routes depreferenced during long-lived graceful restart until
either the session is re-stablished and synchronized or the stale time expires and routes are removed.
Default: 3600 seconds.

min long lived stale time number
The lower bound for the long-lived stale time to override the value received in the BGP Long-lived
Graceful Restart capability announced by the neighbor. Default: no lower bound.

max long lived stale time number
The upper bound for the long-lived stale time to override the value received in the BGP Long-lived
Graceful Restart capability announced by the neighbor. Default: no upper bound.

require long lived graceful restart switch
If enabled, the BGP Long-lived Graceful Restart capability (RFC 9494) must be announced by the
BGP neighbor, otherwise the BGP session will not be established. Default: off.

interpret communities switch
RFC 1997 demands that BGP speaker should process well-known communities like no-export (65535,
65281) or no-advertise (65535, 65282). For example, received route carrying a no-advertise community
should not be advertised to any of its neighbors. If this option is enabled (which is by default), BIRD
has such behavior automatically (it is evaluated when a route is exported to the BGP protocol just
before the export filter). Otherwise, this integrated processing of well-known communities is disabled.
In that case, similar behavior can be implemented in the export filter. Default: on.

http://www.rfc-editor.org/info/rfc4724
http://www.rfc-editor.org/info/rfc4724
http://www.rfc-editor.org/info/rfc4724
http://www.rfc-editor.org/info/rfc9494
http://www.rfc-editor.org/info/rfc1997

6.4. BGP 92

enable as4 switch
BGP protocol was designed to use 2B AS numbers and was extended later to allow 4B AS number.
BIRD supports 4B AS extension, but by disabling this option it can be persuaded not to advertise it
and to maintain old-style sessions with its neighbors. This might be useful for circumventing bugs in
neighbor’s implementation of 4B AS extension. Even when disabled (off), BIRD behaves internally as
AS4-aware BGP router. Default: on.

require as4 switch
If enabled, the BGP 4B AS number capability (RFC 6793) must be announced by the BGP neighbor,
otherwise the BGP session will not be established. Default: off.

enable extended messages swilch
The BGP protocol uses maximum message length of 4096 bytes. This option provides an extension
(REFC 8654) to allow extended messages with length up to 65535 bytes. Default: off.

require extended messages switch
If enabled, the BGP Extended Message capability (RFC 8654) must be announced by the BGP neigh-
bor, otherwise the BGP session will not be established. Default: off.

capabilities switch
Use capability advertisement to advertise optional capabilities. This is standard behavior for newer
BGP implementations, but there might be some older BGP implementations that reject such connection
attempts. When disabled (off), features that request it (4B AS support) are also disabled. Default:
on, with automatic fallback to off when received capability-related error.

advertise hostname switch
Advertise the hostname capability along with the hostname. Default: off.

require hostname switch
If enabled, the hostname capability must be announced by the BGP neighbor, otherwise the BGP
session negotiation fails. Default: off.

disable after error switch
When an error is encountered (either locally or by the other side), disable the instance automatically
and wait for an administrator to fix the problem manually. Default: off.

disable after cease switch|set-of-flags
When a Cease notification is received, disable the instance automatically and wait for an administrator
to fix the problem manually. When used with switch argument, it means handle every Cease subtype
with the exception of connection collision. Default: off.

The set-of-flags allows to narrow down relevant Cease subtypes. The syntax is {flag [, ...]
}, where flags are: cease, prefix limit hit, administrative shutdown, peer deconfigured,
administrative reset, connection rejected, configuration change, connection collision,
out of resources.

hold time number
Time in seconds to wait for a Keepalive message from the other side before considering the connection
stale. The effective value is negotiated during session establishment and it is a minimum of this
configured value and the value proposed by the peer. The zero value has a special meaning, signifying
that no keepalives are used. Default: 240 seconds.

min hold time number
Minimum value of the hold time that is accepted during session negotiation. If the peer proposes a
lower value, the session is rejected with error. Default: none.

startup hold time number
Value of the hold timer used before the routers have a chance to exchange open messages and agree
on the real value. Default: 240 seconds.

keepalive time number
Delay in seconds between sending of two consecutive Keepalive messages. The effective value depends
on the negotiated hold time, as it is scaled to maintain proportion between the keepalive time and the
hold time. Default: One third of the hold time.

http://www.rfc-editor.org/info/rfc6793
http://www.rfc-editor.org/info/rfc8654
http://www.rfc-editor.org/info/rfc8654

6.4. BGP 93

min keepalive time number
Minimum value of the keepalive time that is accepted during session negotiation. If the proposed hold
time would lead to a lower value of the keepalive time, the session is rejected with error. Default: none.

send hold time number
Maximum time in seconds betweeen successfull transmissions of BGP messages. Send hold timer drops
the session if the neighbor is sending keepalives, but does not receive our messages, causing the TCP
connection to stall. This may happen due to malfunctioning or overwhelmed neighbor. See RFC 9687
for more details.

Like the option keepalive time, the effective value depends on the negotiated hold time, as it is
scaled to maintain proportion between the send hold time and the keepalive time. If it is set to zero,
the timer is disabled. Default: double of the hold timer limit.

The option disable rx is intended only for testing this feature and should not be used anywhere else.
It discards received messages and disables the hold timer.

connect delay time number
Delay in seconds between protocol startup and the first attempt to connect. Default: 5 seconds.

connect retry time number
Time in seconds to wait before retrying a failed attempt to connect. Default: 120 seconds.

error wait time number, number
Minimum and maximum delay in seconds between a protocol failure (either local or reported by the
peer) and automatic restart. Does not apply when disable after error is configured. If consecutive
errors happen, the delay is increased exponentially until it reaches the maximum. Default: 60, 300.

error forget time number
Maximum time in seconds between two protocol failures to treat them as a error sequence which makes
error wait time increase exponentially. Default: 300 seconds.

path metric switch
Enable comparison of path lengths when deciding which BGP route is the best one. Default: on.

med metric switch
Enable comparison of MED attributes (during best route selection) even between routes received from
different ASes. This may be useful if all MED attributes contain some consistent metric, perhaps
enforced in import filters of AS boundary routers. If this option is disabled, MED attributes are
compared only if routes are received from the same AS (which is the standard behavior). Default: off.

deterministic med switch

BGP route selection algorithm is often viewed as a comparison between individual routes (e.g. if a
new route appears and is better than the current best one, it is chosen as the new best one). But
the proper route selection, as specified by RFC 4271, cannot be fully implemented in that way. The
problem is mainly in handling the MED attribute. BIRD, by default, uses an simplification based on
individual route comparison, which in some cases may lead to temporally dependent behavior (i.e. the
selection is dependent on the order in which routes appeared). This option enables a different (and
slower) algorithm implementing proper RFC 4271 route selection, which is deterministic. Alternative
way how to get deterministic behavior is to use med metric option. This option is incompatible with
sorted tables (p.6). Default: off.

igp metric switch
Enable comparison of internal distances to boundary routers during best route selection. Default: on.

prefer older switch
Standard route selection algorithm breaks ties by comparing router IDs. This changes the behavior
to prefer older routes (when both are external and from different peer). For details, see RFC 5004.
Default: off.

default bgp-med number
Value of the Multiple Exit Discriminator to be used during route selection when the MED attribute is
missing. Default: 0.

http://www.rfc-editor.org/info/rfc9687
http://www.rfc-editor.org/info/rfc4271
http://www.rfc-editor.org/info/rfc4271
http://www.rfc-editor.org/info/rfc5004

6.4. BGP o4

default bgp-local_pref number
A default value for the Local Preference attribute. It is used when a new Local Preference attribute is
attached to a route by the BGP protocol itself (for example, if a route is received through eBGP and
therefore does not have such attribute). Default: 100 (0 in pre-1.2.0 versions of BIRD).

local role role-name
BGP roles are a mechanism for route leak prevention and automatic route filtering based on common
BGP topology relationships. They are defined in RFC 9234. Instead of manually configuring filters
and communities, automatic filtering is done with the help of the OTC attribute - a flag for routes
that should be sent only to customers. The same attribute is also used to automatically detect and
filter route leaks created by third parties.

This option is valid for EBGP sessions, but it is not recommended to be used within AS confederations
(which would require manual filtering of bgp_otc attribute on confederation boundaries).

Possible role-name values are: provider, rs_server, rs_client, customer and peer. Default: No
local role assigned.

require roles switch
If this option is set, the BGP roles must be defined on both sides, otherwise the session will not be
established. This behavior is defined in RFC 9234 as ”strict mode” and is used to enforce corresponding
configuration at your conterpart side. Default: disabled.

tx size warning number
If this option is set, the bgp protocol prints warning when it consumes at least given size of memory.
This includes also the memory consumed by any export table. Zero means disabled. Default: disabled.

6.4.5 Channel configuration

BGP supports several AFIs and SAFIs over one connection. Every AFI/SAFI announced to the peer
corresponds to one channel. The table of supported AFI/SAFIs together with their appropriate channels
follows.

Channel name | Table nettype | IGP table allowed | AFI | SAFI
ipvé ipvéd ipv4 and ipv6 1 1
ipv6 ipvé ipv4 and ipv6 2 1
ipv4 multicast | ipv4 ipv4 and ipv6 1 2
ipv6 multicast | ipv6 ipv4 and ipvé 2 2
ipv4 mpls ipvéd ipv4 and ipvé 1 4
ipv6 mpls ipv6 ipv4 and ipv6 2 4
vpn4d mpls vpn4 ipv4 and ipvé 1 128
vpné mpls vpn6é ipv4 and ipvé 2 128
vpn4 multicast | vpn4 ipv4 and ipvé 1 129
vpn6é multicast | vpn6 ipv4 and ipvé 2 129
flowd flowd — 1 133
flow6 flow6 — 2 133

The BGP protocol can be configured as MPLS-aware (by defining both AFI/SAFIT channels and the MPLS
channel). In such case the BGP protocol assigns labels to routes imported from MPLS-aware SAFIs (i.e.
ipvX mpls and vpnX mpls) and automatically announces corresponding MPLS route for each labeled route.
As BGP generally processes a large amount of routes, it is suggested to set MPLS label policy to aggregate.
Note that even BGP instances without MPLS channel and without local MPLS configuration can still
propagate third-party MPLS labels, e.g. as route reflectors, they just will not assign local labels to imported
routes and will not announce MPLS routes for local MPLS forwarding.

Due to RFC 8212, external BGP protocol requires explicit configuration of import and export policies (in
contrast to other protocols, where default policies of import all and export none are used in absence of
explicit configuration). Note that blanket policies like all or none can still be used in explicit configuration.
BGP channels have additional config options (together with the common ones):

http://www.rfc-editor.org/info/rfc9234
http://www.rfc-editor.org/info/rfc9234
http://www.rfc-editor.org/info/rfc8212

6.4.

BGP 99

mandatory switch

next

next

next

next

link

When local and neighbor sets of configured AFI/SAFT pairs differ, capability negotiation ensures that a
common subset is used. For mandatory channels their associated AFI/SAFI must be negotiated (i.e.,
also announced by the neighbor), otherwise BGP session negotiation fails with ’Required capability
missing’ error. Regardless, at least one AFI/SAFI must be negotiated in order to BGP session be
successfully established. Default: off.

hop keep switch|ibgp|ebgp

Do not modify the Next Hop attribute and advertise the current one unchanged even in cases where
our own local address should be used instead. This is necessary when the BGP speaker does not
forward network traffic (route servers and some route reflectors) and also can be useful in some other
cases (e.g. multihop EBGP sessions). Can be enabled for all routes, or just for routes received from
IBGP / EBGP neighbors. Default: disabled for regular BGP, enabled for route servers, ibgp for route
reflectors.

hop self switch|ibgplebgp

Always advertise our own local address as a next hop, even in cases where the current Next Hop
attribute should be used unchanged. This is sometimes used for routes propagated from EBGP to
IBGP when IGP routing does not cover inter-AS links, therefore IP addreses of EBGP neighbors are
not resolvable through IGP. Can be enabled for all routes, or just for routes received from IBGP /
EBGP neighbors. Default: disabled.

hop address ip

Specify which address to use when our own local address should be announced in the Next Hop
attribute. Default: the source address of the BGP session (if acceptable), or the preferred address of
an associated interface.

hop prefer global

Prefer global IPv6 address to link-local IPv6 address for immediate next hops of received routes. For
IPv6 routes, the Next Hop attribute may contain both a global IP address and a link-local IP address.
For IBGP sessions, the global IP address is resolved (gateway recursive (p.54)) through an IGP routing
table (igp table (p.54)) to get an immediate next hop. If the resulting IGP route is a direct route (i.e.,
the next hop is a direct neighbor), then the link-local IP address from the Next Hop attribute is used
as the immediate next hop. This option change it to use the global IP address instead. Note that even
with this option enabled a route may end with a link-local immediate next hop when the IGP route
has one. Default: disabled.

local next hop format native|single|double

For TPv6 routes, BGP assumes that the Next Hop attribute contains a global IPv6 address (in the first
position) and an optional link-local IPv6 address (in the second position): [global, link-local]. When
a BGP session is established using just link-local addresses, there may be no global IPv6 address for
the next hop. BGP implementations differ on how to encode such next hops. BIRD native format is
to send [zero, link-local], single format is [link-local], double format is [link-local, link-local]. BIRD
accepts all these variants when decoding received routes, but this option controls which one it uses to
encode such next hops. Default: native.

gateway direct|recursive

For received routes, their gw (immediate next hop) attribute is computed from received bgp_next_hop
attribute. This option specifies how it is computed. Direct mode means that the IP address from
bgp-next_hop is used and must be directly reachable. Recursive mode means that the gateway is
computed by an IGP routing table lookup for the IP address from bgp_next_hop. Note that there is
just one level of indirection in recursive mode - the route obtained by the lookup must not be recursive
itself, to prevent mutually recursive routes.

