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Abstract

This document contains a number of unrelated hints that may be useful to 
understanding the GNU APL source code. Its primary purpose is to support the 
fading memory of the author, but it may be interesting for others as well. In 
addition to the hints there are also a number of rules. These rules should be 
observed by those who contribute C/C++ source code to the GNU APL project (as 
opposed to those that contribute APL code).

This document is NOT aimed at the normal GNU APL user, i.e. at the APL 
programmer. Those users are referred to the various README files in the top-
level GNU APL directory.

The GNU APL Build System

All commands described below shall executed in the top-level GNU APL directory. 
The top-level GNU APL directory is the directory that contains - after unpacking a 
GNU APL tar file like apl-1.9.tar.gz or after fetching the GNU APL sourced with 
SVN or with git - the file named configure.ac.

GNU APL uses automake and autoconf to build the interpreter. The build system 
performs a number of major steps in typically different places and by different 
persons (C/C++ designer/maintainer vs. user):

Step 1: Generate ./configure and a Makefile.in for every Makefile.am

Every directory of the GNU APL source tree contains a file named Makefile.am. 
The command autoreconf, performed in to top-level directory of the GNU APL 
source tree:

$ autoreconf

Command autoreconf generates a file named Makefile.in for every Makefile.am.
In addition it creates a script named configure. This is normally done by the 
maintainer and the Makefile.in files produced are shipped with GNU APL (tar file 
or svn/git repository).

The absolutely cool thing about autoconf (as opposed to e.g. Cmake or GUI based
IDEs) is that autoconf and automake themselves need not be installed by the end



users. The configure script produced by autoreconf is self-contained and can be 
executed by the end user to configure different aspects of the GNU APL 
interpreter. To accommodate this, the different Makefile.in files are shipped with 
GNU APL even though they are somewhat redundant (and, compared to the 
Makefile.am, pretty large).

In essence Makefile.am files are easy to read and maintain by humans, while 
Makefile.in*s are easy to decode by machines, in particular by the 
*configure script that is produced along with them. In GNU APL the autoreconf 
command produces a more than 1,000 line top-level Makefile.in from a 150 line 
Makefile.am and a 25,000 line ./configure script from its 1,000 line configure.ac

If a maintainer adds a new directory to the source tree, then she needs to 
add the final Makefile in the top-level file configure.ac (in m4 macro 
AC_CONFIG_FILES), otherwise the *Makefile.am will be ignored.

The most important take-away here is that the user or maintainer should never 
edit Makefiles or Makefile.ins because doing so is cumbersome, error-prone, and
useless since autoreconf will overwrite the changes made.

Step 2: Generate a Makefile for every Makefile.in

The next step is to run the configure script produced in the previous step. It is 
performed by the end user (or by the system administrator where appropriate) in 
the top-level directory of the GNU APL source tree:

$ ./configure

The typical end user will run ./configure without any arguments, while experts 
may run it with additional arguments (see README-2-configure for details). The 
primary task of ./configure is to convert every Makefile.in into a corresponding 
Makefile. In doing so, the script tries to determine which and where the libraries 
and header files used by GNU APL are installed on the user’s system. The system 
functions and variables of the final GNU APL interpreter behaves differently 
depending on the libraries and header files present. For example, FFT⎕  (Fast 
Fourier Transforms) depends on library libfftw3 and if that library (or its header 
files) are missing then FFT will raise a syntax error instead of computing the ⎕
FFT.

 
On typical Debian systems, libraries and header files are often contained in 
different packages that should all be installed.

For example, in the FFT case there are 3 packages:⎕

• libfftw3-bin # the library itself 

• libfftw3-dev # header files for the library, and 

• libfftw3-doc # documentation related to the library 

For FFT to work the first two are needed and the third does not hurt. Most of the ⎕
other libraries follow the same naming scheme for Debian packages.

The configure script produces a lot of output that is useful if a library or its header 



file(s) are missing. The final result of the decisions made by configure is collected 
in file config.h so that the compiler can adapt itself to the presence or absence of 
libraries and their header files.

If a library is not detected even though it is installed then either:

• the test performed by ./configure is faulty and then either configure.ac or 
else a more complex test file in sub-directory m4 need to be fixed, or 

• the library only lives in a non-standard location (e.g. below the user’s home 
and then ./configure hopefully provides ./configure option to specify that 
location. 

Step 3: Compile and Link the GNU APL Interpreter

The final step is to compile the interpreter:

$ make

The code base is quite large, therefore one may prefer to compile several sources 
in parallel. For example, on an 8 core CPU:

make -j 7

leaving one core for other purposes. If the compilation is successful then the 
interpreter is named apl in directory src, i.e. src/apl. During development, the 
interpreter can be started from there without installing it:

$ src/apl

After the development is done, the interpreter is installed properly.

The steps described only require write permission in and below the top-
level directory, for instance below the user’s $HOME directory. The next 
step requires write permissions in directories that are normally not 
writable by ordinary users.

Step 4: Install the GNU APL Interpreter

Installation of the interpreter must be performed by root:

$ sudo make install

A common mistake (by the author) is to try to install the interpreter after 
the previous step has failed. The build system will then try to recompile 
missing files, but the resulting files will now be owned by root and will no 
longer be writable by the user. To fix this:

$ sudo chown -R username.username .   # assume user is 'username'

The make install installs a few files (all owned by root, but with read permissions 



for everybody):

• The APL interpreter itself in /usr/local/bin/apl, 

• interpreter-related header files /usr/local/include/apl, 

• interpreter-related libraries /usr/local/lib/apl, 

• an info file in /usr/local/share/info/apl.info, 

• a man page in /usr/local/share/man/man1/apl.1 

The default installation prefix /usr/local can be changed with ./configure options.

Summary

The following picture illustrates the different steps to build the GNU APL 
interpreter and the files involved:

     ┌─────────────┐
    ┌┴────────────┐│     ┌──────────────┐
   ┌┴────────────┐├┘     │ configure.ac │     autoreconf (GNU APL designer)
   │ Makefile.am ├┘      └──────────────┘
   └─────────────┘              ↓
          ↓                     ↓              ──────────────────────────
     ┌─────────────┐            ↓
    ┌┴────────────┐│      ┌───────────┐
   ┌┴────────────┐├┘      │ configure │
   │ Makefile.in ├┘       └───────────┘
   └─────────────┘
          ↓                                    ./configure (User)
      ┌──────────┐         ┌──────────┐
     ┌┴─────────┐│        ┌┴─────────┐│
    ┌┴─────────┐├┘       ┌┴─────────┐├┘
    │ Makefile ├┘        │ src/*.cc ├┘
    └──────────┘         └──────────┘
                               ↓               ──────────────────────────
                          ┌─────────┐
                          │ src/apl │          make (User)
                          └─────────┘
                               ↓               ──────────────────────────
                     ╔════════════════════╗
                     ║ /usr/local/bin/apl ║    make install (root)
                     ╚════════════════════╝
                               ↓               ──────────────────────────

Special make targets

The typical user shall simply run make in the top-level directory.

For experts there are some more make targets (defined in Makefile.incl), again 
with make run in the top-level directory, unless noted otherwise.

make help

Shows all top-level make targets:

In addition to the standard make targets (all, install, clean, ...),
the following make targets may be supported (at this level):



    make help        - print this text
    make DIST        - dist + a Makefile that calls ./configure
    make DOXY        - create Doxygen documentation
    make RPM         - create (source and binary) RPMs
    make DEB         - create Debian packages

    make SVNUP       - update from SVN and ./configure

NOTE: The RPM and DEB targets may fail because they require additional tools
that may not be present on your machine. Don't worry if that happens, unless
you really need the RPM and/or Debian packages.

The following targets are shortcuts for lazy developers (like the GNU APL
author) and are not very useful for normal users:

    make develop     - enable full dependency tracking
    make gprof       - make develop + enable gprof profiling
    make python      - make develop + build python module
    make parallel    - enable multi-core APL (buggy and experimental!)
    make parallel1   - make parallel for benchmarking
    make VPATH_clean - prepare for VPATH build

make test

This make target is only available in sub-directory src. It builds the interpreter and
then runs all testcases (= files with extension .tc) that are present in directory 
src/testcases. The total result of all testcases is stored in 
src/testcases/summary.log, and every testcase x produces a log file 
src/testcases/x.tc.log with details of the test execution.

make apl.lines

This make target is only available in sub-directory src. It produces a file named 
src/apl.lines and must be run right after building the interpreter. When the 
interpreter produces a stack trace (i.e. it lists the C++ call stack) then:

• If the apl.lines file is absent or older than the interpreter, the stack trace 
will show function names and code offsets in hex. For short functions that is 
sort of OK, but for longer ones the hex numbers can make it difficult to find 
the exact location of the fault that has triggered the stack trace. 

• If the apl.lines file is up-to-date (i.e. make apl.lines was run after the 
interpreter binary was produced), then the stack traces will show source file 
line numbers instead of hex numbers. Producing apl.lines takes quite a 
while, therefore it is not built automatically. 

make gen / gen2

These make targets are only available in sub-directory tools. Each produces the 
file src/Prefix.def. After every new token it reads, the interpreter has to decide if 
(and which) a new reducible phrase is present. This check is executed in the inner 
loop of the interpreter, therefore the efficiency of this check is crucial for the 
performance of the interpreter.

• GNU APL uses tools/phrase_gen to produce src/Prefix.def. 



• src/Prefix.def is therefore automatically generated and #included in 
Prefix.hh and in Prefix.cc (= the interpreter source code that performs the 
phrase matching). 

• The phrase_gen tool can produce two types of code: 

• either a collision-free hash table (the default), 

• or else a search tree. 

• After a make gen the next compiler build will use the hash table, while after 
*make gen2 it will use a search tree. Performance tests of both alternatives 
have shown only a marginal performance difference between both methods, 
but the technique as such might be of interest. 

Source Code Documentation

GNU APL is fully documented with Doxygen. The term fully means that every 
class member has a (typically rather brief) Doxygen description and not that the 
description is exhaustive. The purpose is primarily to be a memory aid for 
browsing the source code.

The entire Doxygen documentation of GNU APL can, provided that Doxygen itself
is installed, be produced like this:

make DOXY

The result is around 6,000 files in directory html. After generating them, the files 
can be browsed with e.g.

firefox html/index.html

or with some other browser. The Doxygen documentation is a good starting point 
for those that want to get a quick overview of the GNU APL source code.

Source Code File Types

The Makefile* files belong to the build system and were explained above. What 
remains are:

• C source files (file extension .c) are almost never used, 

• C header files (file extension .h) are almost never used, a noteworthy 
exception is config.h which is produced by the ./configure script. 

• C++ source files for inline functions (file extension .icc), 

• C++ source files (file extension .cc), 

• C++ header files (file extension .hh), and 

• pure macro files (file extension .def). 

By and large, the rules for C and C++ source and header files are:



• Small and many rather than large and few (aka. modularity). Early versions 
of GNU APL did not follow this rule and some left-overs still do not (but those
will be further modularized in the future. 