Recursive mode is the behavior specified by the BGP standard. Direct mode is simpler, does not
require any routes in a routing table, and was used in older versions of BIRD, but does not handle
well nontrivial iBGP setups and multihop. Recursive mode is incompatible with sorted tables (p.6).
Default: direct for direct sessions, recursive for multihop sessions.

igp table name

Specifies a table that is used as an IGP routing table. The type of this table must be as allowed in the

6.4.

BGP 96

table above. This option is allowed once for every allowed table type. Default: the same as the main
table the channel is connected to (if eligible).

import table switch

A BGP import table contains all received routes from given BGP neighbor, before application of import
filters. It is also called Adj-RIB-In in BGP terminology. BIRD BGP by default operates without import
tables, in which case received routes are just processed by import filters, accepted ones are stored in
the master table, and the rest is forgotten. Enabling import table allows to store unprocessed routes,
which can be examined later by show route, and can be used to reconfigure import filters without full
route refresh. Default: off.

export table switch

A BGP export table contains all routes sent to given BGP neighbor, after application of export filters.
It is also called Adj-RIB-Out in BGP terminology. BIRD BGP by default operates without export
tables, in which case routes from master table are just processed by export filters and then announced
by BGP. Enabling export table allows to store routes after export filter processing, so they can
be examined later by show route, and can be used to eliminate unnecessary updates or withdraws.
Default: off.

export settle time time time

Minimum and maximum settle times, respectively, for announcements from export table to external
readers. These values don’t apply for regular TX, just for side channel exports. You will probably
never need to change these values. Default values: 10 ms 100 ms. You have to always provide both
values.

secondary switch

Usually, if an export filter rejects a selected route, no other route is propagated for that network. This
option allows to try the next route in order until one that is accepted is found or all routes for that
network are rejected. This can be used for route servers that need to propagate different tables to each
client but do not want to have these tables explicitly (to conserve memory). This option requires that
the connected routing table is sorted (p.6). Default: off.

validate switch

base

Apply flowspec validation procedure as described in RFEC 8955 section 6 and RFC 9117. The Validation
procedure enforces that only routers in the forwarding path for a network can originate flowspec rules
for that network. The validation procedure should be used for EBGP to prevent injection of malicious
flowspec rules from outside, but it should also be used for IBGP to ensure that selected flowspec
rules are consistent with selected IP routes. The validation procedure uses an IP routing table (base
table (p.55), see below) against which flowspec rules are validated. This option is limited to flowspec
channels. Default: off (for compatibility reasons).

Note that currently the flowspec validation does not work reliably together with import table (p.55)
option enabled on flowspec channels.

table name

Specifies an IP table used for the flowspec validation procedure. The table must have enabled trie
option, otherwise the validation procedure would not work. The type of the table must be ipvé4 for
flow4 channels and ipv6 for flow6 channels. This option is limited to flowspec channels. Default: the
main table of the ipv4 / ipv6 channel of the same BGP instance, or the master4 / master6 table if
there is no such channel.

extended next hop switch

BGP expects that announced next hops have the same address family as associated network prefixes.
This option provides an extension to use IPv4 next hops with IPv6 prefixes and vice versa. For IPv4
/ VPNv4 channels, the behavior is controlled by the Extended Next Hop Encoding capability, as
described in RFC 8950. For IPv6 / VPNv6 channels, just IPv4-mapped IPv6 addresses are used, as
described in RFC 4798 and RFC 4659. Default: off.

require extended next hop switch

If enabled, the BGP Extended Next Hop Encoding capability (RFC 8950) must be announced by the
BGP neighbor, otherwise the BGP session will not be established. Note that this option is relevant

http://www.rfc-editor.org/info/rfc8955
http://www.rfc-editor.org/info/rfc9117
http://www.rfc-editor.org/info/rfc8950
http://www.rfc-editor.org/info/rfc4798
http://www.rfc-editor.org/info/rfc4659
http://www.rfc-editor.org/info/rfc8950

6.4. BGP o7

just for IPv4 / VPNv4 channels, as IPv6 / VPNv6 channels use a different mechanism not signalled
by a capability. Default: off.

add paths switch|rx|tx
Standard BGP can propagate only one path (route) per destination network (usually the selected one).
This option controls the ADD-PATH protocol extension, which allows to advertise any number of paths
to a destination. Note that to be active, ADD-PATH has to be enabled on both sides of the BGP
session, but it could be enabled separately for RX and TX direction. When active, all available routes
accepted by the export filter are advertised to the neighbor. Default: off.

require add paths switch
If enabled, the BGP ADD-PATH capability (RFC 7911) must be announced by the BGP neighbor,
otherwise the BGP session will not be established. Announced directions in the capability must be
compatible with locally configured directions. E.g., If add path tx is configured locally, then the
neighbor capability must announce RX. Default: off.

aigp switchloriginate
The BGP protocol does not use a common metric like other routing protocols, instead it uses a set
of criteria for route selection consisting both overall AS path length and a distance to the nearest AS
boundary router. Assuming that metrics of different autonomous systems are incomparable, once a
route is propagated from an AS to a next one, the distance in the old AS does not matter.

The AIGP extension (RFC 7311) allows to propagate accumulated IGP metric (in the AIGP attribute)
through both IBGP and EBGP links, computing total distance through multiple autonomous systems
(assuming they use comparable IGP metric). The total AIGP metric is compared in the route selection
process just after Local Preference comparison (and before AS path length comparison).

This option controls whether AIGP attribute propagation is allowed on the session. Optionally, it can
be set to originate, which not only allows AIGP attribute propagation, but also new AIGP attributes
are automatically attached to non-BGP routes with valid IGP metric (e.g. ospf_metricl) as they are
exported to the BGP session. Default: enabled for IBGP (and intra-confederation EBGP), disabled
for regular EBGP.

cost number
When BGP gateway mode (p.54) is recursive (mainly multihop IBGP sessions), then the distance
to BGP next hop is based on underlying IGP metric. This option specifies the distance to BGP next
hop for BGP sessions in direct gateway mode (mainly direct EBGP sessions).

graceful restart switch
Although BGP graceful restart is configured mainly by protocol-wide options (p.49), it is possible to
configure restarting role per AFI/SAFI pair by this channel option. The option is ignored if graceful
restart is disabled by protocol-wide option. Default: off in aware mode, on in full mode.

long lived graceful restart switch
BGP long-lived graceful restart is configured mainly by protocol-wide options (p. 50), but the restarting
role can be set per AFI/SAFT pair by this channel option. The option is ignored if long-lived graceful
restart is disabled by protocol-wide option. Default: off in aware mode, on in full mode.

long lived stale time number
Like previous graceful restart channel options, this option allows to set long lived stale time (p. 50) per
AFI/SAFT pair instead of per protocol. Default: set by protocol-wide option.

min long lived stale time number
Like previous graceful restart channel options, this option allows to set min long lived stale time (p. 50)
per AFI/SAFT pair instead of per protocol. Default: set by protocol-wide option.

max long lived stale time number
Like previous graceful restart channel options, this option allows to set max long lived stale time (p. 50)
per AFI/SAFT pair instead of per protocol. Default: set by protocol-wide option.

http://www.rfc-editor.org/info/rfc7911
http://www.rfc-editor.org/info/rfc7311

6.4. BGP 98

6.4.6 Reconfiguration

Running the configure command with a changed configuration file will trigger a reconfiguration. This may
cause a reload of the affected channel or a restart of the BGP protocol. A change in options that just affect
route processing generally causes a reload, while a change in setting of BGP capabilities or other properties
negotiated during session establishment always leads to a restart.

With the configure soft command, configuration changes do not trigger a reload, but instead just log a
message about the change, suggesting manual reload of the channel. However, changes demanding restart
still trigger a restart of the protocol. See configure (p.23) and reload (p.23) commands for more details. In
the rest of the section, we assume the usage of the configure command without the soft option.

Changes in these channel options cause a reload of the channel in the import direction (re-import of routes
from the BGP neighbor):

e import

e preference

e gateway

e next hop prefer

e aigp

e cost

Note: Reload in the import direction requires either the route refresh capability negotiated or the import
table option enabled. If neither one is available, the reconfiguration will trigger a restart instead of a reload.
This does not apply for export direction.

Changes in these channel options cause a reload of the channel in the export direction (re-export of routes
to the BGP neighbor):

® export

e next hop address

e next hop self

e next hop keep

e link local next hop format

® aigp

e aigp originate
Protocol options that cause a restart when changed:
e router id

e hostname
o vrf
All BGP-specific protocol options cause a restart when changed except for these:
e bfd
e check link
e require route refresh
e require enhanced route refresh

e require AS4

6.4. BGP 99

e require extended messages
e require hostname
e require graceful restart

e require long lived graceful restart
Channel options that cause a restart when changed:

e table

e secondary

e validate

e graceful restart

e long lived graceful restart
e long lived stale time
e extended next hop

e add paths

e import table

e export table

e igp table

e base table

Channel options that may cause a restart (when changed to a value incompatible with the current protocol
state):

e mandatory
e min long lived stale time

e max long lived stale time

6.4.7 Attributes

BGP defines several route attributes. Some of them (those marked with ‘I’ in the table below) are available
on internal BGP connections only, some of them (marked with ‘0’) are optional.

bgppath bgp_path
Sequence of AS numbers describing the AS path the packet will travel through when forwarded ac-
cording to the particular route. In case of internal BGP it doesn’t contain the number of the local
AS.

int bgp-local_pref [I]
Local preference value used for selection among multiple BGP routes (see the selection rules above).
It’s used as an additional metric which is propagated through the whole local AS.

int bgpmed [0]
The Multiple Exit Discriminator of the route is an optional attribute which is used on external (inter-
AS) links to convey to an adjacent AS the optimal entry point into the local AS. The received attribute
is also propagated over internal BGP links. The attribute value is zeroed when a route is exported to an
external BGP instance to ensure that the attribute received from a neighboring AS is not propagated
to other neighboring ASes. A new value might be set in the export filter of an external BGP instance.
See RFC 4451 for further discussion of BGP MED attribute.

http://www.rfc-editor.org/info/rfc4451

6.4. BGP 60

enum bgp_origin
Origin of the route: either ORIGIN_IGP if the route has originated in an interior routing protocol
or ORIGIN_EGP if it’s been imported from the EGP protocol (nowadays it seems to be obsolete) or
ORIGIN_INCOMPLETE if the origin is unknown.

ip bgp-next_hop
Next hop to be used for forwarding of packets to this destination. On internal BGP connections, it’s
an address of the originating router if it’s inside the local AS or a boundary router the packet will leave
the AS through if it’s an exterior route, so each BGP speaker within the AS has a chance to use the
shortest interior path possible to this point.

void bgp-atomic_aggr [0]
This is an optional attribute which carries no value, but the sole presence of which indicates that the
route has been aggregated from multiple routes by some router on the path from the originator.

void bgp_aggregator [0]
This is an optional attribute specifying AS number and IP address of the BGP router that created the
route by aggregating multiple BGP routes. Currently, the attribute is not accessible from filters.

clist bgp_community [0]
List of community values associated with the route. Each such value is a pair (represented as a pair
data type inside the filters) of 16-bit integers, the first of them containing the number of the AS which
defines the community and the second one being a per-AS identifier. There are lots of uses of the
community mechanism, but generally they are used to carry policy information like "don’t export to
USA peers”. As each AS can define its own routing policy, it also has a complete freedom about which
community attributes it defines and what will their semantics be.

eclist bgp_ext_community [0]
List of extended community values associated with the route. Extended communities have similar
usage as plain communities, but they have an extended range (to allow 4B ASNs) and a nontrivial
structure with a type field. Individual community values are represented using an ec data type inside
the filters.

lclist bgp-large_community [0]
List of large community values associated with the route. Large BGP communities is another variant
of communities, but contrary to extended communities they behave very much the same way as regular
communities, just larger — they are uniform untyped triplets of 32bit numbers. Individual community
values are represented using an lc data type inside the filters.

quad bgp_originator_id [I, 0]
This attribute is created by the route reflector when reflecting the route and contains the router ID of
the originator of the route in the local AS.

clist bgp-cluster_list [I, 0]
This attribute contains a list of cluster IDs of route reflectors. Each route reflector prepends its cluster
ID when reflecting the route.

void bgp_aigp [0]
This attribute contains accumulated IGP metric, which is a total distance to the destination through
multiple autonomous systems. Currently, the attribute is not accessible from filters.

int bgp_otc [0]
This attribute is defined in RFC 9234. OTC is a flag that marks routes that should be sent only to
customers. If local role (p.53) is configured it set automatically.

For attributes unknown by BIRD, the user can assign a name (on top level) to an attribute by its number.
This defined name can be used then to get, set (as a bytestring, transitive) or unset the given attribute even
though BIRD knows nothing about it.