• One class per file; the file name reflects the class name. Exceptions are 

• classes that are closely related (e.g. classes Token and Token_string) 

• The .cc and .hh file names are the same, except for the file name extension 
and classes with a small (say, < 100 lines) source footprint (e.g. those in 
PrimitiveFunction.hh and PrimitiveFunction.cc). 

• C++ declarations can be made in the .cc file if their scope is local to the .cc 
file (like static declarations in C), otherwise they go into the 
corresponding .hh file. 

.def Files

C/C++ source files primarily contain C/C++ code and occasionally declarations. 
C/C++ header files primarily contain C/C++ declarations and often (inline) C/C++
code. In contrast, .def files contain neither C/C++ code nor C/C++ declarations, 
They only contain macro calls whereby the definition of the macro is defined 
outside the .def file. Currently there are about 20 .def files in the GNU APL source 
code so that they deserve an explanation.

Why .def Files?

Suppose we have a number of integer error codes:

   enum ErrorCode
      {
        NO_ERROR     = 0,
        SYNTAX_ERROR = 1,
        RANK_ERROR   = 2,
        LENGTH_ERROR = 4,
      };

Sooner or later we need a string that describes the error in a human readable 
format. This requires a mapping between integer error codes and string literals. 
There are 2 standard methods in C/C++ to define such a mapping.

Method 1: struct definition

struct _error_map
{
  ErrorCode ecode;
  const char * ename;
} error_map =
{
  { NO_ERROR,      "OK"           },
  { SYNTAX_ERROR,  "Syntax Error" },
  { RANK_ERROR,    "Rank Error"   },
  { LENGTH_ERROR,  "Length Error" },
} error_map;

const char *
get_error_string(ErrorCode ec)



{
   return error_map[ec];
}

Method 2: switch statement

const char *
get_error_string(ErrorCode ec)
{
   switch(ec)
      {
        case NO_ERROR:      return "OK";
        case SYNTAX_ERROR:  return "Syntax Error";
        case RANK_ERROR:    return "Rank Error";
        case LENGTH_ERROR:  return "Length Error";
      }
   return "Unknown error";
}

Now suppose we add another ErrorCode DOMAIN_ERROR to the enum 
ErrorCode. Suppose further that we add the new error code to the enum but not 
to the get_error_string() function. This is a fairly common mistake, in particular 
because ErrorCode is usually declared in a .hh file and get_error_string() is 
defined in the corresponding .cc file. In that case Method 1 will most likely 
produce a segmentation fault at runtime, which is about the worst case that may 
happen. <Method 2 is a little better because a smart compiler like g++ will issue a
warning in this case. Both methods are, however, quite inconvenient for the C/C+
+ programmer, in particular if many such mappings are needed in a larger 
program.

In GNU APL this problem is solved in the following way:

• #define a macro that expresses the relationship (between integer error 
codes and C/C++ literals for the corresponding error text in our example), 
and 

• call that macro, typically in several different files with the macro defined 
differently. Calling the macro is performed by #including the .def file. In our 
example: 

In e.g. errors.def:

   error_def(
   error_def(NO_ERROR     , 0, OK           )
   error_def(SYNTAX_ERROR , 1, Syntax Error )
   error_def(RANK_ERROR:    2, Rank Error   )
   error_def(LENGTH_ERROR:  3, Length Error )

#undef error_def   /* to detect missing definitions of the error_def() macro */

In, say, errors.hh:

   enum ErrorCode
      {
#define error_def(enum_name, enum_value, _error_string) \
   enum_name = enum_value,



#include "errors.def"
      };

And finally in errors.cc:

const char *
get_error_string(ErrorCode ec)
{
   switch(ec)
      {
#define error_def(enum_name, _enum_value, error_string) \
   case enum_name: return #error_string;
#include "errors.def"
      }
   return "Unknown error";
}

Note the following:

• the macro invocations of error_def() (in the .def file) have more arguments 
than are used in their macro definitions (in the .hh or .cc files). GNU APL 
has a naming convention that unused macro arguments of macros (which are
typical for the .cc and .hh files) start with underscore (_). For this reason the
argument lists of the #defines above differ slightly. 

• error_string is not quoted in errors.def even though get_error_string() 
returns a const char *. The quoting is performed by # in #error_string (a 
preprocessor feature). 

• the example above uses a simple 1:1 relation between two types. Some .def 
files use more than two sides, e.g. numeric IDs, string names, and help texts. 

Rules for .def Files

• The .def file should #undef all macros that it uses. This is a safeguard 
against forgetting to #define a macro before #including the .def file (this 
may or may not be detectable by the compiler). 

• A .def file should normally not use more than one macro. An exception 
occurs when macros are very similar (e.g. SystemVariable.def with macro 

• ro_sv_def* (for read-only system variables), rw_sv_def (for read/write system 
variables), and sf_def for system functions). 

• item separators such as , in enums or ; in case statements are contained in 
the macro definitions (i.e. in the .hh or .cc file) and not in the macro call (i.e.
not in the .def file). This is because the separators may differ for different 
macros. 

The most important take-aways here are:

• .def files contain only macro invocations, 

• .def files are #included in several files and almost certainly the macro 
definitions (before #including a .def file) differ between the files, 

• the macros are #defined outside the .def file but #undef’ed inside the .def 



file. (This is normally a bad programming practice, but on purpose here). 

Coding Style

GNU APL is a GNU project. For the most part it therefore follows the GNU coding 
standard, see: https://www.gnu.org/prep/standards/standards.html With some 
minor deviations which attempt to further improve the readability of the C/C++ 
code.

General

• keep lines short (≤ 78 characters) where possible 

• NEVER use tabs (ASCII 0x09) in the source code 

Indentation and Blanks

Function bodies (.cc files)

• Variable declarations at top-level scope are not indented: 

• C++ code at the top-level scope is indented with 3 blanks: 

void
foo()
{
int x = 0;            // declaration: not indented!

   printf("%d:, x);   // code: indented by 3 spaces

int y = 1;            // another declaration.
   ...
}

• Variable declarations below top-level scope are indented with 2 (from the 
{ starting the scope 

• C++ code below the top-level scope are also indented with 2 blanks: 

void
foo()
{
int x = 0;         // declaration: not indented!
int y = 1;         // another declaration.

   if (x)
      {                               // start of sub-scope
        printf("positive x=%d", x);   // code: indented by 2 spaces
      }
   else
      {                               // start of another sub-scope
        printf("zero x");             // code: indented by 2 spaces
      }
}

https://www.gnu.org/prep/standards/standards.html


Conditionals

• conditionals are not functions! put 1 blank between the keyword and the 
condition 

• the body of the conditional is indented according to the opening ( of the 
condition (for short ones like if, else, or for), but no more than 2 blanks: 

void
foo()
{
int x = 0;

   // DO NOT:
   if(i == 0)

   // DO:
   if (i == 0)
      {
        ...
      }

   for (int i = 0; i < N; ++i)
       {
         ...
       }

   while (i == 0)
      {
        ...
      }
}

• you MAY put single statements or very short bodies onto the condition line, 

• but NOT mix single- and multi-line styles for if and else clauses, and 

• place the { and } of multi-line bodies on the same column, that is: 

• you MUST NEVER NEVER NEVER use K&R style: 

   // DO:

   if (x >= 0)   return "positive";
   else          return "negative";

   // DO NOT:

   if (x >= 0)   { return "positive"; }   // redundant { }
   else          { return "negative"; }   // redundant { }

   if (x >= 0)   return "positive";   // single-line style
   else                               // multi-line style
      {
        error = true;
        return "negative";
      }

   // HEAVEN FORBID (aka. K&R style)
   if (x >= 0) {
      return "positive";
   } else {
      return "negative";
   }



Function arguments

• one blank after every comma and between tokens: 

   // DO:

int
main(int argc, char * argv[])
{
   ...
}

   // DO NOT ANY OF THE FOLLOWING...

int
main (int argc, char * argv[])   // extra space before arguments
{
   ...
}

int
main( int argc, char * argv[] )   // extra spaces around arguments
{
   ...
}

int
main(int argc, char *argv[])   // no space after *
{
   ...
}

int
main(int argc, char* argv[])   // no space before *
{
   ...
}

Naming Conventions

C++ Class Names

Class names should be in CamelCase. That is:

• No _ between multiple words like in CamelCase, 

• First letter of each word shall be uppercase, the rest lowercase, 

• Abbreviations shall be all uppercase (in that case _ is allowed if it improves 
readability or groups classes). E.g. Quad_XML. 

C++ File Names

• class name and file names shall be the same (except for the .cc and .hh 
extensions). 

• file names: always use .cc (not .cxx or .cpp) and .hh (not .hxx or hpp). 

• Pure C (as opposed to C++) files should use .c and .h as usual. 



Some Coding Conventions

• Use (const) char * for ASCII characters (i.e. 0x00…0x7F) and (const) UTF 
* for UTF8 encoded strings. Keep in mind that C++ literals with APL 
characters (e.g. "A∆B") are automatically UTF8 encoded by the compiler 
even though their type is const char *. 

• Use basic_string<typename> for simple C types (char, int, char *, …) and 
vector<typename> for structs and classes, in particular for those with 
constructors. 

• Use const where possible. 

These conventions have developed over time. Some old code does not follow them, 
but new or updated code should.

Class declarations (.hh files)

To the extent possible:

• declare public members (= the external interface) before protected members
(= the class implementation), 

• declare members before static members, 

• declare member functions before data members, 

• keep the following declaration order: 

• constructors, 

• destructor, 

• inline functions, 

• non-inline functions 

• always use protected: rather than private: for the members of a class. GNU
APL uses the convention that private: members are used to prevent the 
accidental function calls that are sometimes generated by the C++ compiler 
(implicit conversion). In GNU APL, such members are declared, but not 
defined (so that the linker will complain if the compiler should generate 
them). 

Indentation:

• indent all members with 2 spaces, 

• indent inline function bodies by 3 more spaces 

• do this recursively (nested classes) 

And finally: have a look at the existing .cc and .hh files. Even though this will 
cause some extra work on your part, it simplifies the reading of your code for many
others. A project with different styles in different files looks rather unprofessional, 
so please respect the style rules above even if you do not like them.



Debugging

GNU APL has a number of built-in means to locate faults. In a code base of around 
120,000 LOC, locating the fault in the source file takes most of the time required 
to fix it. Many of the GNU APL debugging facilities have performance impacts; 
they need to be enabled. The make target develop, i.e.

make develop

will enable a useful set of debugging facilities. make develop re-runs ./configure,
therefore a normal build must have been performed beforehand (otherwise the top-
level Makefile would be missing).

Assertions

GNU APL has more 600 Assertions spread throughout the source code. The 
assertions check internal assumptions that the designer has made. If such an 
assumption turns out to be false then a stack dump is produced which tells which 
assumption (and where) was wrong.

Even though every single assertion has a negligible performance impact, the 
accumulation of all assertions might become noticeable. It is therefore possible to 
enable or disable some or all of them. This is done via the ./configure argument 
ASSERT_LEVEL (see also README-2-configure):

.configure ASSERT_LEVEL_WANTED=0    (the default, best performance)

.configure ASSERT_LEVEL_WANTED=1    disable trivial assertions, enable others

.configure ASSERT_LEVEL_WANTED=2    enable all assertions (worst performance)

The make develop target sets, among other things, 
ASSERT_LEVEL_WANTED=2.