Note that it is not possible to define an attribute with the same number as one known by BIRD, therefore
use of this statement carries a risk of incompatibility with future BIRD versions.

attribute bgp number bytestring name;

http://www.rfc-editor.org/info/rfc9234

6.4. BGP 61

6.4.8 Example

protocol bgp {

local 198.51.100.14 as 65000; # Use a private AS number
neighbor 198.51.100.130 as 64496; # Our neighbor ...
multihop; # ... which is connected indirectly
authentication ao; # We use TCP-AO authentication
keys {
key {
id 0;

secret "hello321";
algorithm hmac sha256;

preferred;
+;
key {
send id 2;
recv id 1;
secret "byel23";
algorithm cmac aes128;
};
3
ipvd {
export filter { # We use non-trivial export rules
if source = RTS_STATIC then { # Export only static routes
Assign our community
bgp_community.add ((65000,64501)) ;
Artificially increase path length
by advertising local AS number twice
if bgp_path ~ [= 65000 =] then
bgp_path.prepend(65000) ;
accept;
b
reject;
s
import all;
next hop self; # advertise this router as next hop
igp table myigptable4; # IGP table for routes with IPv4 nexthops
igp table myigptable6; # IGP table for routes with IPv6 nexthops
s
ipvé {
export filter mylargefilter; # We use a named filter
import all;
missing lladdr self;
igp table myigptable4; # IGP table for routes with IPv4 nexthops
igp table myigptable6; # IGP table for routes with IPv6 nexthops
s
ipv4 multicast {
import all;
export filter someotherfilter;
table mymulticasttable4; # Another IPv4 table, dedicated for multicast
igp table myigptable4;
3

6.5. BMP 62

6.5 BMP

The BGP Monitoring Protocol is used for monitoring BGP sessions and obtaining routing table data. The
current implementation in BIRD is a preliminary release with a limited feature set, it will be subject to
significant changes in the future. It is not ready for production usage and therefore it is not compiled by
default and have to be enabled during installation by the configure option --with-protocols=.

The implementation supports monitoring protocol state changes, pre-policy routes (in BGP import tables
(p-55)) and post-policy routes (in regular routing tables). All BGP protocols are monitored automatically.

6.5.1 Configuration (incomplete)

tx buffer limit number
How much data we are going to queue before we call the session stuck and restart it, in megabytes.
Default value: 1024 (effectively 1 gigabyte).

6.5.2 Example

protocol bmp {
The monitoring station to connect to
station address ip 198.51.100.10 port 1790;

Monitor received routes (in import table)
monitoring rib in pre_policy;

Monitor accepted routes (passed import filters)
monitoring rib in post_policy;

Allow only 64M of pending data
tx buffer limit 64;

6.6 Device

The Device protocol is not a real routing protocol. It doesn’t generate any routes and it only serves as a
module for getting information about network interfaces from the kernel. This protocol supports no channel.

Except for very unusual circumstances, you probably should include this protocol in the configuration since
almost all other protocols require network interfaces to be defined for them to work with.

6.6.1 Configuration

scan time number
Time in seconds between two scans of the network interface list. On systems where we are notified
about interface status changes asynchronously (such as newer versions of Linux), we need to scan the
list only in order to avoid confusion by lost notification messages, so the default time is set to a large
value.

interface pattern [, ...]
By default, the Device protocol handles all interfaces without any configuration. Interface definitions
allow to specify optional parameters for specific interfaces. See interface (p.16) common option for
detailed description. Currently only one interface option is available:

preferred ip
If a network interface has more than one IP address, BIRD chooses one of them as a preferred one.
Preferred IP address is used as source address for packets or announced next hop by routing protocols.
Precisely, BIRD chooses one preferred 1Pv4 address, one preferred IPv6 address and one preferred
link-local IPv6 address. By default, BIRD chooses the first found IP address as the preferred one.

6.7. Direct 63

This option allows to specify which IP address should be preferred. May be used multiple times for
different address classes (IPv4, IPv6, IPv6 link-local). In all cases, an address marked by operating
system as secondary cannot be chosen as the primary one.

As the Device protocol doesn’t generate any routes, it cannot have any attributes. Example configuration
looks like this:

protocol device {
scan time 10; # Scan the interfaces often
interface "ethO" {
preferred 192.168.1.1;
preferred 2001:db8:1:10::1;
};

6.7 Direct

The Direct protocol is a simple generator of device routes for all the directly connected networks according to
the list of interfaces provided by the kernel via the Device protocol. The Direct protocol supports both IPv4
and IPv6 channels; both can be configured simultaneously. It can also be configured with IPv6 SADR (p.7)
channel instead of regular IPv6 channel in order to be used together with SADR~enabled Babel protocol.

The question is whether it is a good idea to have such device routes in BIRD routing table. OS kernel
usually handles device routes for directly connected networks by itself so we don’t need (and don’t want)
to export these routes to the kernel protocol. OSPF protocol creates device routes for its interfaces itself
and BGP protocol is usually used for exporting aggregate routes. But the Direct protocol is necessary for
distance-vector protocols like RIP or Babel to announce local networks.

There are just few configuration options for the Direct protocol:

interface pattern [, ...]
By default, the Direct protocol will generate device routes for all the interfaces available. If you want
to restrict it to some subset of interfaces or addresses (e.g. if you're using multiple routing tables for
policy routing and some of the policy domains don’t contain all interfaces), just use this clause. See
interface (p.16) common option for detailed description. The Direct protocol uses extended interface
clauses.

check link switch
If enabled, a hardware link state (reported by OS) is taken into consideration. Routes for directly con-
nected networks are generated only if link up is reported and they are withdrawn when link disappears
(e.g., an ethernet cable is unplugged). Default value is no.

Direct device routes don’t contain any specific attributes.
Example config might look like this:

protocol direct {

ipv4;
ipv6;
interface -"arcx", "x"; # Exclude the ARCnets
¥
6.8 Kernel

The Kernel protocol is not a real routing protocol. Instead of communicating with other routers in the
network, it performs synchronization of BIRD’s routing tables with the OS kernel. Basically, it sends all
routing table updates to the kernel and from time to time it scans the kernel tables to see whether some
routes have disappeared (for example due to unnoticed up/down transition of an interface) or whether an

6.8. Kernel 64

‘alien’ route has been added by someone else (depending on the learn switch, such routes are either ignored
or accepted to our table).

Note that routes created by OS kernel itself, namely direct routes representing IP subnets of associated
interfaces, are imported only with learn all enabled.

If your OS supports only a single routing table, you can configure only one instance of the Kernel protocol.
If it supports multiple tables (in order to allow policy routing; such an OS is for example Linux), you can
run as many instances as you want, but each of them must be connected to a different BIRD routing table
and to a different kernel table.

Because the kernel protocol is partially integrated with the connected routing table, there are two limitations
- it is not possible to connect more kernel protocols to the same routing table and changing route destination
(gateway) in an export filter of a kernel protocol does not work. Both limitations can be overcome using
another routing table and the pipe protocol.

The Kernel protocol supports both IPv4 and IPv6 channels; only one channel can be configured in each
protocol instance. On Linux, it also supports IPv6 SADR (p.7) and MPLS (p.7) channels.

6.8.1 Configuration

persist switch
Tell BIRD to leave all its routes in the routing tables when it exits (instead of cleaning them up).

scan time number
Time in seconds between two consecutive scans of the kernel routing table.

learn switch|all
Enable learning of routes added to the kernel routing tables by other routing daemons or by the system
administrator. This is possible only on systems which support identification of route authorship. By
default, routes created by kernel (marked as ”proto kernel”) are not imported. Use learn all option
to import even these routes.

kernel table number
Select which kernel table should this particular instance of the Kernel protocol work with. Awvailable
only on systems supporting multiple routing tables.

metric number
(Linux) Use specified value as a kernel metric (priority) for all routes sent to the kernel. When multiple
routes for the same network are in the kernel routing table, the Linux kernel chooses one with lower
metric. Also, routes with different metrics do not clash with each other, therefore using dedicated
metric value is a reliable way to avoid overwriting routes from other sources (e.g. kernel device routes).
Metric 0 has a special meaning of undefined metric, in which either OS default is used, or per-route
metric can be set using krt_metric attribute. Default: 32.

graceful restart switch
Participate in graceful restart recovery. If this option is enabled and a graceful restart recovery is
active, the Kernel protocol will defer synchronization of routing tables until the end of the recovery.
Note that import of kernel routes to BIRD is not affected.

merge paths switch [limit number]

Usually, only best routes are exported to the kernel protocol. With path merging enabled, both best
routes and equivalent non-best routes are merged during export to generate one ECMP (equal-cost
multipath) route for each network. This is useful e.g. for BGP multipath. Note that best routes
are still pivotal for route export (responsible for most properties of resulting ECMP routes), while
exported non-best routes are responsible just for additional multipath next hops. This option also
allows to specify a limit on maximal number of nexthops in one route. By default, multipath merging
is disabled. If enabled, default value of the limit is 16.

netlink rx buffer number
(Linux) Set kernel receive buffer size (in bytes) for the netlink socket. The default value is OS-
dependent (from the /proc/sys/net/core/rmem default file), If you get some ”Kernel dropped some
netlink message ...” warnings, you may increase this value.

6.8. Kernel 65

6.8.2 Attributes

The Kernel protocol defines several attributes. These attributes are translated to appropriate system (and
OS-specific) route attributes. We support these attributes:

int krt_source
The original source of the imported kernel route. The value is system-dependent. On Linux, it is a
value of the protocol field of the route. See /etc/iproute2/rt_protos for common values. On BSD, it is
based on STATIC and PROTOx flags. The attribute is read-only.

int krt metric
(Linux) The kernel metric of the route. When multiple same routes are in a kernel routing table, the
Linux kernel chooses one with lower metric. Note that preferred way to set kernel metric is to use
protocol option metric, unless per-route metric values are needed.

ip krt_prefsrc
(Linux) The preferred source address. Used in source address selection for outgoing packets. Has to
be one of the IP addresses of the router.

int krt_realm
(Linux) The realm of the route. Can be used for traffic classification.

int krt_scope
(Linux IPv4) The scope of the route. Valid values are 0-254, although Linux kernel may reject some
values depending on route type and nexthop. It is supposed to represent ‘indirectness’ of the route,
where nexthops of routes are resolved through routes with a higher scope, but in current kernels
anything below link (253) is treated as global (0). When not present, global scope is implied for all
routes except device routes, where link scope is used by default.

In Linux, there is also a plenty of obscure route attributes mostly focused on tuning TCP performance of
local connections. BIRD supports most of these attributes, see Linux or iproute2 documentation for their
meaning. Attributes krt_lock_* and krt_feature_* have type bool, krt_congctl has type string, others
have type int. Supported attributes are:

krt mtu, krt_lockmtu, krt window, krt_lock window, krt rtt, krt_lock rtt, krt_rttvar,
krt_lock rttvar, krt_ssthresh, krt_lock ssthresh, krt_cwnd, krt_lock cwnd, krt_advmss,
krt_lock_advmss, krt_reordering, krt_lock._reordering, krt_hoplimit, krt_lock hoplimit,
krt_rtomin, krt_lock rtomin, krt_initcwnd, krt_lock_initcwnd, krt_initrwnd, krt_lock_initrwnd,
krt_quickack, krt_lock_quickack, krt_congctl, krt_lock congctl, krt_fastopen no_cookie,
krt_lock_fastopen_no_cookie, krt_feature_ecn, krt_feature_allfrag

6.8.3 Example

A simple configuration can look this way:
protocol kernel {
export all;
}

Or for a system with two routing tables:

protocol kernel { # Primary routing table

learn; # Learn alien routes from the kernel
persist; # Do not remove routes on bird shutdown
scan time 10; # Scan kernel routing table every 10 seconds
ipvd {

import all;

export all;
I

6.9. L3VPN 66

protocol kernel { # Secondary routing table
kernel table 100;
ipvd {

table auxtable;
export all;
};

6.9 L3VPN

6.9.1 Introduction

The L3VPN protocol serves as a translator between IP routes and VPN routes. It is a component for
BGP/MPLS IP VPNs (RFC 4364) and implements policies defined there. In import direction (VPN ->
IP), VPN routes matching import target specification are stripped of route distinguisher and MPLS labels
and announced as IP routes, In export direction (IP -> VPN), IP routes are expanded with specific route
distinguisher, export target communities and MPLS label and announced as labeled VPN routes. Unlike the
Pipe protocol, the L3VPN protocol propagates just the best route for each network.

In BGP/MPLS IP VPNs, route distribution is controlled by Route Targets (RT). VRF's are associated with
one or more RTs. Routes are also associated with one or more RTs, which are encoded as route target
extended communities in bgp_ext_community (p.59). A route is then imported into each VRF that shares
an associated Route Target. The L3VPN protocol implements this mechanism through mandatory import
target and export target protocol options.

6.9.2 Configuration

L3VPN configuration consists of a few mandatory options and multiple channel definitions. For convenience,
the default export filter in L3VPN channels is all, as the primary way to control import and export of routes
is through protocol options import target and export target. If custom filters are used, note that the
export filter of the input channel is applied before the route translation, while the import filter of the output
channel is applied after that.

In contrast to the Pipe protocol, the L3VPN protocol can handle both IPv4 and IPv6 routes in one instance,
also both IP side and VPN side are represented as separate channels, although that may change in the future.
The L3VPN is always MPLS-aware protocol, therefore a MPLS channel is mandatory. Altogether, L3VPN
could have up to 5 channels: ipv4, ipv6, vpn4, vpn6, and mpls.

route distinguisher rd
The route distinguisher that is attached to routes in the export direction. Mandatory.

rd rd
A shorthand for the option route distinguisher.

import target ec|ec-set
Route target extended communities specifying which routes should be imported. Either one community
or a set. A route is imported if there is non-empty intersection between extended communities of the
route and the import target of the L3VPN protocol. Mandatory.

export target ec|ec-set
Route target extended communities that are attached to the route in the export direction. Either one
community or a set. Other route target extended communities are removed. Mandatory.

route target ec|ec-set
A shorthand for both import target and export target.

6.9.3 Attributes

The L3VPN protocol does not define any route attributes.

http://www.rfc-editor.org/info/rfc4364

6.9. L3VPN 67

6.9.4 Example

Here is an example of L3VPN setup with one VPN and BGP uplink. IP routes learned from a customer in
the VPN are stored in vrfOvX tables, which are mapped to kernel VRF vrf0. Routes can also be exchanged
through BGP with different sites hosting that VPN. Forwarding of VPN traffic through the network is
handled by MPLS.

Omitted from the example are some routing protocol to exchange routes with the customer and some sort
of MPLS-aware IGP to resolve next hops for BGP VPN routes.

MPLS basics
mpls domain mdom;
mpls table mtab;

protocol kernel krt_mpls {
mpls { table mtab; export all; };
}

vpn4 table vpntab4;
vpn6 table vpntab6;

Exchange VPN routes through BGP

protocol bgp {
vpnéd { table vpntab4; import all; export all; };
vpné { table vpntab6; import all; export all; };
mpls { label policy aggregate; };
local 10.0.0.1 as 10;
neighbor 10.0.0.2 as 10;

VRF O
ipv4 table vrfOv4;
ipv6 table vrfOv6;

protocol kernel kernelOv4 {
vrf "vrfo";
ipv4 { table vrfOv4; export all; };
kernel table 100;

}

protocol kernel kernelOv6 {
vrf "vrfoO";
ipvé { table vrfOv6; export all; };
kernel table 100;

}

protocol 13vpn 13vpnO {

vrf "vrfo";

ipvd { table vrfOvé4; };

ipvé { table vrfOv6; };
vpnéd { table vpntab4; };
vpné { table vpntab6; };
mpls { label policy vrf; };

rd 10:12;
import target [(rt, 10, 32..40)];
export target [(rt, 10, 30), (rt, 10, 31)];

6.10. MRT 68

6.10 MRT

6.10.1 Introduction

The MRT protocol is a component responsible for handling the Multi-Threaded Routing Toolkit (MRT)
routing information export format, which is mainly used for collecting and analyzing of routing information
from BGP routers. The MRT protocol can be configured to do periodic dumps of routing tables, created
MRT files can be analyzed later by other tools. Independent MRT table dumps can also be requested from
BIRD client. There is also a feature to save incoming BGP messages in MRT files, but it is controlled by
mrtdump (p. 15) options independently of MRT protocol, although that might change in the future.

BIRD implements the main MRT format specification as defined in RFC 6396 and the ADD_PATH extension
(RFC 8050).

6.10.2 Configuration

MRT configuration consists of several statements describing routing table dumps. Multiple independent
periodic dumps can be done as multiple MRT protocol instances. The MRT protocol does not use channels.
There are two mandatory statements: filename and period.

The behavior can be modified by following configuration parameters:

table name | "pattern"
Specify a routing table (or a set of routing tables described by a wildcard pattern) that are to be
dumped by the MRT protocol instance. Default: the master table.

filter { filter commands }
The MRT protocol allows to specify a filter that is applied to routes as they are dumped. Rejected
routes are ignored and not saved to the MRT dump file. Default: no filter.

where filter expression
An alternative way to specify a filter for the MRT protocol.

filename "filename"
Specify a filename for MRT dump files. The filename may contain time format sequences with strf-
time(8) notation (see man strftime for details), there is also a sequence ”%N” that is expanded to the
name of dumped table. Therefore, each periodic dump of each table can be saved to a different file.
Mandatory, see example below.

period number
Specify the time interval (in seconds) between periodic dumps. Mandatory.

always add path switch
The MRT format uses special records (specified in RFC 8050) for routes received using BGP
ADD_PATH extension to keep Path ID, while other routes use regular records. This has advantage of
better compatibility with tools that do not know special records, but it loses information about which
route is the best route. When this option is enabled, both ADD_PATH and non-ADD_PATH routes
are stored in ADD_PATH records and order of routes for network is preserved. Default: disabled.

6.10.3 Example

protocol mrt {
table "tabx*x";
where source = RTS_BGP;
filename "/var/log/bird/¥N_%F_%T.mrt";
period 300;

http://www.rfc-editor.org/info/rfc6396
http://www.rfc-editor.org/info/rfc8050
http://www.rfc-editor.org/info/rfc8050

6.11. OSPF 69

6.11 OSPF

6.11.1 Introduction

Open Shortest Path First (OSPF) is a quite complex interior gateway protocol. The current IPv4 version
(OSPFv2) is defined in RFC 2328 and the current IPv6 version (OSPFv3) is defined in RFC 5340 It’s a
link state (a.k.a. shortest path first) protocol — each router maintains a database describing the autonomous
system’s topology. Each participating router has an identical copy of the database and all routers run the
same algorithm calculating a shortest path tree with themselves as a root. OSPF chooses the least cost path
as the best path.

In OSPF, the autonomous system can be split to several areas in order to reduce the amount of resources
consumed for exchanging the routing information and to protect the other areas from incorrect routing data.
Topology of the area is hidden to the rest of the autonomous system.

Another very important feature of OSPF is that it can keep routing information from other protocols (like
Static or BGP) in its link state database as external routes. Each external route can be tagged by the
advertising router, making it possible to pass additional information between routers on the boundary of the
autonomous system.

OSPF quickly detects topological changes in the autonomous system (such as router interface failures) and
calculates new loop-free routes after a short period of convergence. Only a minimal amount of routing traffic
is involved.

Each router participating in OSPF routing periodically sends Hello messages to all its interfaces. This allows
neighbors to be discovered dynamically. Then the neighbors exchange theirs parts of the link state database
and keep it identical by flooding updates. The flooding process is reliable and ensures that each router
detects all changes.

6.11.2 Configuration

First, the desired OSPF version can be specified by using ospf v2 or ospf v3 as a protocol type. By
default, OSPFv2 is used. In the main part of configuration, there can be multiple definitions of OSPF
areas, each with a different id. These definitions includes many other switches and multiple definitions of
interfaces. Definition of interface may contain many switches and constant definitions and list of neighbors
on nonbroadcast networks.

OSPFv2 needs one IPv4 channel. OSPFv3 needs either one IPv6 channel, or one IPv4 channel (RFC 5838).
Therefore, it is possible to use OSPFv3 for both IPv4 and Pv6 routing, but it is necessary to have two protocol
instances anyway. If no channel is configured, appropriate channel is defined with default parameters.

protocol ospf [v2|v3] <name> {
rfc1583compat <switch>;
rfc5838 <switch>;
instance id <number>;
stub router <switch>;
tick <number>;
ecmp <switch> [limit <number>];
merge external <switch>;
graceful restart <switch>|aware;
graceful restart time <number>;
area <id> {
stub;
nssa;
summary <switch>;
default nssa <switch>;
default cost <number>;
default cost2 <number>;
translator <switch>;
translator stability <number>;

networks {

http://www.rfc-editor.org/info/rfc2328
http://www.rfc-editor.org/info/rfc5340
http://www.rfc-editor.org/info/rfc5838

6.11. OSPF 70

<prefix>;
<prefix> hidden;
};
external {
<prefix>;
<prefix> hidden;
<prefix> tag <number>;
};

stubnet <prefix>;
stubnet <prefix> {
hidden <switch>;
summary <switch>;
cost <number>;
};
interface <interface pattern> [instance <number>] {
cost <number>;
stub <switch>;
hello <number>;
poll <number>;
retransmit <number>;
priority <number>;
wait <number>;
dead count <number>;
dead <number>;
secondary <switch>;
rx buffer [normal|largel<number>];
tx length <number>;
type [broadcast|bcast|pointopoint|ptp]
nonbroadcast |nbma|pointomultipoint |ptmp];
link lsa suppression <switch>;
strict nonbroadcast <switch>;
real broadcast <switch>;
ptp netmask <switch>;
ptp address <switch>;
check link <switch>;
bfd <switch>;
ecmp weight <number>;
ttl security [<switch>; | tx only]
tx class|dscp <number>;
tx priority <number>;
authentication none|simple|cryptographic;
password "<text>";
password "<text>" {
id <number>;
generate from "<date>";
generate to '"<date>";
accept from "<date>";
accept to "<date>";
from "<date>";
to "<date>";
algorithm (keyed md5 | keyed shal | hmac shal | hmac sha25

};
neighbors {

<ip>;

<ip> eligible;
};

6.11. OSPF 71

virtual link <id> [instance <number>] {
hello <number>;
retransmit <number>;
wait <number>;
dead count <number>;
dead <number>;
authentication nonel|simplel|cryptographic;
password "<text>";
password "<text>" {
id <number>;
generate from "<date>";
generate to "<date>";
accept from "<date>";
accept to "<date>";
from "<date>";
to "<date>";
algorithm (keyed md5 | keyed shal | hmac shal | hmac sha25

};
}

rfc1583compat switch
This option controls compatibility of routing table calculation with RFC 1583. Default value is no.

rfc5838 switch
Basic OSPFv3 is limited to IPv6 unicast routing. The RFC 5838 extension defines support for more
address families (IPv4, IPv6, both unicast and multicast). The extension is enabled by default, but
can be disabled if necessary, as it restricts the range of available instance IDs. Default value is yes.

instance id number
When multiple OSPF protocol instances are active on the same links, they should use different instance
IDs to distinguish their packets. Although it could be done on per-interface basis, it is often preferred
to set one instance ID to whole OSPF domain/topology (e.g., when multiple instances are used to
represent separate logical topologies on the same physical network). This option specifies the instance
ID for all interfaces of the OSPF instance, but can be overridden by interface option. Default value
is 0 unless OSPFv3-AF extended address families are used, see RFC 5838 for that case.

stub router switch
This option configures the router to be a stub router, i.e., a router that participates in the OSPF
topology but does not allow transit traffic. In OSPFv2, this is implemented by advertising maximum
metric for outgoing links. In OSPFv3, the stub router behavior is announced by clearing the R-bit in
the router LSA. See RFC 6987 for details. Default value is no.

tick number
The routing table calculation and clean-up of areas’ databases is not performed when a single link
state change arrives. To lower the CPU utilization, it’s processed later at periodical intervals of
number seconds. The default value is 1.

ecmp switch [limit number]
This option specifies whether OSPF is allowed to generate ECMP (equal-cost multipath) routes. Such
routes are used when there are several directions to the destination, each with the same (computed)
cost. This option also allows to specify a limit on maximum number of nexthops in one route. By
default, ECMP is enabled if supported by Kernel. Default value of the limit is 16.

merge external switch
This option specifies whether OSPF should merge external routes from different routers/LSAs for the
same destination. When enabled together with ecmp, equal-cost external routes will be combined to
multipath routes in the same way as regular routes. When disabled, external routes from different
LSAs are treated as separate even if they represents the same destination. Default value is no.

http://www.rfc-editor.org/info/rfc1583
http://www.rfc-editor.org/info/rfc5838
http://www.rfc-editor.org/info/rfc5838
http://www.rfc-editor.org/info/rfc6987

6.11. OSPF 72

graceful restart switch|aware

When an OSPF instance is restarted, neighbors break adjacencies and recalculate their routing tables,
which disrupts packet forwarding even when the forwarding plane of the restarting router remains
intact. RFC 3623 specifies a graceful restart mechanism to alleviate this issue. For OSPF graceful
restart, restarting router originates Grace-LSAs, announcing intent to do graceful restart. Neighbors
receiving these LSAs enter helper mode, in which they ignore breakdown of adjacencies, behave as if
nothing is happening and keep old routes. When adjacencies are reestablished, the restarting router
flushes Grace-LSAs and graceful restart is ended.

This option controls the graceful restart mechanism. It has three states: Disabled, when no support
is provided. Aware, when graceful restart helper mode is supported, but no local graceful restart
is allowed (i.e. helper-only role). Enabled, when the full graceful restart support is provided (i.e.
both restarting and helper role). Note that proper support for local graceful restart requires also
configuration of other protocols. Default: aware.

graceful restart time number
The restart time is announced in the Grace-LSA and specifies how long neighbors should wait for
proper end of the graceful restart before exiting helper mode prematurely. Default: 120 seconds.

area id
This defines an OSPF area with given area ID (an integer or an IPv4 address, similarly to a router
ID). The most important area is the backbone (ID 0) to which every other area must be connected.

stub
This option configures the area to be a stub area. External routes are not flooded into stub areas. Also
summary LSAs can be limited in stub areas (see option summary). By default, the area is not a stub
area.

nssa
This option configures the area to be a NSSA (Not-So-Stubby Area). NSSA is a variant of a stub area
which allows a limited way of external route propagation. Global external routes are not propagated
into a NSSA, but an external route can be imported into NSSA as a (area-wide) NSSA-LSA (and
possibly translated and/or aggregated on area boundary). By default, the area is not NSSA.

summary switch
This option controls propagation of summary LSAs into stub or NSSA areas. If enabled, summary
LSAs are propagated as usual, otherwise just the default summary route (0.0.0.0/0) is propagated (this
is sometimes called totally stubby area). If a stub area has more area boundary routers, propagating
summary LSAs could lead to more efficient routing at the cost of larger link state database. Default
value is no.

default nssa switch
When summary option is enabled, default summary route is no longer propagated to the NSSA. In that
case, this option allows to originate default route as NSSA-LSA to the NSSA. Default value is no.

default cost number
This option controls the cost of a default route propagated to stub and NSSA areas. Default value is
1000.

default cost2 number
When a default route is originated as NSSA-LSA, its cost can use either type 1 or type 2 metric. This
option allows to specify the cost of a default route in type 2 metric. By default, type 1 metric (option
default cost) is used.

translator switch
This option controls translation of NSSA-LSAs into external LSAs. By default, one translator per
NSSA is automatically elected from area boundary routers. If enabled, this area boundary router
would unconditionally translate all NSSA-LSAs regardless of translator election. Default value is no.

translator stability number
This option controls the translator stability interval (in seconds). When the new translator is elected,
the old one keeps translating until the interval is over. Default value is 40.

http://www.rfc-editor.org/info/rfc3623

6.11. OSPF 73

networks { set }
Definition of area IP ranges. This is used in summary LSA origination. Hidden networks are not
propagated into other areas.

external { set }
Definition of external area IP ranges for NSSAs. This is used for NSSA-LSA translation. Hidden
networks are not translated into external LSAs. Networks can have configured route tag.

stubnet prefiz { options }
Stub networks are networks that are not transit networks between OSPF routers. They are also
propagated through an OSPF area as a part of a link state database. By default, BIRD generates a
stub network record for each primary network address on each OSPF interface that does not have any
OSPF neighbors, and also for each non-primary network address on each OSPF interface. This option
allows to alter a set of stub networks propagated by this router.