Logging Facilities

Failed assertions primarily reveal major programming mistakes, such as changing 
the code in one place and not considering the impact in other places. In many 
cases the source code is faulty even though no assertion fails. To isolate a fault one
can enable one or more of almost 50 logging facilities from the APL command line. 
Each logging facility addresses a functional area of interest in the source code. 
When the code comes across such an area then a printout is produced which 
provides additional information for the troubleshooter. As of this writing, the 
following logging facilities exist:

     ]log
     1: (OFF) AV details
     2: (OFF) new and delete calls
     3: (OFF) input from user or testcase file
     4: (OFF) parser: parsing
     5: (OFF)  ...    function find_closing()
     6: (OFF)  ...    tokenization
     7: (OFF)  ...    function collect_constants()



     8: (OFF)  ...    create value()
     9: (OFF) defined function: fix()
    10: (OFF)  ...              set_line()
    11: (OFF)  ...              load()
    12: (OFF)  ...              execute()
    13: (OFF)  ...              enter/leave
    14: (OFF) State indicator: enter/leave
    15: (OFF)   ...            push/pop
    16: (OFF) Symbol: lookup
    17: (OFF)   ...   push/pop and )ERASE
    18: (OFF)   ...   resolve
    19: (OFF) Value:  glue()
    20: (OFF)   ...  erase_stale()
    21: (OFF) APL primitive function format
    22: (OFF) character conversions
    23: (OFF) APL system function Quad-FX
    24: (OFF) commands )LOAD, )SAVE, )IN, and )OUT
    25: (OFF) more verbose errors
    26: (OFF) details of error throwing
    27: (OFF) nabla editor
    28: (OFF) execute(): state changes
    29: (OFF) PrintBuffer: align() function
    30: (OFF) Output: cork() functions
    31: (OFF) Details of test execution
    32: (OFF) Prefix parser
    33: (OFF)  ...   location information
    34: (OFF) FunOper1 and FunOper2 functions
    35: (OFF) Shared Variable operations
    36: (OFF) command line arguments (argc/argv)
    37: (OFF) interpreter start-up messages
    38: (OFF) optimization messages
    39: (OFF) )LOAD and )SAVE details
    40: (OFF) Svar_DB signals
    41: (OFF) Parallel (multi-core) execution
    42: (OFF) EOC handler functionality
    43: (OFF) DLX details⎕
    44: (OFF) command ]DOXY
    45: (OFF) details of Value allocation
    46: (OFF) TF details⎕
    47: (OFF) PLOT details⎕

Like assertions, debugging facilities may have a performance impact. There are 
almost 400 places in the source code where a decision is made about if and what 
debug output shall be produced. For this reason, the logging facilities can either 
be enabled/disabled at runtime from the APL command line (called dynamic 
logging) or else at compile time (called static logging). dynamic logging is the 
method of choice for trouble shooting and is therefore chosen by make develop. 
In contrast static logging is the default and the logging facilities that shall be 
enabled can be set in file src/Logging.def (first argument of macro log_def()) 
before compiling the interpreter.

The logging Facility 37, interpreter start-up messages is somewhat special. 
Logging messages produced in the start-up of the interpreter occur before the user
has a chance to enter a ]LOG 37 command that enables them. For that reason, the
logging of start-up messages can be enabled from the command line (option -l 37).
None of the other logging facility can be enabled from the command line. In the 
supposedly rare cases where other facilities are needed before the interpreter has 
fully initialized itself, static logging can be used instead.



The )CHECK Command

GNU APL has adopted the )CHECK command from IBM APL2. The check command
performs an internal check of all data structures inside the interpreter. The 
primary purpose is to find memory leaks:

      )CHECK
OK      - no stale functions
OK      - no stale values
OK      - no stale indices
OK      - no duplicate parents

A value or function is stale if the current workspace cannot reach it anymore. The 
interpreter does a sort of double-entry accounting of APL values and defined 
functions, and the )CHECK triggers a consistency check of that accounting. The 
runtime overhead is low therefore the double-entry accounting cannot be disabled.

Value Tracing

While every logging facility focuses on a particular functional area of interest, 
value tracing focuses on the life-cycle of individual APL values. If )CHECK finds a 
stale value (stale functions are rather rare) then the next question is where the 
value was lost. An APL value sees a lot of places in the source code and the value 
tracing keeps track of the major steps in the lifetime of a value (creation, copying, 
destruction, etc). Value tracing is disabled by default (Performance!) but enabled 
by make develop.

Debug macros

If all debug means above fail, then the last resort is to either start a debugger (like
gdb) or to enter checkpoints in the source code and print the information needed 
to isolate the fault. For this purpose (the author is using debuggers only for 
analyzing core dump files) there are some macros that simplify such printouts.

The LOC macro

The macro LOC expands to the current source file name and line number. Many 
C++ functions use it for non-debug purposes to see from where they were called. 
The expanded LOC macro is a string literal, therefore the overhead is minimal:

#define STR(x) #x
#define Loc(f, l) f ":" STR(l)
#define LOC Loc(__FILE__, __LINE__)

The Q() macro

The macro Q(x) prints the value of x, source file name and line number at which 
the value of x was printed:

/// print x and its source code location
#define Q(x) get_CERR() << std::left << setw(20) << #x ":" \



                        << " '" << x << "' at " LOC << endl;

The other debug means are somewhat coarse-grained. Dividing around 120,000 
LOC (lines of source code) by 400 places where logging facilities may provide 
some output yields an average of 300 lines of code between logging outputs. The 
typical troubleshooting process is this:

1. find an easy way to reproduce the fault (testcase file, APL script, etc.), then 

2. use logging facilities and/or value tracing to narrow the possible locations of 
the fault (to typically one source code file), and finally 

3. insert Q() macros if needed to further isolate the fault. 

The build system checks that all Q() macros were removed before checking the 
code into the Savannah SVN repository. This is because forgetting that used to be 
a frequent mistake.

The Q1() macro

The Q1() macro does the same as Q() but shall remain in the code. It is (rarely) 
used in places of which the designer believes that they cannot be reached but has 
no proof that this is the case. Similar to assertions, but only printing values of 
interest without terminating with a stack dump.

Top-Down Description of the GNU APL Source Code

The APL interpreter is, like almost any other interpreter, a program that reads one
line of input after another. For every line read (the input) it produces zero or more
lines of output. In doing so, the interpreter may or may not change its internal 
state.

In the context of APL the internal state of the interpreter is called (the current) 
workspace; it can be )SAVEd into a file and later )LOADed or )COPYed into 
another interpreter instance.

The top-level loop of the interpreter described above is commonly referred to as 
REPL, an abbreviation for Read-Evaluate-Print-Loop:

   ┌──────┐
   │ INIT │
   └──────┘
     ↓
     ○← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
     ↓                                             ↑
   ┌──────┐     ┌──────────┐     ┌───────┐     ┌──────┐
   │ Read │→ → →│ Evaluate │→ → →│ Print │→ → →│ Loop │
   └──────┘     └──────────┘     └───────┘     └──────┘
                                                  ↓
                                                 )OFF
                                                  ↓
                                               ┌──────┐
                                               │ EXIT │
                                               └──────┘

The REPL of GNU APL is located at the end of function main() in source file 



main.cc:

   for (const bool exit_on_error = IO_Files::exit_on_error();;)
       {
         const Token tok = Workspace::immediate_execution(exit_on_error);
         if (tok.get_tag() == TOK_OFF)   Command::cmd_OFF(0);
       }

The Read, Evaluate, and Print parts of the REPL are performed in function 
immediate_execution() which returns TOK_OFF if the APL command )OFF was 
processed and something else otherwise.

The Workspace::immediate_execution() Function

Function Workspace::immediate_execution() processes one line of input, in 
source file Workspace.cc. It simply calls Command::process_line(). More 
importantly, it catches C++ errors that may be thrown and processes the errors:

Token
Workspace::immediate_execution(bool exit_on_error)
{
   for (;;)
       {
         try
           {
              Command::process_line();
           }
         catch (Error & err)
         ...

Some lines, notably the ∇-editor and, in certain cases, the )COPY and
)LOAD commands have their own sub-REPL. They loop themselves until a 
particular condition (the closing ∇ for the ∇-editor or end-of-file for the
)COPY and )LOAD commands) has occurred. Therefore:

• process_line() is atomic (in the sense that it processes only one input line), 
but 

• the functions called by process_line() will be called repeatedly until an error 
is returned. The close of the ∇-editor is also considered an error condition 
here). 

This fact is sometimes missed by programmers using libapl. libapl is a library that
contains most of the normal interpreter code, but not the REPL loops of the 
interpreter. The purpose of libapl is to provide a C-API to other front-ends like 
Erlang, Python, or C++ programs. For example, if a front end opens a defined 
function with a line that starts with ∇, then the front-end is responsible for 
providing the subsequent (defined function-) lines including the final ∇ that closes 
the function definition. The same holds for )LOAD and )COPY of .apl scripts, but 
not for )LOAD and )COPY of workspace snapshots (.xml files). To summarize:

Operation Atomicity
∇-editor non-atomic



Operation Atomicity
)SAVE atomic

)LOAD .apl non-atomic

)LOAD .xm
l

atomic

)COPY .apl non-atomic

)COPY .xml atomic

multi-line 
string

non-atomic

The Command::process_line() Functions

Function Command::process_line() reads the next input line 
(InputMux::get_line()), removes leading white-space (blanks) and then decides 
how to proceed. The first non-blank character determines the subsequent 
processing as follows:

1. empty line: return 

2. : APL comment: return ⍝

3. #: script comment: return 

4. ): (regular) APL command: Command::process_line(line…) 

5. ]: (debug) APL command: Command::process_line(line…) 

6. """|«««: start of a multi-line string: loop until end of string 

7. otherwise: APL expression: Command::process_line(line) 

Function Command::process_line() is overloaded; the variant without arguments
fetches a line while the variant with a line argument processes the fetched line. 
The decision about the further processing is done in the latter, i.e. in 
process_line(line…I):

void
Command::process_line(UCS_string & line, ostream * out)
{
   line.remove_leading_white spaces();
   if (line.size() == 0) return; // empty input line

   switch(line[0])
      {
         case UNI_R_PARENT:      // regular command, e.g. )SI
              if (out == 0)   out = &COUT;
              do_APL_command(*out, line);
              if (line.size())   break;
              return;

         case UNI_R_BRACK:       // debug command, e.g. ]LOG
              if (out == 0)   out = &CERR;
              do_APL_command(*out, line);
              if (line.size())   break;



              return;

         case UNI_NABLA:               // e.g. FUN∇
              Nabla::edit_function(line);
              return;

         case UNI_NUMBER_SIGN:         // e.g. # comment
         case UNI_COMMENT:             // e.g.  comment⍝
                 return;

        default: break;
      }

   ++APL_expression_count;
   do_APL_expression(line);
}

By default the output of process_line() is printed to the console, but a non-zero out
redirects the output to out. This is used by functions that need to capture the 
output of a command, e.g. ")COMMAND" (a GNU APL extension, normally APL ⍎

commands cannot be used by ).⍎

As explained, further processing depends on the first character of the line:

                  ┌──────────────┐
                  │ process_line │
                  └──────┬───────┘
                         │
         ┌───────────────┼──────────────────┐
         │               │                  │
                       ),]               other∇
         │               │                  │
    ┌────┴─────┐    ┌────┴─────┐    ┌───────┴────────┐
    │ -editor │    │ )COMMAND │    │ APL expression │∇
    └──────────┘    │ ]COMMAND │    └────────────────┘
                    └──────────┘

Strictly speaking the ∇-editor and APL commands are not part of the APL language
(they have their own syntax). At this point it should suffice that the implementation
of the ∇-editor is found in source file Nabla.cc (nabla is the name for ∇ in the 
Greek alphabet) while the implementations of most commands are found in 
Command.cc. Most of the functions in Command.cc are concerned with the 
decoding of command arguments and are not further discussed here. Most 
commands have a simple implementation which is also contained in Command.cc.
The others have their own source file:

Command Implementation
)CLEAR Workspace.cc

)MORE Workspace.cc

)SAVE .xml Archive.cc

)COPY .xml Archive.cc

)LOAD .xml Archive.cc



Consult source file Command.def to find the implementation of a particular 
command. Most commands support TAB-completion: the user hits TAB and the 
possible completions are are displayed. Implemented in TabExpansion.cc.