Each instance of this option adds a stub network with given network prefix to the set of propagated
stub network, unless option hidden is used. It also suppresses default stub networks for given network
prefix. When option summary is used, also default stub networks that are subnetworks of given stub
network are suppressed. This might be used, for example, to aggregate generated stub networks.

interface pattern [instance number]
Defines that the specified interfaces belong to the area being defined. See interface (p.16) common
option for detailed description. In OSPFv2, extended interface clauses are used, because each network
prefix is handled as a separate virtual interface.

You can specify alternative instance ID for the interface definition, therefore it is possible to have several
instances of that interface with different options or even in different areas. For OSPFv2, instance ID
support is an extension (RFC 6549) and is supposed to be set per-protocol. For OSPFv3, it is an
integral feature.

virtual link id [instance number]
Virtual link to router with the router id. Virtual link acts as a point-to-point interface belonging to
backbone. The actual area is used as a transport area. This item cannot be in the backbone. Like with

interface option, you could also use several virtual links to one destination with different instance
IDs.

cost number
Specifies output cost (metric) of an interface. Default value is 10.

stub switch
If set to interface it does not listen to any packet and does not send any hello. Default value is no.

hello number
Specifies interval in seconds between sending of Hello messages. Beware, all routers on the same
network need to have the same hello interval. Default value is 10.

poll number
Specifies interval in seconds between sending of Hello messages for some neighbors on NBMA network.
Default value is 20.

retransmit number
Specifies interval in seconds between retransmissions of unacknowledged updates. Default value is 5.

transmit delay number
Specifies estimated transmission delay of link state updates send over the interface. The value is added
to LSA age of LSAs propagated through it. Default value is 1.

priority number
On every multiple access network (e.g., the Ethernet) Designated Router and Backup Designated router
are elected. These routers have some special functions in the flooding process. Higher priority increases
preferences in this election. Routers with priority 0 are not eligible. Default value is 1.

http://www.rfc-editor.org/info/rfc6549

6.11. OSPF 74

wait number
After start, router waits for the specified number of seconds between starting election and building
adjacency. Default value is 4*hello.

dead count number
When the router does not receive any messages from a neighbor in dead count™hello seconds, it will
consider the neighbor down.

dead number
When the router does not receive any messages from a neighbor in dead seconds, it will consider the
neighbor down. If both directives dead count and dead are used, dead has precedence.

rx buffer number
This option allows to specify the size of buffers used for packet processing. The buffer size should be
bigger than maximal size of any packets. By default, buffers are dynamically resized as needed, but a
fixed value could be specified. Value large means maximal allowed packet size - 65535.

tx length number
Transmitted OSPF messages that contain large amount of information are segmented to separate OSPF
packets to avoid IP fragmentation. This option specifies the soft ceiling for the length of generated
OSPF packets. Default value is the MTU of the network interface. Note that larger OSPF packets
may still be generated if underlying OSPF messages cannot be splitted (e.g. when one large LSA is
propagated).

type broadcast|bcast
BIRD detects a type of a connected network automatically, but sometimes it’s convenient to force use
of a different type manually. On broadcast networks (like ethernet), flooding and Hello messages are
sent using multicasts (a single packet for all the neighbors). A designated router is elected and it is
responsible for synchronizing the link-state databases and originating network LSAs. This network
type cannot be used on physically NBMA networks and on unnumbered networks (networks without
proper IP prefix).

type pointopoint|ptp
Point-to-point networks connect just 2 routers together. No election is performed and no network LSA
is originated, which makes it simpler and faster to establish. This network type is useful not only for
physically PtP ifaces (like PPP or tunnels), but also for broadcast networks used as PtP links. This
network type cannot be used on physically NBMA networks.

type nonbroadcast|nbma
On NBMA networks, the packets are sent to each neighbor separately because of lack of multicast
capabilities. Like on broadcast networks, a designated router is elected, which plays a central role in
propagation of LSAs. This network type cannot be used on unnumbered networks.

type pointomultipoint|ptmp
This is another network type designed to handle NBMA networks. In this case the NBMA network is
treated as a collection of PtP links. This is useful if not every pair of routers on the NBMA network
has direct communication, or if the NBMA network is used as an (possibly unnumbered) PtP link.

link lsa suppression switch
In OSPFv3, link LSAs are generated for each link, announcing link-local IPv6 address of the router to
its local neighbors. These are useless on PtP or PtMP networks and this option allows to suppress the
link LSA origination for such interfaces. The option is ignored on other than PtP or PtMP interfaces.
Default value is no.

strict nonbroadcast switch
If set, don’t send hello to any undefined neighbor. This switch is ignored on other than NBMA or
PtMP interfaces. Default value is no.

real broadcast switch
In type broadcast or type ptp network configuration, OSPF packets are sent as IP multicast packets.
This option changes the behavior to using old-fashioned IP broadcast packets. This may be useful as

6.11. OSPF (6]

a workaround if IP multicast for some reason does not work or does not work reliably. This is a non-
standard option and probably is not interoperable with other OSPF implementations. Default value
is no.

ptp netmask switch
In type ptp network configurations, OSPFv2 implementations should ignore received netmask field in
hello packets and should send hello packets with zero netmask field on unnumbered PtP links. But
some OSPFv2 implementations perform netmask checking even for PtP links.

This option specifies whether real netmask will be used in hello packets on type ptp interfaces. You
should ignore this option unless you meet some compatibility problems related to this issue. Default
value is no for unnumbered PtP links, yes otherwise.

ptp address switch
In type ptp network configurations, OSPFv2 implementations should use IP address for regular PtP
links and interface id for unnumbered PtP links in data field of link description records in router
LSA. This data field has only local meaning for PtP links, but some broken OSPFv2 implementations
assume there is an IP address and use it as a next hop in SPF calculations. Note that interface id for
unnumbered PtP links is necessary when graceful restart is enabled to distinguish PtP links with the
same local IP address.

This option specifies whether an IP address will be used in data field for type ptp interfaces, it is
ignored for other interfaces. You should ignore this option unless you meet some compatibility problems
related to this issue. Default value is no for unnumbered PtP links when graceful restart is enabled,
yes otherwise.

check link switch
If set, a hardware link state (reported by OS) is taken into consideration. When a link disappears
(e.g. an ethernet cable is unplugged), neighbors are immediately considered unreachable and only the
address of the iface (instead of whole network prefix) is propagated. It is possible that some hardware
drivers or platforms do not implement this feature. Default value is yes.

bfd switch
OSPF could use BFD protocol as an advisory mechanism for neighbor liveness and failure detection.
If enabled, BIRD setups a BFD session for each OSPF neighbor and tracks its liveness by it. This
has an advantage of an order of magnitude lower detection times in case of failure. Note that BFD
protocol also has to be configured, see BFD (p. 38) section for details. Default value is no.

ttl security [switch | tx only]
TTL security is a feature that protects routing protocols from remote spoofed packets by using TTL
255 instead of TTL 1 for protocol packets destined to neighbors. Because TTL is decremented when
packets are forwarded, it is non-trivial to spoof packets with TTL 255 from remote locations. Note
that this option would interfere with OSPF virtual links.

If this option is enabled, the router will send OSPF packets with TTL 255 and drop received packets
with TTL less than 255. If this option si set to tx only, TTL 255 is used for sent packets, but is not
checked for received packets. Default value is no.

tx class|dscp|priority number
These options specify the ToS/DiffServ/Traffic class/Priority of the outgoing OSPF packets. See tx
class (p. 16) common option for detailed description.

ecmp weight number
When ECMP (multipath) routes are allowed, this value specifies a relative weight used for nexthops
going through the iface. Allowed values are 1-256. Default value is 1.

authentication none
No passwords are sent in OSPF packets. This is the default value.

authentication simple
Every packet carries 8 bytes of password. Received packets lacking this password are ignored. This
authentication mechanism is very weak. This option is not available in OSPFv3.

6.11. OSPF 76

authentication cryptographic
An authentication code is appended to every packet. The specific cryptographic algorithm is selected
by option algorithm for each key. The default cryptographic algorithm for OSPFv2 keys is Keyed-
MD5 and for OSPFv3 keys is HMAC-SHA-256. Passwords are not sent open via network, so this
mechanism is quite secure. Packets can still be read by an attacker.

password "text"
Specifies a password used for authentication. See password (p.17) common option for detailed descrip-
tion.

neighbors { set }
A set of neighbors to which Hello messages on NBMA or PtMP networks are to be sent. For NBMA
networks, some of them could be marked as eligible. In OSPFv3, link-local addresses should be used,
using global ones is possible, but it is nonstandard and might be problematic. And definitely, link-local
and global addresses should not be mixed.

6.11.3 Attributes

OSPF defines four route attributes. Each internal route has a metric.

Metric is ranging from 1 to infinity (65535). External routes use metric type 1 or metric type 2. A
metric of type 1 is comparable with internal metric, a metric of type 2 is always longer than any
metric of type 1orany internal metric. Internal metric or metric of type 1 isstored in attribute
ospf_metricl, metric type 2 is stored in attribute ospf _metric2.

When both metrics are specified then metric of type 2 is used. This is relevant e.g. when a type 2
external route is propagated from one OSPF domain to another and ospf_metricl is an internal distance to
the original ASBR, while ospf _metric2 stores the type 2 metric. Note that in such cases if ospf _metricl
is non-zero then ospf_metric?2 is increased by one to ensure monotonicity of metric, as internal distance is
reset to zero when an external route is announced.

Each external route can also carry attribute ospf_tag which is a 32-bit integer which is used when exporting
routes to other protocols; otherwise, it doesn’t affect routing inside the OSPF domain at all. The fourth
attribute ospf_router_id is a router ID of the router advertising that route / network. This attribute is
read-only. Default is ospf_metric2 = 10000 and ospf_tag = O.

6.11.4 Example

protocol ospf MyOSPF {

ipvd {
export filter {
if source = RTS_BGP then {
ospf_metricl = 100;
accept;
}
reject;
};
};

area 0.0.0.0 {

interface "eth*" {
cost 11;
hello 15;
priority 100;
retransmit 7;
authentication simple;
password "aaa'";

};

interface "ppp*" {
cost 100;
authentication cryptographic;

6.12. Pipe 77

password "abc" {
id 1;
generate to "2023-04-22 11:00:06";
accept from "2021-01-17 12:01:05";
algorithm hmac sha384;

+;
password "def" {
id 2;
generate to "2025-07-22";
accept from "2021-02-22";
algorithm hmac shab12;
};
};
interface "arcO" {
cost 10;
stub yes;
};
interface "arcl";
};
area 120 {
stub yes;
networks {
172.16.1.0/24;
172.16.2.0/24 hidden;
};
interface "-arcO" , "arcx" {
type nonbroadcast;
authentication none;
strict nonbroadcast yes;
wait 120;
poll 40;
dead count 8;
neighbors {
192.168.120.1 eligible;
192.168.120.2;
192.168.120.10;
};
}
};
}
6.12 Pipe

6.12.1 Introduction

The Pipe protocol serves as a link between two routing tables, allowing routes to be passed from a table
declared as primary (i.e., the one the pipe is connected to using the table configuration keyword) to the
secondary one (declared using peer table) and vice versa, depending on what’s allowed by the filters.
Export filters control export of routes from the primary table to the secondary one, import filters control
the opposite direction. Both tables must be of the same nettype.

The Pipe protocol retransmits all routes from one table to the other table, retaining their original source
and attributes. If import and export filters are set to accept, then both tables would have the same content.

The primary use of multiple routing tables and the Pipe protocol is for policy routing, where handling of a
single packet doesn’t depend only on its destination address, but also on its source address, source interface,
protocol type and other similar parameters. In many systems (Linux being a good example), the kernel
allows to enforce routing policies by defining routing rules which choose one of several routing tables to be

6.12. Pipe 78

used for a packet according to its parameters. Setting of these rules is outside the scope of BIRD’s work (on
Linux, you can use the ip command), but you can create several routing tables in BIRD, connect them to
the kernel ones, use filters to control which routes appear in which tables and also you can employ the Pipe
protocol for exporting a selected subset of one table to another one.

6.12.2 Configuration

Essentially, the Pipe protocol is just a channel connected to a table on both sides. Therefore, the configuration
block for protocol pipe shall directly include standard channel config options; see the example below.

peer table table
Defines secondary routing table to connect to. The primary one is selected by the table keyword.

max generation expr
Sets maximal generation of route that may pass through this pipe. The generation value is increased
by one by each pipe on its path. Not meeting this requirement causes an error message complaining
about an overpiped route. If you have long chains of pipes, you probably want to raise this value;
anyway the default of 16 should be enough for even most strange uses. Maximum is 254.

6.12.3 Attributes

The Pipe protocol doesn’t define any route attributes.

6.12.4 Example

Let’s consider a router which serves as a boundary router of two different autonomous systems, each of them
connected to a subset of interfaces of the router, having its own exterior connectivity and wishing to use the
other AS as a backup connectivity in case of outage of its own exterior line.

Probably the simplest solution to this situation is to use two routing tables (we’ll call them as1 and as2)
and set up kernel routing rules, so that packets having arrived from interfaces belonging to the first AS will
be routed according to as1 and similarly for the second AS. Thus we have split our router to two logical
routers, each one acting on its own routing table, having its own routing protocols on its own interfaces. In
order to use the other AS’s routes for backup purposes, we can pass the routes between the tables through a
Pipe protocol while decreasing their preferences and correcting their BGP paths to reflect the AS boundary
crossing.

ipv4 table asl; # Define the tables
ipv4 table as2;

protocol kernel kernl { # Synchronize them with the kernel
ipvd { table asl; export all; };
kernel table 1;

b

protocol kernel kern2 {
ipvd { table as2; export all; };
kernel table 2;

}

protocol bgp bgpl { # The outside connections
ipv4 { table asl; import all; export all; };
local as 1;
neighbor 192.168.0.1 as 1001;

}

protocol bgp bgp2 {
ipvd { table as2; import all; export all; };

6.13. RAdv 79

local as 2;
neighbor 10.0.0.1 as 1002;

}
protocol pipe { # The Pipe
table asi;
peer table as2;
export filter {
if net © [1.0.0.0/8+] then { # Only AS1 networks
if preference>10 then preference = preference-10;
if source=RTS_BGP then bgp_path.prepend(1);
accept;
X
reject;
3
import filter {
if net ©~ [2.0.0.0/8+] then { # Only AS2 networks
if preference>10 then preference = preference-10;
if source=RTS_BGP then bgp_path.prepend(2);
accept;
}
reject;
I
3

6.13 RAdv

6.13.1 Introduction

The RAdv protocol is an implementation of Router Advertisements, which are used in the IPv6 stateless
autoconfiguration. IPv6 routers send (in irregular time intervals or as an answer to a request) advertisement
packets to connected networks. These packets contain basic information about a local network (e.g. a list
of network prefixes), which allows network hosts to autoconfigure network addresses and choose a default
route. BIRD implements router behavior as defined in RFC 4861, router preferences and specific routes
(RFC 4191), and DNS extensions (RFC 6106).

The RAdv protocols supports just IPv6 channel.

6.13.2 Configuration

There are several classes of definitions in RAdv configuration — interface definitions, prefix definitions and
DNS definitions:

interface pattern [, ...]1 { options }
Interface definitions specify a set of interfaces on which the protocol is activated and contain interface
specific options. See interface (p.16) common options for detailed description.

prefix prefix { options }
Prefix definitions allow to modify a list of advertised prefixes. By default, the advertised prefixes are
the same as the network prefixes assigned to the interface. For each network prefix, the matching prefix
definition is found and its options are used. If no matching prefix definition is found, the prefix is used
with default options.

Prefix definitions can be either global or interface-specific. The second ones are part of interface options.
The prefix definition matching is done in the first-match style, when interface-specific definitions are
processed before global definitions. As expected, the prefix definition is matching if the network prefix
is a subnet of the prefix in prefix definition.

http://www.rfc-editor.org/info/rfc4861
http://www.rfc-editor.org/info/rfc4191
http://www.rfc-editor.org/info/rfc6106

6.13. RAdv 80

rdnss { options }
RDNSS definitions allow to specify a list of advertised recursive DNS servers together with their options.
As options are seldom necessary, there is also a short variant rdnss address that just specifies one DNS
server. Multiple definitions are cumulative. RDNSS definitions may also be interface-specific when used
inside interface options. By default, interface uses both global and interface-specific options, but that
can be changed by rdnss local option.

dnssl { options }
DNSSL definitions allow to specify a list of advertised DNS search domains together with their options.
Like rdnss above, multiple definitions are cumulative, they can be used also as interface-specific options
and there is a short variant dnssl domain that just specifies one DNS search domain.

custom option type number value bytestring
Custom option definitions allow to define an arbitrary option to advertise. You need to specify the
option type number and the binary payload of the option. The length field is calculated automatically.
Like rdnss above, multiple definitions are cumulative, they can be used also as interface-specific options.

The following example advertises PREF64 option (RFC 8781) with prefix 2001:db8:a:b::/96 and
the lifetime of 1 hour:

custom option type 38 value hex:0e:10:20:01:0d4:b8:00:0a:00:0b:00:00:00:00;

trigger prefix
RAdv protocol could be configured to change its behavior based on availability of routes. When this
option is used, the protocol waits in suppressed state until a trigger route (for the specified network) is
exported to the protocol, the protocol also returns to suppressed state if the trigger route disappears.
Note that route export depends on specified export filter, as usual. This option could be used, e.g., for
handling failover in multihoming scenarios.

During suppressed state, router advertisements are generated, but with some fields zeroed. Exact
behavior depends on which fields are zeroed, this can be configured by sensitive option for appropriate
fields. By default, just default lifetime (also called router lifetime) is zeroed, which means hosts
cannot use the router as a default router. preferred lifetime and valid lifetime could also be
configured as sensitive for a prefix, which would cause autoconfigured IPs to be deprecated or even
removed.

propagate routes switch
This option controls propagation of more specific routes, as defined in RFC 4191. If enabled, all routes
exported to the RAdv protocol, with the exception of the trigger prefix, are added to advertisments
as additional options. The lifetime and preference of advertised routes can be set individually by
ra lifetime and ra_preference route attributes, or per interface by route lifetime and route
preference options. Default: disabled.

Note that the RFC discourages from sending more than 17 routes and recommends the routes to be
configured manually.

Interface specific options:

max ra interval expr
Unsolicited router advertisements are sent in irregular time intervals. This option specifies the maxi-
mum length of these intervals, in seconds. Valid values are 4-1800. Default: 600

min ra interval expr
This option specifies the minimum length of that intervals, in seconds. Must be at least 3 and at most
3/4 * max ra interval. Default: about 1/3 * max ra interval.

min delay expr
The minimum delay between two consecutive router advertisements, in seconds. Default: 3

solicited ra unicast switch
Solicited router advertisements are usually sent to all-nodes multicast group like unsolicited ones, but
the router can be configured to send them as unicast directly to soliciting nodes instead. This is
especially useful on wireless networks (see RFC 7772). Default: no

http://www.rfc-editor.org/info/rfc8781
http://www.rfc-editor.org/info/rfc4191
http://www.rfc-editor.org/info/rfc7772

6.13. RAdv 81

managed switch
This option specifies whether hosts should use DHCPv6 for IP address configuration. Default: no

other config switch
This option specifies whether hosts should use DHCPv6 to receive other configuration information.
Default: no

link mtu expr
This option specifies which value of MTU should be used by hosts. 0 means unspecified. Default: 0

reachable time expr
This option specifies the time (in milliseconds) how long hosts should assume a neighbor is reachable
(from the last confirmation). Maximum is 3600000, 0 means unspecified. Default 0.

retrans timer exzpr
This option specifies the time (in milliseconds) how long hosts should wait before retransmitting Neigh-
bor Solicitation messages. 0 means unspecified. Default 0.

current hop limit expr
This option specifies which value of Hop Limit should be used by hosts. Valid values are 0-255, 0
means unspecified. Default: 64

default lifetime expr [sensitive switch]
This option specifies the time (in seconds) how long (since the receipt of RA) hosts may use the router
as a default router. 0 means do not use as a default router. For sensitive option, see trigger (p.79).
Default: 3 * max ra interval, sensitive yes.

default preference low|medium|/high
This option specifies the Default Router Preference value to advertise to hosts. Default: medium.

route lifetime expr [sensitive switch]
This option specifies the default value of advertised lifetime for specific routes; i.e., the time (in seconds)
for how long (since the receipt of RA) hosts should consider these routes valid. A special value OxffHfff
represents infinity. The lifetime can be overriden on a per route basis by the ra_lifetime (p.81) route
attribute. Default: 3 * max ra interval, sensitive no.

For the sensitive option, see trigger (p.79). If sensitive is enabled, even the routes with the
ra_lifetime attribute become sensitive to the trigger.

route preference low|medium|high
This option specifies the default value of advertised route preference for specific routes. The value can
be overriden on a per route basis by the ra_preference (p.81) route attribute. Default: medium.

prefix linger time expr
When a prefix or a route disappears, it is advertised for some time with zero lifetime, to inform clients
it is no longer valid. This option specifies the time (in seconds) for how long prefixes are advertised
that way. Default: 3 * max ra interval.

route linger time expr
When a prefix or a route disappears, it is advertised for some time with zero lifetime, to inform clients
it is no longer valid. This option specifies the time (in seconds) for how long routes are advertised that
way. Default: 3 * max ra interval.

rdnss local switch
Use only local (interface-specific) RDNSS definitions for this interface. Otherwise, both global and local
definitions are used. Could also be used to disable RDNSS for given interface if no local definitons are
specified. Default: no.

dnssl local switch
Use only local DNSSL definitions for this interface. See rdnss local option above. Default: no.

custom option local switch
Use only local custom option definitions for this interface. See rdnss local option above. Default:
no.

6.13. RAdv 82

Prefix specific options

skip switch
This option allows to specify that given prefix should not be advertised. This is useful for making
exceptions from a default policy of advertising all prefixes. Note that for withdrawing an already
advertised prefix it is more useful to advertise it with zero valid lifetime. Default: no

onlink switch
This option specifies whether hosts may use the advertised prefix for onlink determination. Default:
yes

autonomous switch
This option specifies whether hosts may use the advertised prefix for stateless autoconfiguration. De-
fault: yes

valid lifetime expr [sensitive switch]
This option specifies the time (in seconds) how long (after the receipt of RA) the prefix information is
valid, i.e., autoconfigured IP addresses can be assigned and hosts with that IP addresses are considered
directly reachable. 0 means the prefix is no longer valid. For sensitive option, see trigger (p.79).
Default: 86400 (1 day), sensitive no.

preferred lifetime expr [sensitive switch]
This option specifies the time (in seconds) how long (after the receipt of RA) IP addresses generated
from the prefix using stateless autoconfiguration remain preferred. For sensitive option, see trigger
(p.79). Default: 14400 (4 hours), sensitive no.

RDNSS specific options:

ns address
This option specifies one recursive DNS server. Can be used multiple times for multiple servers. It is
mandatory to have at least one ns option in rdnss definition.

lifetime [mult] expr
This option specifies the time how long the RDNSS information may be used by clients after the receipt
of RA. It is expressed either in seconds or (when mult is used) in multiples of max ra interval. Note
that RDNSS information is also invalidated when default lifetime expires. 0 means these addresses
are no longer valid DNS servers. Default: 3 * max ra interval.

DNSSL specific options:

domain address
This option specifies one DNS search domain. Can be used multiple times for multiple domains. It is
mandatory to have at least one domain option in dnssl definition.

lifetime [mult] expr
This option specifies the time how long the DNSSL information may be used by clients after the receipt
of RA. Details are the same as for RDNSS lifetime option above. Default: 3 * max ra interval.

6.13.3 Attributes

RAdv defines two route attributes:

enum ra preference
The preference of the route. The value can be RA_PREF LOW, RA_PREF MEDIUM or
RA_PREF_HIGH. If the attribute is not set, the route preference (p.80) option is used.

int ra_lifetime
The advertised lifetime of the route, in seconds. The special value of Oxffffffff represents infinity. If the
attribute is not set, the route lifetime (p.80) option is used.

6.13.4 Example

6.14. RIP 83

ipv6 table radv_routes; # Manually configured routes go here

protocol static {
ipvé { table radv_routes; I};

route 2001:0DB8:4000: :/48 unreachable;
route 2001:0DB8:4010::/48 unreachable;

route 2001:0DB8:4020::/48 unreachable {
ra_preference = RA_PREF_HIGH;
ra_lifetime = 3600;
}s
}

protocol radv {
propagate routes yes; # Propagate the routes from the radv_routes table
ipv6 { table radv_routes; export all; };

interface "eth2" {
max ra interval 5; # Fast failover with more routers
managed yes; Using DHCPv6 on eth2
prefix ::/0 {
autonomous off; # So do not autoconfigure any IP

+H*

};
};

interface "ethx"; # No need for any other options

prefix 2001:0DB8:1234::/48 {

preferred lifetime O; # Deprecated address range
};
prefix 2001:0DB8:2000::/48 {

autonomous off; # Do not autoconfigure
};
rdnss 2001:0DB8:1234::10; # Short form of RDNSS
rdnss {

lifetime mult 10;

ns 2001:0DB8:1234::11;

ns 2001:0DB8:1234::12;
};
dnssl {

lifetime 3600;

domain "abc.com";

domain "xyz.com";
};

6.14 RIP

6.14.1 Introduction

The RIP protocol (also sometimes called Rest In Pieces) is a simple protocol, where each router broadcasts
(to all its neighbors) distances to all networks it can reach. When a router hears distance to another network,

6.14. RIP 84

it increments it and broadcasts it back. Broadcasts are done in regular intervals. Therefore, if some network
goes unreachable, routers keep telling each other that its distance is the original distance plus 1 (actually,
plus interface metric, which is usually one). After some time, the distance reaches infinity (that’s 15 in RIP)
and all routers know that network is unreachable. RIP tries to minimize situations where counting to infinity
is necessary, because it is slow. Due to infinity being 16, you can’t use RIP on networks where maximal
distance is higher than 15 hosts.

BIRD supports RIPvl (RFC 1058), RIPv2 (RFC 2453), RIPng (RFC 2080), Triggered RIP for demand
circuits (RFC 2091), and RIP cryptographic authentication (RFC 4822).

RIP is a very simple protocol, and it has a lot of shortcomings. Slow convergence, big network load and
inability to handle larger networks makes it pretty much obsolete. It is still usable on very small networks.

6.14.2 Configuration

RIP configuration consists mainly of common protocol options and interface definitions, most RIP options
are interface specific. RIPng (RIP for IPv6) protocol instance can be configured by using rip ng instead of
just rip as a protocol type.