APL Expressions

The most interesting case occurs if the user enters an APL expression, from simple
ones like +/ 10⍳  or complex ones like calling a defined function. The behavior in 
this case is specified in the ISO APL standard and GNU APL follows this standard, 
at least for the most part. The processing of the input line is essentially the same 
for the lines of defined APL functions and for lines entered in immediate execution.
The minor differences, e.g. APL labels are not allowed in immediate execution, 
statement separators are not allowed in -strings, etc. are handled via a ⍎

ParseMode declared and defined in APL_types.hh:

///  What is being parsed (defined function, immediate execution statements,
/// or expr)⍎
enum ParseMode
{
   PM_FUNCTION       = 0,   ///< defined function
   PM_STATEMENT_LIST = 1,   ///< immediate execution
   PM_EXECUTE        = 2,   ///< execute ( )⍎
};

The ParseMode defines the origin of a particular line; the options are:

• The line was entered in immediate execution (as described above), or 

• The line is a line of a defined function (see later), or 

• The line was an APL string ( , EA, ES …). ⍎ ⎕ ⎕

The next steps in the processing of a line are tokenization and pre-parsing:

    ┌───────────────┐
    │ Tokenization  │
    └───────┬───────┘
    ┌───────┴──────┐
    │ Pre-Parsing  │
    ├──────────────┤
    │ Optimization │
    └──────────────┘

Tokenization

Tokenization splits the (APL-) characters of a line into small fixed-sized units called
*Token*s. Tokens are the machine-readable unit equivalents of the human 
readable input characters. For example, a possibly lengthy string like "3.14159" is 
converted into a Token holding a C double. The whole purpose of tokenization is to
convert the APL input into an internal representation that can be interpreted 
significantly faster than the APL characters enters by the APL programmer. For 
example:

      A←1 2 3 ◊ B←'abc'             APL input string⍝



is tokenized into:

      ┌───┐ ┌───┐ ┌───────┐ ┌───┐ ┌───┐ ┌───┐ ┌─────┐ ┌─────┐
      │ A │ │ ← │ │ 1 2 3 │ │ ◊ │ │ B │ │ ← │ │ abc │ │ EOL │
      └───┘ └───┘ └───────┘ └───┘ └───┘ └───┘ └─────┘ └─────┘

The function that performs the tokenization is:

   ErrorCode tokenize(const UCS_string & input, Token_string & tos) const;

which is a member of class Tokenizer, see Tokenizer.hh. The result is a 
Token_string:

// A sequence of Tokens
class Token_string : public  std::vector<Token>
{
   ...
};

see file Token.hh.

Pre-parsing

Pre-parsing is primarily an optimization step that performs a number of sub-steps, 
such as:

• splitting multiple statements (separated by ◊ Token) into individual 
statements (at ◊), 

• grouping multiple scalars into single APL values, 

• reversing the order of individual statements, and 

• performing some optimizations 

In the example above, the token string

      ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌─────┐ ┌─────┐
      │ A │ │ ← │ │ 1 │ │ 2 │ │ 3 │ │ ◊ │ │ B │ │ ← │ │ abc │ │ EOL │
      └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ └─────┘ └─────┘

is first split into 2 statements:

      ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐
      │ A │ │ ← │ │ 1 │ │ 2 │ │ 3 │
      └───┘ └───┘ └───┘ └───┘ └───┘
      ┌───┐ ┌───┐ ┌─────┐
      │ B │ │ ← │ │ abc │
      └───┘ └───┘ └─────┘

The scalars 1, 2, and 3 are then combined into a single APL value (the APL value 
abc is already a single value after tokenization):



      ┌───┐ ┌───┐ ┌───────┐
      │ A │ │ ← │ │ 1 2 3 │
      └───┘ └───┘ └───────┘
      ┌───┐ ┌───┐ ┌─────┐
      │ B │ │ ← │ │ abc │
      └───┘ └───┘ └─────┘

Next, the individual statements are reversed:

      ┌───────┐ ┌───┐ ┌───┐
      │ 1 2 3 │ │ ← │ │ A │
      └───────┘ └───┘ └───┘
      ┌─────┐ ┌───┐ ┌───┐
      │ abc │ │ ← │ │ B │
      └─────┘ └───┘ └───┘

and finally combined again:

      ┌───────┐ ┌───┐ ┌───┐ ┌───┐ ┌─────┐ ┌───┐ ┌───┐ ┌────┐
      │ 1 2 3 │ │ ← │ │ A │ │ ◊ │ │ abc │ │ ← │ │ B │ │ EOL│
      └───────┘ └───┘ └───┘ └───┘ └─────┘ └───┘ └───┘ └────┘

The reason for reversing the tokens of every statement is somewhat subtle: APL 
statements are executed from left to right, but the tokens inside a statement are 
processed from right to left. Without the reversal the tokens would need to be 
processed like this:

    → → → → → → → → → →        → → → → → → → → → → → → → →
                      ↓       ↑                          ↓
      ┌───┐ ┌───┐ ┌───────┐ ┌───┐ ┌───┐ ┌───┐ ┌─────┐ ┌─────┐
      │ A │←│ ← │←│ 1 2 3 │ │ ◊ │←│ B │←│ ← │←│ abc │ │ EOL │
      └───┘ └───┘ └───────┘ └───┘ └───┘ └───┘ └─────┘ └─────┘
        ↓                                        ↑
         → → → → → → → → → → → → → → → → → → → →

By reversing every statement the same processing order now becomes:

      ┌───────┐ ┌───┐ ┌───┐ ┌───┐ ┌─────┐ ┌───┐ ┌───┐ ┌─────┐
      │ 1 2 3 │→│ ← │→│ A │→│ ◊ │→│ abc │→│ ← │→│ B │→│ EOL │
      └───────┘ └───┘ └───┘ └───┘ └─────┘ └───┘ └───┘ └─────┘

DEFINITION: in source code comments, we refer to the initial token order 
(statement tokens from left to right, statements from left to right, and lines from 
top to bottom) as the APL order and to the order after reversing the tokens of 
every statement (statement tokens from right to left, statements from left to right, 
and lines from top to bottom) as the reversed order. The reversal is performed in 
Executable::parse_body_line(). In other words, function 
*Tokenizer::tokenize() produces a Token_string tos in APL order, which is later
reversed into the final function body Token_string Executable::body.

The reversed order can be processed much faster since the order is now linear and
no more back and forth jumps are needed when the token string is interpreted.



Another trick in the pre-parsing phase is to store the distance between opening 
and closing parentheses and square brackets (curly brackets are removed entirely 
in this phase) in the token itself. Sometimes the prefix-parser (Prefix.cc) that 
finally performs the interpretation has to jump over a pair of parentheses or 
brackets to find the token to their left. Instead of scanning the token string at 
runtime until a matching parenthesis or bracket is found, one can compute its 
location directly (i.e. in time O(1) rather than O(∆) for distance ∆ between the 
matching parentheses or brackets):

    ┌─────┐       ┌─────┐            ┌─────┐       ┌─────┐
    │ (,∆ │  ...  │ ),∆ │     or     │ [,∆ │  ...  │ ],∆ │
    └─────┘       └─────┘            └─────┘       └─────┘
      │← ← ← ∆ → → →│                  │← ← ← ∆ → → →│

The Pre-parser function returns an error code and fills its argument tos as a side 
effect:

  Parser.hh:

  /// Parse token string \b input into token string \b tos.
   ErrorCode parse(const Token_string & input, Token_string & tos) const;

The entire conversion (i.e. tokenization and pre-parsing happens in function 
Executable::parse_body_line(); the result is stored in member body of class 
Executable:

   Executable.hh:

   /// The tokens to be executed. They are organized line by line and
   /// statement by statement, but the tokens within a statement are
   /// reversed due to the right-to-left execution of APL.
   Token_string body;

Every defined function, every line entered in immediate execution, and every 
statement from a  expression is converted into an object of base class ⍎

Executable. That object contains some more information such as the original 
line(s) from which it was created, a reference counter to delete it if no longer used,
etc.

From base class Executable three different classes for the different ParseModes 
are derived:

class ExecuteList : public Executable { ...}              // in Executable.hh
class StatementList : public Executable { ... }           // in Executable.hh
class UserFunction : public Function, public Executable   // in UserFunction.hh

This is because the minor differences between the ParseModes not only affect the 
parsing of the input line but also some runtime aspects. The base class Executable 
contains the common functionality while the derived classes contain the specific 
functionalities related to the different ParseModes.

Some debug printouts display the ParseMode, like this:



• ∇ for defined functions, 

• ◊ for a list of statements (i.e. immediate execution), and 

•  for executed APL strings ( , EA, EB, ES). ⍎ ⍎ ⎕ ⎕ ⎕

The difference between ◊ and ⍎ is mostly resolved during pre-parsing, therefore 
classes StatementList and ExecuteList are almost the same as class 
Executable. Both pertain to a single line of APL code and their implementation 
can be found in Executable.cc.

In contrast, defined functions are far more complex (multiple lines, labels, 
parameter passing) and have their own implementation file UserFunction.cc.

Naming of APL objects

To conclude the discussion of pre-parsing we should mention the role of names. 
Ignoring comments and white-space (which are discarded rather early), the lines of
every APL program consists of 3 types of objects:

1. literals (constants) like 1 2 3 or abc, and 

2. names of built-in primitives like + and -, system functions like UCS, and ⎕
system variables like IO ⎕

3. (user-defined) names of variables and defined functions, in the following 
called symbols. 