RIP needs one IPv4 channel. RIPng needs one IPv6 channel. If no channel is configured, appropriate channel
is defined with default parameters.

protocol rip [ng] [<name>] {
infinity <number>;
ecmp <switch> [limit <number>];
interface <interface pattern> {
metric <number>;
mode multicast|broadcast;
passive <switch>;
address <ip>;
port <number>;
version 1]2;
split horizon <switch>;
poison reverse <switch>;
demand circuit <switch>;
check zero <switch>;
update time <number>;
timeout time <number>;
garbage time <number>;
ecmp weight <number>;
ttl security <switch>; | tx only;
tx class|dscp <number>;
tx priority <number>;
rx buffer <number>;
tx length <number>;
check link <switch>;
authentication none|plaintext|cryptographic;
password "<text>";
password "<text>" {
id <number>;
generate from "<date>";
generate to "<date>";
accept from "<date>";
accept to '"<date>";
from "<date>";
to "<date>";
algorithm (keyed md5 | keyed shal | hmac shal |
hmac sha256 | hmac sha384 | hmac sha512);

http://www.rfc-editor.org/info/rfc1058
http://www.rfc-editor.org/info/rfc2453
http://www.rfc-editor.org/info/rfc2080
http://www.rfc-editor.org/info/rfc2091
http://www.rfc-editor.org/info/rfc4822

6.14. RIP 85

}

infinity number
Selects the distance of infinity. Bigger values will make protocol convergence even slower. The default
value is 16.

ecmp switch [limit number]
This option specifies whether RIP is allowed to generate ECMP (equal-cost multipath) routes. Such
routes are used when there are several directions to the destination, each with the same (computed)
cost. This option also allows to specify a limit on maximum number of nexthops in one route. By
default, ECMP is enabled if supported by Kernel. Default value of the limit is 16.

interface pattern [, ...]1 { options }
Interface definitions specify a set of interfaces on which the protocol is activated and contain interface
specific options. See interface (p.16) common options for detailed description.

Interface specific options:

metric number
This option specifies the metric of the interface. When a route is received from the interface, its metric
is increased by this value before further processing. Valid values are 1-255, but values higher than
infinity has no further meaning. Default: 1.

mode multicast|broadcast
This option selects the mode for RIP to use on the interface. The default is multicast mode for RIPv2
and broadcast mode for RIPv1. RIPng always uses the multicast mode.

passive switch
Passive interfaces receive routing updates but do not transmit any messages. Default: no.

address 1p
This option specifies a destination address used for multicast or broadcast messages, the default is the
official RIP (224.0.0.9) or RIPng (ff02::9) multicast address, or an appropriate broadcast address in
the broadcast mode.

port number
This option selects an UDP port to operate on, the default is the official RIP (520) or RIPng (521)
port.

version 1|2
This option selects the version of RIP used on the interface. For RIPv1, automatic subnet aggregation
is not implemented, only classful network routes and host routes are propagated. Note that BIRD
allows RIPv1 to be configured with features that are defined for RIPv2 only, like authentication or
using multicast sockets. The default is RIPv2 for IPv4 RIP, the option is not supported for RIPng, as
no further versions are defined.

version only switch
Regardless of RIP version configured for the interface, BIRD accepts incoming packets of any RIP
version. This option restrict accepted packets to the configured version. Default: no.

split horizon switch
Split horizon is a scheme for preventing routing loops. When split horizon is active, routes are not
regularly propagated back to the interface from which they were received. They are either not propa-
gated back at all (plain split horizon) or propagated back with an infinity metric (split horizon with
poisoned reverse). Therefore, other routers on the interface will not consider the router as a part of an
independent path to the destination of the route. Default: yes.

poison reverse switch
When split horizon is active, this option specifies whether the poisoned reverse variant (propagating
routes back with an infinity metric) is used. The poisoned reverse has some advantages in faster
convergence, but uses more network traffic. Default: yes.

6.14. RIP 86

demand circuit switch
Regular RIP sends periodic full updates on an interface. There is the Triggered RIP extension for
demand circuits (RFC 2091), which removes periodic updates and introduces update acknowledgments.
When enabled, there is no RIP communication in steady-state network. Note that in order to work,
it must be enabled on both sides. As there are no hello packets, it depends on hardware link state to
detect neighbor failures. Also, it is designed for PtP links and it does not work properly with multiple
RIP neighbors on an interface. Default: no.

check zero switch
Received RIPv1 packets with non-zero values in reserved fields should be discarded. This option
specifies whether the check is performed or such packets are just processed as usual. Default: yes.

update time number
Specifies the number of seconds between periodic updates. A lower number will mean faster convergence
but bigger network load. Default: 30.

timeout time number
Specifies the time interval (in seconds) between the last received route announcement and the route
expiration. After that, the network is considered unreachable, but still is propagated with infinity
distance. Default: 180.

garbage time number
Specifies the time interval (in seconds) between the route expiration and the removal of the unreachable
network entry. The garbage interval, when a route with infinity metric is propagated, is used for both
internal (after expiration) and external (after withdrawal) routes. Default: 120.

ecmp weight number
When ECMP (multipath) routes are allowed, this value specifies a relative weight used for nexthops
going through the iface. Valid values are 1-256. Default value is 1.

authentication none|plaintext|cryptographic
Selects authentication method to be used. none means that packets are not authenticated at all,
plaintext means that a plaintext password is embedded into each packet, and cryptographic means
that packets are authenticated using some cryptographic hash function selected by option algorithm
for each key. The default cryptographic algorithm for RIP keys is Keyed-MD5. If you set authentication
to not-none, it is a good idea to add password section. Default: none.

password "text"
Specifies a password used for authentication. See password (p. 17) common option for detailed descrip-
tion.

ttl security [switch | tx only]
TTL security is a feature that protects routing protocols from remote spoofed packets by using TTL
255 instead of TTL 1 for protocol packets destined to neighbors. Because TTL is decremented when
packets are forwarded, it is non-trivial to spoof packets with TTL 255 from remote locations.

If this option is enabled, the router will send RIP packets with TTL 255 and drop received packets
with TTL less than 255. If this option si set to tx only, TTL 255 is used for sent packets, but is
not checked for received packets. Such setting does not offer protection, but offers compatibility with
neighbors regardless of whether they use ttl security.

For RIPng, TTL security is a standard behavior (required by RFC 2080) and therefore default value
is yes. For IPv4 RIP, default value is no.

tx class|dscp|priority number
These options specify the ToS/DiffServ/Traffic class/Priority of the outgoing RIP packets. See tx class
(p- 16) common option for detailed description.

rx buffer number
This option specifies the size of buffers used for packet processing. The buffer size should be bigger
than maximal size of received packets. The default value is 532 for IPv4 RIP and interface MTU value
for RIPng.

http://www.rfc-editor.org/info/rfc2091
http://www.rfc-editor.org/info/rfc2080

6.15. RPKI 87

tx length number
This option specifies the maximum length of generated RIP packets. To avoid IP fragmentation, it
should not exceed the interface MTU value. The default value is 532 for IPv4 RIP and interface MTU
value for RIPng.

check link switch
If set, the hardware link state (as reported by OS) is taken into consideration. When the link disappears
(e.g. an ethernet cable is unplugged), neighbors are immediately considered unreachable and all routes
received from them are withdrawn. It is possible that some hardware drivers or platforms do not
implement this feature. Default: yes.

6.14.3 Attributes

RIP defines two route attributes:

int rip.metric
RIP metric of the route (ranging from 0 to infinity). When routes from different RIP instances are
available and all of them have the same preference, BIRD prefers the route with lowest rip metric.
When a non-RIP route is exported to RIP, the default metric is 1.

int rip_tag
RIP route tag: a 16-bit number which can be used to carry additional information with the route (for
example, an originating AS number in case of external routes). When a non-RIP route is exported to
RIP, the default tag is 0.

6.14.4 Example

protocol rip {

ipvd {
import all;
export all;
};
interface "ethx" {
metric 2;
port 1520;
mode multicast;
update time 12;
timeout time 60;
authentication cryptographic;
password "secret" { algorithm hmac sha256; };
};

6.15 RPKI

6.15.1 Introduction

The Resource Public Key Infrastructure (RPKI) is mechanism for origin validation of BGP routes (RFC
6480). BIRD supports only so-called RPKI-based origin validation. There is implemented RPKI to Router
(RPKI-RTR) protocol (RFC 6810). It uses some of the RPKI data to allow a router to verify that the
autonomous system announcing an IP address prefix is in fact authorized to do so. This is not crypto
checked so can be violated. But it should prevent the vast majority of accidental hijackings on the Internet
today, e.g. the famous Pakistani accidental announcement of YouTube’s address space.

The RPKI-RTR protocol receives and maintains a set of ROAs from a cache server (also called validator).
You can validate routes (RFC 6483, RFC 6811) using function roa_check() in filter and set it as import
filter at the BGP protocol. BIRD offers crude automatic re-validating of affected routes after RPKI update,

http://www.rfc-editor.org/info/rfc6480
http://www.rfc-editor.org/info/rfc6480
http://www.rfc-editor.org/info/rfc6810
http://www.rfc-editor.org/info/rfc6483
http://www.rfc-editor.org/info/rfc6811

6.15. RPKI 88

see option rpki reload (p.18). Or you can use a BIRD client command reload in bgp_protocol_name for
manual call of revalidation of all routes.

The same protocol, since version 2, also receives and maintains a set of ASPAs. You can then validate AS
paths using function aspa_check() in (import) filters.

6.15.2 Supported transports

e Unprotected transport over TCP uses a port 323. The cache server and BIRD router should be on the
same trusted and controlled network for security reasons.

e SSHv2 encrypted transport connection uses the normal SSH port 22.

6.15.3 Configuration overview

We currently support just one cache server per protocol. However you can define more RPKI protocols
generally.

protocol rpki [<name>] {

road { table <tab>; };

roa6 { table <tab>; };

aspa { table <tab>; };

remote <ip> | "<domain>" [port <number>];

port <number>;

local address <ip>;

refresh [keep] <number>;

retry [keep] <number>;

expire [keep] <number>;

ignore max length <switch>;

min version <number>;

max version <number>;

transport tcp {
authentication none|md5;
password "<text>";

s

transport ssh {
bird private key "</path/to/id_rsa>";
remote public key "</path/to/known_host>";
user "<name>";

I

}

Alse note that you have to specify the ROA and ASPA channels. If you want to import only IPv4 prefixes
you have to specify only road channel. Similarly with IPv6 prefixes only. If you want to fetch both IPv4 and
even IPv6 ROAs you have to specify both channels.

RPKI protocol options

remote ip | "hostname" [port number]
Specifies a destination address of the cache server. Can be specified by an IP address or by full domain
name string. Only one cache can be specified per protocol. This option is required.

port number
Specifies the port number. The default port number is 323 for transport without any encryption and
22 for transport with SSH encryption.

local address ip
Define local address we should use as a source address for the RTR session.

6.15. RPKI 89

refresh [keep] number
Time period in seconds. Tells how long to wait before next attempting to poll the cache using a Serial
Query or a Reset Query packet. Must be lower than 86400 seconds (one day). Too low value can caused
a false positive detection of network connection problems. A keyword keep suppresses updating this
value by a cache server. Default: 3600 seconds

retry [keep] number
Time period in seconds between a failed Serial/Reset Query and a next attempt. Maximum allowed
value is 7200 seconds (two hours). Too low value can caused a false positive detection of network
connection problems. A keyword keep suppresses updating this value by a cache server. Default: 600
seconds

expire [keep] number
Time period in seconds. Received records are deleted if the client was unable to successfully refresh
data for this time period. Must be in range from 600 seconds (ten minutes) to 172800 seconds (two
days). A keyword keep suppresses updating this value by a cache server. Default: 7200 seconds

ignore max length switch
Ignore received max length in ROA records and use max value (32 or 128) instead. This may be useful
for implementing loose RPKI check for blackholes. Default: disabled.

min version number
Minimal allowed version of the RTR protocol. BIRD will refuse to downgrade a connection below this
version and drop the session instead. Default: 0

max version number
Maximal allowed version of the RTR protocol. BIRD will start with this version. Use this option if
sending version 2 to your cache causes problems. Default: 2

transport tcp { TCP transport options... }
Transport over TCP, it’s the default transport. Cannot be combined with a SSH transport. Default:
TCP, no authentication.

transport ssh { SSH transport options... }
It enables a SSHv2 transport encryption. Cannot be combined with a TCP transport. Default: off
TCP transport options

authentication none|md5
Select authentication method to be used. none means no authentication, md5 is TCP-MD5 authenti-
cation (RFC 2385). Default: no authentication.

password "text"
Use this password for TCP-MD5 authentication of the RPKI-To-Router session.
SSH transport options

bird private key " /path/to/id_rsa"
A path to the BIRD’s private SSH key for authentication. It can be a id_rsa file.

remote public key " /path/to/known_host"
A path to the cache’s public SSH key for verification identity of the cache server. It could be a path
to known_host file.

user "name"
A SSH user name for authentication. This option is required.