These objects are processed by the pre-parser according to the following rules:

1. literals are converted to APL values, 

2. every primitive, system function, or system variable has an integer ID which 
uniquely identifies it, and 

3. every user defined name is entered into a symbol table, which is a hash table 
that contains all user defined names. The conversion from a name (i.e. string)
to a user defined object happens during the pre-parsing (and therefore has 
no runtime overhead). 

The IDs of all primitives are #defined in Id.def. The Ids are sorted by the first 
character in their name (the character after  for system functions and variables) ⎕
or e.g. "P" for Plus, "M" for Minus etc. These IDs are not only used in the body 
tokens of executables but also in )SAVEd .xml snapshots. It is therefore essential 
that new IDs are added at the end of the ID group that starts with the same 
character, and that obsolete IDs are kept (or at least their IDs are never reused). 
The first character (upper 8 bits of the ID are chosen in a way that simplifies 
debugging at little or no cost.

All user defined symbols have the ID 0x0000 and their token contains a unique 
Symbol pointer. The symbol table (class *SymbolTable in file 
SymbolTable.hh) is only used by the pre-parser (to ensure that all symbols 
have the same Symbol ) and by some APL commands like *)FNS, )VARS,
)OPS, etc.

The Id.def file classifies the around 200 IDs via 5 macros that indicate their 
purpose or usage:



• macro pp(…): pretty print. For constructing the name (usually "---") of a 
token that has no permanent role, e.g. pass C function arguments. E.g. 
NO_VALUE, VARIABLE, … 

• macro qf(…): quad function. Quad function, e.g. DL, FX, … ⎕ ⎕

• macro qv(…): quad variable. Quad variable, e.g. CT, IO, … ⎕ ⎕

• macro sf(…): system function. An APL primitive, e.g. , , … … ⍴ ⌽

• macro st(…): system token. An ID for other token, e.g. , →, … ⍺

Token Structure

With the prerequisites above we can define the structure of a Token:

   Token.hh:

class Token
{
   ...

   /// the (optional) value of the token.
   union sval
      {
        Unicode         char_val;        ///< the Unicode for TV_CHAR
        APL_Integer     int_vals[2];     ///< the integer for TV_INT
        APL_Float_Base  float_vals[2];   ///< the doubles for TV_FLT and TV_CPX
        Symbol        * sym_ptr;         ///< the symbol for TV_SYM
        Function_Line   fun_line;        ///< the function line for TV_LIN
        IndexExpr     * index_val;       ///< the index for TV_INDEX
        Function_P      function;        ///< the function for TV_FUN
        Value_P_Base    apl_val;         ///< the APL value for TV_VAL

        /// a shortcut for accessing apl_val
        Value_P & _apl_val() const
           { return reinterpret_cast<Value_P &>
                    (const_cast<Value_P_Base &>(apl_val)); }
      };

   ...

   protected:

   /// The tag indicating the type of \b this token
   TokenTag tag;

   /// The value of \b this token
   sval value;

   ...
}

In short this means that:

• a token is a tagged union (named sval), and 

• the tag (an enum TokenTag) determines which member (if any) of union 
sval a particular token holds. 

The APL interpreter can be understood as virtual machine whose opcodes are 
Tokens. In this context the attribute virtual of virtual machine must not be 



confused with the attribute virtual of virtual C++ functions or classes. The 
tokenization and pre-parsing is then the "compilation" of APL source code into 
machine code of this virtual APL machine. The rest of Token.hh defines quite a 
number of constructors and access functions of class Token, most of them inline 
because the manipulation of Token is usually simple but performed frequently.

The TokenTag is a 32-bit (4 byte) number which has 3 sub-fields:

                 ------16 bit------ ---8 bit---   ---8 bit---
                ┌────────┬─────────┬────────────┬─────────────┐
    Token Tag:  │        ID        │ Value-type │ Token-class │
                └────────┴─────────┴────────────┴─────────────┘

The ID of a Token

The 16 bit ID is the integer ID of system functions and variables explained above. 
The ID (i.e. its access function Token::get_Id()) is not used during the normal 
interpretation of APL code but only in error messages and for loading and saving 
of workspaces.

The Value-Type of a token

The value type simply defines which of the members of union sval the token holds.
The value type is only used when a Token is copied or moved around (most likely 
from the body of a defined function into the prefix parser as will be explained 
below). The knowledge of the type is needed because some the union sval 
members have constructors.

The value types are defined in TokenEnums.hh:

TokenEnums.hh:

/// The value type of a token

enum TokenValueType
{
   // token value types. The token value type defines the type of the
   // token in the union 'value'.
   //                              Type              union member
   TV_MASK          = 0xFF00,
   TV_NONE          = 0x0000,   // value not used
   TV_CHAR          = 0x0100,   // Unicode            .char_val
   TV_INT           = 0x0200,   // uint64_t           .int_val;
   TV_FLT           = 0x0300,   // APL_Float          .flt_val;
   TV_CPX           = 0x0400,   // cdouble            .complex_val;
   TV_SYM           = 0x0500,   // Symbol *           .sym_ptr;
   TV_LIN           = 0x0600,   // Function_Line      .fun_line;
   TV_VAL           = 0x0700,   // Value_P            .apl_val;
   TV_INDEX         = 0x0800,   // IndexExpr *        .index_val;
   TV_FUN           = 0x0900,   // Function_P         .function;
};

The typical (inline) function that copies a Token is:

Token.hh:

Token::copy_N(const Token & src)



{
   tag = src.tag;
   switch(src.get_ValueType())
      {
        case TV_NONE:  value.int_vals[0]   = 0;
                       value.int_vals[1]   = 0;                         break;
        case TV_CHAR:  value.char_val      = src.value.char_val;        break;
        case TV_INT:   value.int_vals[0]   = src.value.int_vals[0];
                       value.int_vals[1]   = src.value.int_vals[1];     break;
        case TV_FLT:   value.float_vals[0] = src.value.float_vals[0];   break;
        case TV_CPX:   value.float_vals[0] = src.value.float_vals[0];
                       value.float_vals[1] = src.value.float_vals[1];   break;
        case TV_SYM:   value.sym_ptr       = src.value.sym_ptr;         break;
        case TV_LIN:   value.fun_line      = src.value.fun_line;        break;
        case TV_VAL:   value._apl_val()    = src.value._apl_val();      break;
        case TV_INDEX: value.index_val     = src.value.index_val;       break;
        case TV_FUN:   value.function      = src.value.function;        break;
        default:       FIXME;
      }
}

In copy_N(), src is a token that is copied into token this, and value is the member
(of union sval) that is being copied.

The TokenClass-Type of a token

The most important part of a TokenTag is its class (not to be confused with C++ 
classes). Like the token value types they are defined in TokenEnums.hh. There 
are two different kinds of token classes: permanent token classes and 
temporary token classes. The permanent classes are:

TokenEnums.hh:

enum TokenClass
{
   // token classes.
   //

   // permanent token classes. Only Token of these classes can appear in
   // the body of a defined function.
   //
   TC_ASSIGN        = 0x01,   ///< ←
   TC_R_ARROW       = 0x02,   ///< →N
   TC_L_BRACK       = 0x03,   ///< [ or ;
   TC_R_BRACK       = 0x04,   ///< ]
   TC_END           = 0x05,   ///< left end of statement
   TC_FUN0          = 0x06,   ///< niladic function
   TC_FUN12         = 0x07,   ///< ambivalent function
   TC_INDEX         = 0x08,   ///< [...]
   TC_OPER1         = 0x09,   ///< monadic operator
   TC_OPER2         = 0x0A,   ///< dyadic operator
   TC_L_PARENT      = 0x0B,   ///< (
   TC_R_PARENT      = 0x0C,   ///< )
   TC_RETURN        = 0x0D,   ///< return from defined function
   TC_SYMBOL        = 0x0E,   ///< user defined name
   TC_VALUE         = 0x0F,   ///< APL value

   TC_MAX_PERM,               ///< permanent token are < TC_MAX_PERM
   ...

In contrast, temporary tokens are never used in the body of an Executable. They 
are short-lived and vanish after some permanent token was created from them. For



example, prefix parser creates a token of class TC_PINDEX (for partial index) 
when it sees the closing ] of an APL index (remember: right-to-left) and creates a 
permanent token of class TC_INDEX when it sees the corresponding opening [. 
Likewise, a defined function without result returns a token of class TC_VOID which
is passed from one prefix parser to another to indicate the result of a defined 
function.

In short, temporary token classes are only created and consumed inside the prefix 
parser. The temporary token classes are:

TokenEnums.hh:
   ...
   // temporary Token classes. Token of these classes only appear as
   // intermediate results during tokenization and prefix parsing
   //
   TC_PINDEX        = 0x10,   ///< partial index
   TC_VOID          = 0x11,
   TC_MAX_PHRASE,             ///< token in phrases are < TC_MAX_PHRASE
   TC_MAX_PHRASE_2 = TC_MAX_PHRASE*TC_MAX_PHRASE,     // TC_MAX_PHRASE ^ 2
   TC_MAX_PHRASE_3 = TC_MAX_PHRASE*TC_MAX_PHRASE_2,   // TC_MAX_PHRASE ^ 3
   TC_MAX_PHRASE_4 = TC_MAX_PHRASE*TC_MAX_PHRASE_3,   // TC_MAX_PHRASE ^ 4

   TC_OFF           = 0x12,
   TC_SI_LEAVE      = 0x13,
   TC_LINE          = 0x14,
   TC_DIAMOND       = 0x15,   // ◊
   TC_NUMERIC       = 0x16,   // 0-9, ¯
   TC_SPACE         = 0x17,   // space, tab, CR (but not LF)
   TC_NEWLINE       = 0x18,   // LF
   TC_COLON         = 0x19,   // :
   TC_QUOTE         = 0x1A,   // ' or "
   TC_L_CURLY       = 0x1B,   // {
   TC_R_CURLY       = 0x1C,   // }

The phrase table (or phrase tree) described in The Phrase Table below maps 
particular sequences of token classes to reduce functions. To make the phrase 
table a little more readable, we define some shorter names (SN_xxx) for token 
classes that better reflect the relation between the APL point of view and the C++ 
representation of it, and/or abbreviates them:

TokenEnums.hh:
   ...
   // shorter token class aliases for the phrase table
   //
   SN_A             = TC_VALUE,
   SN_ASS           = TC_ASSIGN,
   SN_B             = TC_VALUE,
   SN_C             = TC_INDEX,
   SN_D             = TC_OPER2,
   SN_END           = TC_END,
   SN_F             = TC_FUN12,
   SN_G             = TC_FUN12,
   SN_GOTO          = TC_R_ARROW,
   SN_I             = TC_PINDEX,
   SN_LBRA          = TC_L_BRACK,
   SN_LPAR          = TC_L_PARENT,
   SN_M             = TC_OPER1,
   SN_N             = TC_FUN0,
   SN_RETC          = TC_RETURN,
   SN_RBRA          = TC_R_BRACK,
   SN_RPAR          = TC_R_PARENT,



   SN_V             = TC_SYMBOL,
   SN_VOID          = TC_VOID,
   SN_              = TC_INVALID

For example: the ISO APL standard defines a phrase table of 39 phrases. In 
particular phrase 7 is defined as:

7 EVALUATE DYADIC FUNCTION (<A F B> R)

In GNU APL code the ISO phrase <A F B> is represented as 3 short-names SN_A, 
SN_F, SN_B,. To further simplify matters, the SN_ prefix is hidden by means of 
some macro magic, so that the same ISO phrase in the GNU APL phrase table (in 
Prefix.def) becomes:

  Prefix.def :

  PH( A F B          , A_F_B_        , 0x03CEF ,  33  ,   0  ,  3),  // [EA]

Given that SN_A and SN B are both short names for TC_VALUE, and that SN_F 
the short name for TC_FUN12, after expanding macro PH() in the C++ 
preprocessor this translated to something like:

If a sequence of token classes TC_VALUE TC_FUN12 TC_VALUE is discovered, 
then call C++ function reduce_A_F_B().

Evaluation of APL Expression

The Phrase Table

The IBM APL Language Reference Manual describes the fundamental rule for the 
evaluation of APL expressions as follows:

All functions execute according to their position within an expression. The 
rightmost function whose arguments are available is evaluated first.

In parser terms, one could just as well formulate this as:

• execution of an APL expression starts with an empty sequence of token 
classes, 

• the tokens in the sequence are then, from right to left, prepended to the 
sequence, and 

• whenever a prefix of the current sequence is found in the phrase table: 

• the reduce function in the phrase table entry is called with the token of
the prefix as arguments, 

• the prefix in the sequence is replaced with the result of the reduce 
function. 

Since GNU APL stores the token in reverse order as explained earlier, from right 
to left actually means left to right for the token string that is being interpreted. 
The rules above amount to what is commonly called a LALR(1) parser (short for 
Left-Right-LookAhead-Parser with 1 lookahead token). In GNU APL terminology it 



is the Prefix parser in file Prefix.cc. The somewhat simplified algorithm of the 
GNU APL prefix parser is:

1. Every Prefix parser starts execution at the beginning of some token string, 
say body, which is in most cases the body of a defined function. 

1. Its integer variable PC (actually of type enum Function_PC) is 
initialized to 0 (start of function), and 

2. the sequence of tokens read so far is cleared. Then: 

2. The next token is read and PC is incremented. 

3. If the token class is TC_SYMBOL (i.e. a name defined by the APL 
programmer) then the new token is replaced by the current value of the 
symbol, which is one of: 

1. TC_VOID - the symbol name was used (tokenized) but not assigned 
(e.g. the initial values of local variables of a defined function), 

2. TC_VALUE - an APL variable, 

3. TC_FUN0 - a defined niladic function, 

4. TC_FUN12 - a defined monadic or dyadic function, 

5. TC_OPER1 - a defined monadic operator (i.e. 1 function argument), or 

6. TC_OPER2 - a defined dyadic operator (i.e. 2 function argument). This 
name resolution step happens in function Symbol::resolve_right() for 
symbols right of ← or in Symbol::resolve_left() for symbols left of 
*←. The case TC_VOID happens when a name was tokenized, but no 
value or function was assigned to it. 

7. If the new token together with the sequence matches a phrase (as 
discussed above) then the phrase is reduced (called REDUCE in parser 
terminology). 

4. Otherwise (no phrase matches) the new token is prepended to the sequence 
and the next token is read (called SHIFT in parser terminology). In this case 
execution continues with step 2. above. 

5. If a phrase with an APL jump, such as →N (i.e. to line N of a defined function)
is matched, then a new value for the PC is computed so that body[PC] is the
first token of line N. If no such line exists, then the Prefix parser returns its 
result (either TOK_VOID for functions that return no result or TOK_VALUE 
otherwise. 

6. If the parser sees a closing parenthesis ) or bracket ] then the parser creates
a sub-parser and execution is continued (with the current PC) in the sub-
parser until the corresponding opening parenthesis ( or bracked [ is reached.
The result of the sub-parser, typically a token with class TC_VALUE for 
parentheses and TC_INDEX for brackets is returned to the calling parser, 

7. an end of statement token (class TC_END) does not stop the parser. The 
necessary actions, e,g, printing of the value for non-committed APL values is 
performed in the reduce function (which calls 



StateIndicator::statement_result()), and the parser simply continues 
after the reduce function returns. Only the end of the *body stops the 
parser, and the last token in the body performs the transfer of the value 
computed by a defined APL function to its caller. 

The tokens in the current sequence are of C++ type Token_loc instead of type 
Token. Token_loc is a Token and a range in the body. When a token is first 
fetched from, say, body[PC]) then the range of its Token_loc is [PC:PC+1]. As 
more and more consecutive tokens are being reduced, that range grows and 
contains all tokens that have contributed to the creation of every token. The range 
in the body of a defined function is needed for proper error reporting.

The case 3. above is the most tricky one and deserves a closer look at it.

Ambiguity of APL symbols.

In compiled lanuages like C/C++ every name defined by the user must be 
declared. Any use of a name without a prior declaration is an error detected by the
compiler. The declaration determines, among other things, whether the name 
refers to a variable, or to a function, and in that latter case the arity (number of 
arguments) of a function.

In contrast, in APL the role of a user defined name is not defined at FX-time but ⎕
at runtime. Due to the declarations in e.g. C/C++ the scope of a name (and from 
that the relevant declaration) can be determined statically (i.e. at compile time) 
while in APL the role of a name must be inevitably determined at runtime. In both 
cases (APL vs. C/C++) the same name may have different roles at different times, 
but the point in time where the role is determined varies. As a consequence, the 
compiler uses its symbol table only at compile time while APL also uses it at 
runtime. Consider the following example:

      )CLEAR

       define function LEAF (for a function that does not call others)⍝
      ⍝
Z←LEAF∇
 Z←'LEAF is a niladic defined function.'
∇

       define function FOO, which localizes symbol LEAF⍝
      ⍝
Z←FOO;LEAF∇
 LEAF←'LEAF is a (localized) variable.'
 BAR
∇

       define function BAR which calls LEAF.⍝
      ⍝
Z←BAR∇
 Z←LEAF
∇

       then see what happens⍝
      ⍝
      FOO ◊ BAR
LEAF is a (localized) variable.
LEAF is a niladic defined function.



In the simple example above, BAR is called twice: first from FOO and then directly
from immediate execution (to simplify the example; the same would happen if BAR
were called from some other defined function). The problem in the example above 
is that BAR cannot statically decide whether the symbol LEAF in its function body 
relates to the niladic function LEAF or to the local variable LEAF of function FOO.
One can even construct more complex examples where the same statement of a 
defined function must, according to the evaluation rules of APL, produce different 
results depending how it was called. As a

Corollary: The parse tree of an APL statement is only unique when the statement 
contains no user defined symbols. And therefore:

Corollary: In general, every APL statement yields a (possibly degenerated) parse 
tree, where each APL symbol in the statement is a branching point at which it has 
to be decided (at runtime) which branch down the tree shall be chosen.

The degenerated case is the one where all symbols can be resolved statically (such 
as labels in a defined function), and then the tree becomes a linear sequence. In 
real-life APL programs this degenerated case is fairly rare. It could be optimized in
a simple manner, but its rarity seems not be worth the effort. A more frequent 
exception is non-conditional branches like →LABEL which are being optimized in 
GNU APL.

Now, back to the TC_SYMBOL. If the prefix parser reads a symbol, then it 
consults the symbol table for the current meaning of the symbol. There are quite a 
few different cases:

• The symbol is undefined, for example a local variable before a value is 
assigned to it or a defined function with that name was created. In this case: 

• If the symbol is referenced (i.e. on the right of →) then a SYNTAX 
ERROR is raised, otherwise 

• The symbol is (the name of) a variable that is being assigned (either 
completely, or indexed, or selectively). 

• The symbol is a defined function, in that case the TC_SYMBOL. token is, 
depending on the signature of the defined functioni, replaced with a token of 
class TC_FUN0, TC_FUN12, TC_OPER1, or TC_OPER2. The token value 
then points to a UserFunction. Note that APL primitives and APL system 
functions are not user-defined, and therefore no symbol table lookup is 
required. The pre-parser can therefore produce the corresponding tokens 
directly. 

• The symbol is a variable. 

• A variable right of ← is referenced and the TC_SYMBOL token is 
replaced by a TC_VALUE token pointing to the current value of the 
variable. Otherwise the symbol is subject to an assignment and is, for 
the moment, left unchanged. At a later time one of the assignment 
phrases is supposed to match: 

• A←VALUE  normal assignment (symbol ⍝ A may or may not exist),

• (A B …)←VALUE  vector assignment (symbols ⍝ A, B… may or 



may not exist), 

• A[X]←VALUE  indexed assignment (⍝ A must be a variable), 

• (f… A)←VALUE  selective assignment (⍝ A must be a variable), 

All this happens in Prefix::push_Symbol() which delegates most of its work to 
either Symbol::resolve_left() or Symbol::resolve_right(), depending on the 
position of the symbol in the statement. This position is tracked with 
Prefix::set_assign_state(), which is one of:

APL_types.hh:
   ...
// the state of an assignment
enum Assign_state
{
   ASS_none       = 0,   ///< no assignment (right of ←)
   ASS_arrow_seen = 1,   ///< ← seen but no variable yet
   ASS_var_seen   = 2,   ///< var and ← seen
   ASS_unknown    = 3,   ///< not known (too much effort to determine)
};
   ...

Terminology: The GNU APL prefixes are called pattern or phrase in the 
ISO standard. The token sequence above is called stack in the ISO 
standard and also in some of GNU APL debug printouts.

The main implementation of the algorithm above is C++ function 
Prefix::reduce_statements(). It returns a Token. The function uses C/C++ goto 
statements because that leads to much clearer code than the so called "structured 
programming" would. The goto labels in this function are:

• grow: do a SHIFT (if no phrase has matched), 

• again: repeat phrase matching (after a reduce function was called), and 

• done: the parser returns. ` The point of again: is that the reduction of some 
phrases, for example an expression in parentheses, may produce a stack that
could not be reduced before but now can without reading another token. 

An Example

Consider the APL code from our example above, for simplicity in immediate 
execution:

A←1 2 3

The tokenizer translates the string "A←1 2 3" into a 4-item Token_string:

┌───────┐ ┌───┐ ┌───┐  ┌────────┐
│ 1 2 3 │ │ ← │ │ A │  │ RETURN │
└───────┘ └───┘ └───┘  └────────┘

To be precise, the RETURN token is actually appended by function 
StatementList::fix() and not by the Tokenizer itself. Then:



1. The prefix parser reads (the single) token 1 2 3 and shifts Pattern is now: 
value(1 2 3). 

2. The prefix parser reads ← and shifts. Pattern is now: ← value(1 2 3). 

3. The prefix parser reads A. The pattern matches and the parser reduces with 
Prefix::reduce_A_ASS_B_(). The result is committed_value(1 2 3) and the
new pattern is also: committed_value(1 2 3) 

4. The prefix parser reads RETURN. The pattern matches and the parser 
reduces with Prefix::reduce_END_B__(), which calls 
*StateIndicator::statement_result() and clears the pattern to empty. 