6.15.4 Examples

BGP origin validation

Policy: Don’t import ROA_INVALID routes.

http://www.rfc-editor.org/info/rfc2385

6.15. RPKI 90

roa4 table r4;
roa6 table r6;

protocol rpki {
debug all;

roa4 { table r4; };
roa6 { table r6; };

Please, do not use rpki-validator.realmv6.org in production
remote "rpki-validator.realmv6.org" port 8282;

retry keep 5;
refresh keep 30;
expire 600;

b

filter peer_in_v4 {
if (roa_check(r4, net, bgp_path.last) = ROA_INVALID) then

{
print "Ignore RPKI invalid ", net, " for ASN ", bgp_path.last;
reject;

X

accept;

}

protocol bgp {
debug all;
local as 65000;
neighbor 192.168.2.1 as 65001;
ipvd {
import filter peer_in_v4;
export none;

};

SSHv2 transport encryption

roa4 table r4;
roa6 table r6;

protocol rpki {
debug all;

road { table r4; };
roa6 { table r6; I};

remote 127.0.0.1 port 2345;

transport ssh {
bird private key "/home/birdgeek/.ssh/id_rsa";
remote public key "/home/birdgeek/.ssh/known_hosts";
user "birdgeek";

};

Default interval values

6.16. Static 91

6.16 Static

The Static protocol doesn’t communicate with other routers in the network, but instead it allows you to
define routes manually. This is often used for specifying how to forward packets to parts of the network
which don’t use dynamic routing at all and also for defining sink routes (i.e., those telling to return packets
as undeliverable if they are in your IP block, you don’t have any specific destination for them and you don’t
want to send them out through the default route to prevent routing loops).

There are three classes of definitions in Static protocol configuration — global options, static route definitions,
and per-route options. Usually, the definition of the protocol contains mainly a list of static routes. Static
routes have no specific attributes, but igp_metric (p.33) attribute is used to compare static routes with the
same preference.

The list of static routes may contain multiple routes for the same network (usually, but not necessary,
distinquished by preference or igp metric), but only routes of the same network type are allowed, as
the static protocol has just one channel. E.g., to have both IPv4 and IPv6 static routes, define two static
protocols, each with appropriate routes and channel.

The Static protocol can be configured as MPLS-aware (by defining both the primary channel and MPLS
channel). In that case the Static protocol assigns labels to IP routes and automatically announces corre-
sponding MPLS route for each labeled route.

Global options:

check link switch
If set, hardware link states of network interfaces are taken into consideration. When link disappears
(e.g. ethernet cable is unplugged), static routes directing to that interface are removed. It is possible
that some hardware drivers or platforms do not implement this feature. Default: off.

igp table name
Specifies a table that is used for route table lookups of recursive routes. Default: the same table as
the protocol is connected to.

Route definitions (each may also contain a block of per-route options):

6.16.1 Regular routes; MPLS switching rules

There exist several types of routes; keep in mind that prefiz syntax is dependent on network type (p. 27).

route prefiz [mpls number] via ip|”interface” [per-nexthop options] [via ...]
Regular routes may bear one or more next hops (p.8). Every next hop is preceded by via and
configured as shown.

When the Static protocol is MPLS-aware, the optional mpls statement after prefix specifies a static
label for the labeled route, instead of using dynamically allocated label.

route prefix [mpls number] recursive ip [mpls number [/number[/number(...11]]
Recursive nexthop resolves the given IP in the configured IGP table and uses that route’s next hop.
The MPLS stacks are concatenated; on top is the IGP’s nexthop stack and on bottom is this route’s
stack.

route prefiz [mpls number] blackhole|unreachable|prohibit
Special routes specifying to silently drop the packet, return it as unreachable or return it as adminis-
tratively prohibited. First two targets are also known as drop and reject.

When the particular destination is not available (the interface is down or the next hop of the route is not a
neighbor at the moment), Static just uninstalls the route from the table it is connected to and adds it again
as soon as the destination becomes adjacent again.

Per-nexthop options

There are several options that in a case of multipath route are per-nexthop (i.e., they can be used multiple
times for a route, one time for each nexthop). Syntactically, they are not separate options but just parts of

6.16. Static 92

route statement after each via statement, not separated by semicolons. E.g., statement route 10.0.0.0/8
via 192.0.2.1 bfd weight 1 via 192.0.2.2 weight 2; describes a route with two nexthops, the first
nexthop has two per-nexthop options (bfd and weight 1), the second nexthop has just weight 2.

bfd switch

The Static protocol could use BFD protocol for next hop liveness detection. If enabled, a BFD session
to the route next hop is created and the static route is BFD-controlled — the static route is announced
only if the next hop liveness is confirmed by BFD. If the BFD session fails, the static route (or just
the affected nexthop from multiple ones) is removed. Note that this is a bit different compared to
other protocols, which may use BFD as an advisory mechanism for fast failure detection but ignore it
if a BFD session is not even established. Note that BFD protocol also has to be configured, see BFD
(p. 38) section for details. Default value is no.

dev text
The outgoing interface associated with the nexthop. Useful for link-local nexthop addresses or when
multiple interfaces use the same network prefix. By default, the outgoing interface is resolved from the
nexthop address.

mpls number [/number [/number[...]1]1]
MPLS labels that should be pushed to packets forwarded by the route. The option could be used
for both IP routes (on MPLS ingress routers) and MPLS switching rules (on MPLS transit routers).
Default value is no labels.

onlink switch
Onlink flag means that the specified nexthop is accessible on the (specified) interface regardless of IP
prefixes of the interface. The interface must be attached to nexthop IP address using link-local-scope
format (e.g. 192.0.2.1%eth0). Default value is no.

weight switch
For multipath routes, this value specifies a relative weight of the nexthop. Allowed values are 1-256.
Default value is 1.

6.16.2 Route Origin Authorization

The ROA config is just route prefir max int as int with no nexthop.

6.16.3 Autonomous System Provider Authorization

The ASPA config is route aspa int providers int [, int ...] with no nexthop. The first ASN is client
and the following are a list of providers. For a transit, you can also write route aspa int transit to get
the no-provider ASPA.

6.16.4 Flowspec Network Type

The flow specification are rules for routers and firewalls for filtering purpose. It is described by RFC 8955
and RFC 8956. There are 3 types of arguments: inet/ or inet6 prefixes, numeric matching expressions and
bitmask matching expressions.

Numeric matching is a matching sequence of numbers and ranges separeted by a commas (,) (e.g. 10,20,30).
Ranges can be written using double dots .. notation (e.g. 80..90,120..124). An alternative notation are
sequence of one or more pairs of relational operators and values separated by logical operators && or ||.
Allowed relational operators are =, !'=, <, <=, >, >= true and false.

Bitmask matching is written using value/mask or !'value/mask pairs. It means that (data & mask) is or
is not equal to value. It is also possible to use multiple value/mask pairs connected by logical operators
&& or ||. Note that for negated matches, value must be either zero or equal to bitmask (e.g. '0x0/0xf or
10x£f/0xf, but not !'0x3/0xf).

http://www.rfc-editor.org/info/rfc8955
http://www.rfc-editor.org/info/rfc8956

6.16. Static 93

IPv4 Flowspec

dst inet4
Set a matching destination prefix (e.g. dst 192.168.0.0/16). Ounly this option is mandatory in IPv4
Flowspec.

src inety
Set a matching source prefix (e.g. src 10.0.0.0/8).

proto numbers-match
Set a matching IP protocol numbers (e.g. proto 6).

port numbers-match
Set a matching source or destination TCP/UDP port numbers (e.g. port 1..1023,1194,3306).

dport numbers-match
Set a matching destination port numbers (e.g. dport 49151).

sport numbers-match
Set a matching source port numbers (e.g. sport = 0).

icmp type numbers-match
Set a matching type field number of an ICMP packet (e.g. icmp type 3)

icmp code numbers-match
Set a matching code field number of an ICMP packet (e.g. icmp code 1)

tcp flags bitmask-match
Set a matching bitmask for TCP header flags (aka control bits) (e.g. tcp flags 0x03/0x0f;). The
maximum length of mask is 12 bits (0xfff).

length numbers-match
Set a matching packet length (e.g. length > 1500)

dscp numbers-match
Set a matching DiffServ Code Point number (e.g. dscp 8..15).

fragment fragmentation-type
Set a matching type of packet fragmentation. Allowed fragmentation types are dont_fragment,
is_fragment, first_fragment, last_fragment (e.g. fragment is fragment && !dont_fragment).

protocol static {
flow4d;

route flowd {
dst 10.0.0.0/8;
port > 24 && < 30 || 40..50,60..70,80 && >= 90;
tcp flags 0x03/0x0f;
length > 1024;
dscp = 63;
fragment dont_fragment, is_fragment || !first_fragment;

};

Differences for IPv6 Flowspec
Flowspec IPv6 are same as Flowspec IPv4 with a few exceptions.

e Prefixes inet6 can be specified not only with prefix length, but with prefix offset number too (e.g.
::1234:5678:9800:0000/101 offset 64). Offset means to don’t care of number first bits.

e [Pv6 Flowspec hasn’t mandatory any flowspec component.

6.16. Static 94

e In IPv6 packets, there is a matching the last next header value for a matching IP protocol number
(e.g. next header 6).

e It is not possible to set dont_fragment as a type of packet fragmentation.

dst inet6 [offset number]
Set a matching destination IPv6 prefix (e.g. dst ::1c77:3769:27ad:alla/128 offset 64).

src inet6 [offset number]
Set a matching source IPv6 prefix (e.g. src fe80::/64).

next header numbers-match
Set a matching IP protocol numbers (e.g. next header != 6).

label numbers-match
Set numbers for matching the 20-bit Flow Label field in IPv6 packets (e.g. label != 1234).

protocol static {
flows { table myflow6; };

route flow6 {
dst fec0:1122:3344:5566:7788:99aa:bbcc:ddee/128;
src 0000:0000:0000:0001:1234:5678:9800:0000/101 offset 63;
next header = 23;

sport > 24 && < 30 || = 40 || 50,60,70..80;
dport = 50;

tcp flags 0x03/0x0f && !0/0xff || 0x33/0x33;
fragment !is_fragment || !first_fragment;

label > 1111 && '= 1234;

6.16.5 Per-route options

filter expression
This is a special option that allows filter expressions to be configured on per-route basis. Can be used
multiple times. These expressions are evaluated when the route is originated, similarly to the import
filter of the static protocol. This is especially useful for configuring route attributes, e.g., ospf metric1
= 100; for a route that will be exported to the OSPF protocol.

6.16.6 Example static configs

protocol static {

ipvd { table testable; I}; # Connect to a non-default routing table
check link; # Advertise routes only if link is up
route 0.0.0.0/0 via 198.51.100.130; # Default route

route 10.0.0.0/8 # Multipath route

via 198.51.100.10 weight 2
via 198.51.100.20 bfd # BFD-controlled next hop
via 192.0.2.1;
route 203.0.113.0/24 blackhole; # Sink route
route 10.2.0.0/24 via "arcO"; # Direct route
route 10.2.2.0/24 via 192.0.2.1 dev "ethO" onlink; # Route with both nexthop and if
route 192.168.10.0/24 via 198.51.100.100 {
ospf_metricl = 20; # Set extended attribute
3
route 192.168.11.0/24 via 198.51.100.100 {
ospf_metric2 = 100; # Set extended attribute

6.16. Static 95
ospf_tag = 2; # Set extended attribute
I
route 192.168.12.0/24 via 198.51.100.100 {
bgp_community.add((65535, 65281)); # Set extended BGP attribute
bgp_large_community.add((64512, 1, 1)); # Set extended BGP attribute
3
}
protocol static {
ipv6; # Channel is mandatory
route 2001:db8:10::/48 via 2001:db8:1::1; # Route with global nexthop
route 2001:db8:20::/48 via fe80::10%ethO; # Route with link-local nexthop
route 2001:db8:30::/48 via fe80::20%’eth1.60’; # Iface with non-alphanumeric chara
route 2001:db8:40::/48 via fe80::30 dev "ethl"; # Another link-local nexthop
route 2001:db8:50::/48 via "eth2"; # Direct route to eth2
route 2001:db8::/32 unreachable; # Unreachable route
route ::/0 via 2001:db8:1::1 bfd; # BFD-controlled default route

Chapter 7: Conclusions

7.1 Future work

Although BIRD supports all the commonly used routing protocols, there are still some features which would
surely deserve to be implemented in future versions of BIRD:

e Opaque LSA’s
e Route aggregation and flap dampening
e Multicast routing protocols

e Ports to other systems

7.2 Getting more help

If you use BIRD, you’re welcome to join the bird-users mailing list (bird-users@network.cz) where you can
share your experiences with the other users and consult your problems with the authors. To subscribe to the
list, visit http://bird.network.cz/?m_list. The home page of BIRD can be found at http://bird.network.cz/.
BIRD is a relatively young system and it probably contains some bugs. You can report any problems
to the bird-users list and the authors will be glad to solve them, but before you do so, please make
sure you have read the available documentation and that you are running the latest version (available
at bird.network.cz: /pub/bird). (Of course, a patch which fixes the bug is always welcome as an attachment.)
If you want to understand what is going inside, Internet standards are a good and interesting reading. You
can get them from ftp.rfc-editor.org (or a nicely sorted version from atrey.karlin.mff.cuni.cz: /pub/rfc).

Good luck!

96

mailto:bird-users@network.cz
http://bird.network.cz/?m_list
http://bird.network.cz/
ftp://bird.network.cz/pub/bird
ftp://ftp.rfc-editor.org/
ftp://atrey.karlin.mff.cuni.cz/pub/rfc

	Introduction
	What is BIRD
	Installing BIRD
	Running BIRD
	Privileges

	Architecture
	Routing tables
	Routes and network types
	Protocols and channels
	Graceful restart
	MPLS

	Configuration
	Introduction
	Global options
	Routing table options
	Protocol options
	Channel options
	MPLS options

	Remote control
	Overview
	Configuration
	Usage

	Filters
	Introduction
	Data types
	Operators
	Control structures
	Route attributes
	Other statements

	Protocols
	Aggregator
	Babel
	BFD
	BGP
	BMP
	Device
	Direct
	Kernel
	L3VPN
	MRT
	OSPF
	Pipe
	RAdv
	RIP
	RPKI
	Static

	Conclusions
	Future work
	Getting more help