5. The parser has no more token to read and returns. 

Another Example

(1 + 2) FOO 4    with dyadic defined function FOO⍝

The tokenizer produces:

┌───┐ ┌─────┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐  ┌────────┐
│ 4 │ │ FOO │ │ ) │ │ 2 │ │ + │ │ 1 │ │ ( │  │ RETURN │
└───┘ └─────┘ └───┘ └───┘ └───┘ └───┘ └───┘  └────────┘

1. The parser shifts 4 and FOO and creates a sub-parser for ). 

2. The sub-parser reduces (1+2) and returns the value 3. 

3. The parser reads the result 3 and computes 3 FOO 4. 

Properties of the reduce_XXX() functions

• In GNU APL there is a total of 67 phrases and consequently 67 reduce 
functions. 

• reduce functions are typically short. Nevertheless they cannot be inlined 
since they are being called via the function pointer 
Prefix::Phrase::reduce_fun in the phrase table (or tree). 

• reduce functions have return type void and no arguments. They access the 
token which they reduce directly from a ring-buffer named Prefix::content 
and also store the result there (function Prefix::pop_args_push_result()) 

• accessing the token is performed via functions at0(), at1(), at2(), or at3(), 
where at0() is the leftmost (in APL code order) and the rightmost (in 
reversed order) token. For example, in reduce_V_ASS_B() corresponds V to 
at0(), ASS to at1(), and B to at2(). 

• the lookahead token of the LALR(1) parser is always a token in the body of a 
defined function. It therefore needs not (yet) to be copied at the time of the 
lookahead. It is instead accessed with Prefix::lookahead(), which returns 
*TOK_VOID if no lookahead token exists. 

The principal structure of a reduce function is always:



1. obtain the arguments (at0(), at1(), …) 

2. compute the desired side effect (assign a variable, evaluate a function, 
perform a branch, etc.) 

3. remove (pop) the arguments from the stack and push the result on the stack, 
in most cases with Prefix::pop_args_push_result(), and finally 

4. set member Prefix::action to the next action that the prefix parser shall 
perform. The possible actions are (enum R_action in Prefix.hh): 

1. RA_CONTINUE: repeat the phrase matching with the current stack 
(after a reduce_XXX() has modified it, e.g. with 
pop_args_push_result(). 

2. RA_PUSH_NEXT: push the next token onto the stack (aka. SHIFT) 

3. RA_RETURN: return from the current (sub-) parser and push its result
onto the stack of the calling parser, or 

4. RA_SI_PUSHED: like RA_RETURN but without a result (called a 
future in esoteric computer languages). It indicates that a new parser 
with a new defined function was started and will or will not return a 
result. This case is slightly different from simply calling a sub-parser, 
because a sub-parser (e.g. for parentheses) remains in the same 
function body, while a new defined function has its own body. 

Construction of the phrase table (or tree)

The large number of phrases makes it error prone and cumbersome to handle 
them. For that reason the declaration of all reduce_XXX() functions (in Prefix.hh,
as well as the instantiation of a hash table for fast lookup of phrases (or, 
alternatively a search tree) in Prefix.cc are realized by including src/Prefix.def. 
That is, Prefix.def is, with the help of the C++ preprocessor, a code generator for 
Prefix.hh and Prefix.cc. Prefix.def itself is also generated (with 
tools/phrase_gen). And tools/phrase_gen itself #includes file 
tools/phrase_gen.def which contains the primary definition of all phrases (similar 
to the phrase table in the ISO standard. This machinery is hidden behind 
tools/makefile with targets: gen (for a hash table) and gen2 (for a search tree). 
Note the lowercase makefile; the tools directory also contains an (uppercase) 
Makefile which belongs to the build system. The full picture is this:

    ╔═════════════════════╗    ╔══════════════════════╗
    ║ tools/phrase_gen.cc ║    ║ tools/phrase_gen.def ║
    ╚══════════╤══════════╝    ╚══════════╤═══════════╝
               │                          │
      ┌────────┴───────┐                  │
      │ tools/Makefile │                  ↓
      └────────┬───────┘                  │
               │                          │
              g++ ─────── #include ───────┘
               │
      ╔════════╧═════════╗
      ║ tools/phrase_gen ║                                 ./configure
      ╚═════════╤════════╝
                │                                          ══════════════════
       ┌────────┴───────┐



       │ tools/makefile │                                  make
       └────────┬───────┘
                │
              write
                │
       ┌────────┴────────┐                            ┌───────────────┐
       │  src/Prefix.def ├───────── #include ────→────┤ src/Prefix.hh │
       └────────┬────────┘                            └───────┬───────┘
                │                                             │
                ↓                                             ↓
                │              ┌───────────────┐              │
                └── #include ──┤ src/Prefix.cc ├── #include ──┘
                               └───────┬───────┘
                                       │
                                      g++
                                       │
                             ┌─────────┴────────┐
                             │ src/apl-Prefix.o │
                             └──────────────────┘

GNU APL is shipped with src/Prefix.def already produced, so that the 
"normal" designer is rarely concerned with the above. Unless she needs to 
change the GNU APL phrase table.

If, however, tools/phrase_gen.def was modified, then

    make gen    # generate new src/Prefix.def with a phrase table, or
    make gen2   # generate new src/Prefix.def with a phrase tree

needs to be performed once. The build system will then note the changed 
src/Prefix.def and a top-level make will recompile the affected files in directory 
src.

Noteworthy Classes

String Classes

The GNU APL source code has more than 1000 places where strings are used. 
These strings come in 2 flavors:

1. strings of 32-bit Unicodes (sometimes referred to as UCS-32), 

2. strings of bytes in UTF8 encoding. 

GNU APL uses 2 classes for these strings: class UCS_string for 32-bit Unicodes 
and UTF8_string for UTF8-encoded strings. In general:

• UCS_strings are far easier to use than UTF8_strings because UTF8 is a 
variable-length encoding, which makes indexing or iterating over them 
cumbersome and error-prone. For this reason all strings used internally in 
GNU APL are UCS_strings. 

• UTF8_strings are commonly used between GNU APL and its environment. 
They are shorter when transported over the internet, therefore most web 
pages are UTF8-encoded. Also, filenames in operating systems are UTF8 
encoded. Finally, most terminal emulators, in particular those that support 
APL in some way, send and expect all characters to be UTF8-encoded. 



UCS_string

The starting point is:

   Unicode.hh:

   enum Unicode
   {
#define char_def(name, uni, _tag, _flags, _av_pos) UNI_ ## name = uni,
#define char_uni(name, uni, _tag, _flags)          UNI_ ## name = uni,
#include "Avec.def"

     Unicode_0       = 0,            ///< End of unicode string
     Invalid_Unicode = 0x55AA55AA,   ///< An invalid Unicode.
   };

where:

• The char_def() macro defines all Unicodes that are contained in the 256 
character AV⎕  of GNU APL. In old APL1 the AV and its derivates ( FC, A,⎕ ⎕ ⎕

D, …). These days, the AV is only maintained for backward compatibility ⎕ ⎕
with APL1. In APL2 it has been entirely obsoleted by UCS. Keep in mind, ⎕
however, that: 

• The encoding of files produced with )OUT or read with )IN are still 
based on AV. To be precise: based on some IBM AV defined in the ⎕ ⎕
IBM APL2 reference manual, not on the GNU APL AV. Generally ⎕

AVs as well as their encodings are machine specific, some ⎕
mainframes even used EBCDIC and older PC operating systems used 
special APL code pages which corresponded to the AV. ⎕

• GNU APL has two helpers for such conversions, see below. 

• class *Avec contains numerous static functions for handling and 
classifying of Unicodes contained in the AV. ⎕

• In contrast, the char_uni() macro defines Unicodes that are used in the GNU
APL source code but are not contained in the AV of GNU APL. ⎕

• In short: 

• any Unicode with APL significance (primitives etc.) are (and must be) 
contained in the AV of the interpreter. These Unicodes are defined ⎕
with macro char_def() in file Avec.def, while 

• any Unicode used in the GNU APL C++ source code is defined with 
macro char_uni(). 

• Noteworthy examples of the latter are the sub- and superscripts (⁰, ¹, ², 
…, ⁹, and ₀, ₁, ₂, …, ₉). They are not contained in the AV of GNU APL ⎕
but occur in the .xml files produced by GNU APL (and not only in the 
source code). 

The helpers mentioned above are:

   Avec.hh:
   /// a pointer to 256 Unicode characters that are exactly the APL2 character
   /// set ( AV) shown in LRM Appendix A, page 470. The AV of GNU APL is⎕ ⎕



   /// similar, but contains characters like ≢ that are not in IBM's AV⎕
   /// IBM's AV is used in the )IN command⎕
   static const Unicode * IBM_quad_AV();

  /// recompute \b inverse_ibm_av from \b ibm_av and print it
   static void print_inverse_IBM_quad_AV();

After this digression into Unicodes we can now:

   UCS_string.hh:

class UCS_string : public std::basic_string<Unicode>
{
   ...
   UCS_string(const UTF8_string & utf);
   ...
}

UCS_string has many constructors, most importantly the constructor from a 
UTF8_string which converts the UTF8_string into a UCS_string. In addition the 
UCS_string string class defines numerous convenience functions for the processing
of UCS_strings.

UTF8_string

In good old C, there were C literals like "Hello, world". At that time the only 
relevant encoding of such literals was the 7-bit ASCII code and all literals 
contained only positive (signed) characters.

Next, C++ defined a template class std::basic_string<> which provides 
numerous string processing methods (indexing, iteration) for basic_string that are
also used in our derived classes UCS_string and UTF8_string. So far so good.

But now comes the problem. The C++ standard string library says:

   class string : public basic_string<char> { }

On almost all platforms (read: compilers), a char is signed as opposed to type 
unsigned char. Often this does not hurt because C and C++ automatically 
convert between the signed and unsigned variants and not every programmer is 
always aware of the dire consequences of signedness. Like, for example:

              !
    char(-56) = char(200) < char(100) = unsigned char(100) < unsigned char(200).

to make things worse, UTF8 encoding works on (unsigned) bytes while C/C++ 
literals in compilers are, without specific qualifiers, signed. As a consequence, the 
APL character ← has Unicode 8592 aka. 0x2190, and a UTF8 encoding of (hex) E2 
86 90 which makes the string literal "→" a (0-terminated) sequence of 3 signed (!) 
and unfortunately negative (!) characters. Early versions of GNU APL were using 
std::string instead of UTF8_strings, and the problems caused by that were 
numerous. These days GNU APL itself is clean when it comes to signed vs. 



unsigned chars, but some older contributions may still suffer. Comparisons for 
equality works well for mixed signed/unsigned operands, but < and > do not, and, 
as a consequence, strcmp() and friends frequently return the wrong order when 
used for sorting UTF-encoded strings.

Like UCS_string has a constructor from a UTF8_string, UTF8_string has a 
constructor from a UCS_string:

   UTF8_string.hh:

/// one byte (not character)! of a UTF8 encoded Unicode (RFC 3629) string
typedef uint8_t UTF8;

class UTF8_string : public std::basic_string<UTF8>
{
   ...
   /// constructor: copy of UCS string. The Unicodes in ucs
   /// will be UTF8-encoded
   UTF8_string(const UCS_string & ucs);
};

The take-aways for designers and contributors are:

• prefer UCS_string over UTF8_string where possible (efficiency), 

• never use std::string, but 

• instead use UTF8_string 

• do not write your own conversion functions but use the constructors instead. 

APL Values

The primary business of an APL interpreter is to manipulate APL values. An APL 
value is simply a Shape and a Ravel, although simplicity ends here.

In that, Shape is a class of its own, defined in Shape.hh. It has a bunch of 
constructors for various purposes and also numerous inline convenience functions 
that makes the code that deals with shapes more readable.

Many of the Shape methods have trivial wrappers in class Value, because almost 
every shape is accessed in the context of a value. For example:

   Shape.hh:

   ...
  /// return the rank
  uRank get_rank() const
     { return rho_rho; }

   Value.hh:

   ...
   /// return the rank of \b this value
   uRank get_rank() const
     { return shape.get_rank(); }
   ...
   Shape shape;
   ...



The ravel is simply a C++ array of type Cell:

   Value.hh:

   ...
   /// The ravel of \b this value.
   Cell * ravel;

   /// the cells of a short (i.e. ,value ≤ cfg_SHORT_VALUE_LENGTH_WANTED) value⍴
   Cell short_value[cfg_SHORT_VALUE_LENGTH_WANTED];

Many real-life APL values are short. To avoid unnecessary memory allocations, 
GNU APL allocates short ravels inside the class instance and longer ravels outside 
(which then requires an additional new/delete for the ravel). Put differently, a 
short value has ravel == &short_value, while ravel in long values point to a 
separately allocated memory area. The border between short and long values can 
be changed with ./configure; larger values of 
SHORT_VALUE_LENGTH_WANTED have a (marginally) better performance, but
the price is a (less marginal) increase in memory consumption.

Similar to class Shape, numerous constructors and (mostly trivial) access 
functions for various purposes. For example, a Value can be constructed from a 
UCS_string (and conversely a UCS_string can be constructed from a Value 
(provided that its rank and Cell types are correct). Most values are constructed 
sequentially and to simplify that, every value has a built-in iterator 
Value::next_ravel() which returns a pointer to the next not-yet-initialized Cell (if 
any) and 0 after the last Cell of the ravel was returned.

 
A frequent pitfall related to the Value::next_ravel() iterator is to 
(mistakenly) use it for empty values.

Empty APL values like 0 0⍴  are never empty at the C++ level because every APL 
value V has a prototype ↑0 V⍴  whose ravel has one item stored in ravel[0]. An old 
APL joke was, How many empty arrays does it take to fill an APL workspace? One, 
if it’s big enough. If a value V is empty, then V⍴  is 0 (i.e. its ravel has length 0) but 
length 1 at C++ level (due to its prototype). For this reason, a Value has a 
Value::element_count(), which is the ravel length in APL, and a 
Value::nz_element_count() which is the ravel length in C++. The 
Value::next_ravel() iterator uses the former, which causes a segfault when used 
with an empty value. In short this means that APL values may be empty, but their 
C++ implementation are never empty and need to be properly initialized.

This implies that a proper source code loop() over a ravel MUST either use
Value::nz_element_count() (so that the prototype is initialized inside the 
loop), or else must have ruled out the empty case beforehand (and may 
then use Value::element_count() safely).

The typical design patterns are:

Value_P Z(...);   // may be empty

   loop(z, Z->nz_element_count())   // not element_count() !!!
       {
         new (Z->get_wravel(z)) XxxCell(...));   // safe, but (next_ravel_XXX() is 
not)



       }

and:

Value_P Z(...);   // may be empty

   if (Z->element_count())   // not Z->nz_element_count() !!!
      {
        // Z is not empty
        loop(z, Z->element_count())   Z->next_ravel_XXX(...)
      }
   else
      {
        new (Z->get_wproto()) XxxCell(...));   // init prototype
      }

Z→get_wproto() is the same as Z→get_wravel(0) and is used here to make the 
role of get_wravel(0) as the prototype of Z explicit.

class Value_P

APL values are rarely copied but pointers to APL values are passed back and forth 
a lot in the interpreter (in more than 1200 source code locations), It is therefore 
easy to loose a Value, which then causes a memory leak. These memory leaks were
a real plague in early GNU APL versions, but are now fixed using several counter-
measures:

• C++ overloading of operators ::new() and ::delete(). Every newly allocated 
Value, no matter if long or short, is tracked in a link list called 
DynamicObject::all_values, see DynamicObject.hh 

• The APL command )CHECK compares the values that are are reachable from
APL, e.g. via token of class TC_Value, with the values in 
DynamicObject::all_values and reports any mismatches as stale values. 

• Every value tracks itself with a ValueHistory which is, for performance 
reasons, disabled by default but can be enabled with ./configure, or with 
make develop. 

• A reference counter named Value::owner_count in combination with class 
Value_P. A value is automatically deleted when its last owner (typically a 
Token is deleted. 

• Member Value::check_ptr to detect double deletion or incorrect 

• overwriting or double deletion of a value. Every Value constructor sets 
check_ptr to (this * * 7) which points into the middle of a uint64 (of 
member Value::shape). The destructor later checks that check_ptr is still 
(this * * 7) (to detect overwriting) and clears it (to detect double deletion). 
The check_ptr is: 

• is different for every Value, 

• is a pointer that cannot occur otherwise, 

• becomes incorrect when a Value is incorrectly moved (e.g. with 



memcpy()) 

Value_P is essentially a smart pointer (aka. shared pointer). A "normal" smart 
pointer typically consists of 2 pointers: * one pointing to the object itself, and * one
to the reference counter that keeps track of the object’s ownership (aka. the 
reference counter)

In contrast, the Value_P is a single pointer (to a Value), and the reference counter 
is allocated inside the value rather than somewhere else. The small advantage of a 
"normal" smart pointer is that they are not intrusive, which means that they can be
used without any modifications of the object that they point to. But since we are in 
control of the Value class, this benefit does not really count and the smaller size of 
a Value_P outweighs the benefit of standard smart pointers. The Value_Ps are also 
decoupled from each other; one can always construct a Value_P from a Value * 
(and vice versa). The most important member functions of Value_P are:

• Value_P() : default constructor (points to no value) 

• Value_P(Value * val, const char * loc) : construct Value_P from a Value * 

• Value_P(const Value_P & other, const char * loc) : construct from other 

• Value_P(const Shape & sh, const char * loc) : construct Value_P to a new
value with shape sh. The ravel of that value is not (yet) initialized. 

• inline Value_P(const UCS_string & ucs, const char * loc) : construct an 
APL text vector whose ravel Cells are initialized from the UCS_string, 

• inline Value_P(const UTF8_string & utf, const char * loc) : construct an 
APL text vector whose ravel Cells are initialized from the UTF8_string. 
Value is ⍴ utf.size(), i.e. the UTF8 bytes are kept and no decoding into 

Unicodes is performed 

• void reset() : decrement the owner-count and clear the pointer 

• init_pointer() reset() without decrementing the owner-count 

• void clear() : reset and add an event to the ValueHistory (if enabled) 

• bool operator +() : true iff the pointer is valie (non-zero) 

• bool operator !() : true iff the pointer is invalie (zero) 

• Value * operator→() : return the Value * (to the Value) 

• Value & operator\()* : return the Value & reference (of the Value) 

• void increment_owner_count() : dito. 

• void decrement_owner_count() : dito. 

• void isolate(const char * loc) : if the value has more than one owner then 
clone (deep copy) the value and set pointer to the new copy. 

• void move(Value_P_Base & other, const char * loc) : 

• release ownership of the current pointer, 

• take ownership of other’s pointer, and 

• reset other’s pointer. This operation does not change the owner_count 



of the object. 

All functions are inline and some can throw exceptions (primarily WS FULL). Note
that some Value_P constructors above (e.g. *Value_P(const UCS_string & ucs, …) 
initialize the entire Value (shape and ravel) while others (e.g. Value_P(const Shape 
& sh) only initialize the shape and leave the initialization of the ravel to the caller. 
In fact, the construction of a Value is always a two-step process (initializations of 
the shape followed by the initializations of the ravel) and the constructors that do 
both are mere convenience constructors for frequent cases. The following design 
pattern can found in many places:

Value_P Z(...);   // construct Z (with un-initialized ravel)
   loop(x, z.element_count())   Z->next_ravel_XXX(...);   // initialize the ravel
   Z->check_value(LOC)   // set checked flag, detect un-initialized ravel items
   return Z;

The constructors for Value*s are protected (with friend *Value_P) to enforce 
that values are always constructed via Value_P::Value_P(…) rather than the 
corresponding Value::Value(…)*. On the other hand, many functions use const 
Value *" (note the const!) instead of *Value_P, primarily for passing function 
arguments. This is safe and slightly more efficient if the called function does not 
modify the Value (and hence its ownership) passed as argument.

Cloning of Values

The cloning (deep aka. recursive copy) of a Value is somewhat expensive in terms 
of performance. Cloning is, however, only needed if the clone is modified later 
(which would corrupt the original). When a Value is assigned to a Symbol (i.e. a 
variable) then it must be cloned because the variable may or may not be changed 
later. Think of a literal in a function body:

      Z←FOO∇
Z←1 2 3
      ∇

X←FOO ◊ X←4 5 6

If we do not clone the result of FOO, not cloned before assigning it to X, then the 
subsequent assignment to X would modify the body of FOO and the next call of 
FOO would return 4 5 6.

On the other hand:

      Z←FOO∇
Z←1 2 3
      ∇

X←1 + FOO ◊ X←4 5 6

is safe because the addition + does not modify the result of FOO but rather 
discards it immediately. GNU APL versions have always cloned values before 
assigning them (to be on the safe side). Current versions check how many owners 



a value has before coning them:

   Value.hh

#define NEW_CLONE

#ifdef NEW_CLONE   /* new clone() scheme */

/// clone, given a Value_P. Result is a Value_P.
# define CLONE_P(B_P, L)   (B_P)

/// clone, given a const Value *. Result is a Value_P.
# define CLONE(pB, L)      Value_P(const_cast<Value *>(pB), L)

#else   /* old clone() scheme */

/// clone, given a Value_P. Result is a Value_P.
# define CLONE_P(B_P, L)   (B_P).get()->clone(L)

/// clone, given a Value *. Result is a Value_P.
# define CLONE(pB, L)      (pB)->clone(L)

#endif

The rules are:

• If a C++ function knows from its context that cloning is not needed (like in 
the second example above) then it may CLONE() and CLONE_P(). 
Determining if the cloning is actually performed, then depends on whether 
NEW_CLONE is #defined or not. This could be a mistake and then not 
#define'ing NEW_CLONE is a quick way to fall back to the old scheme. 

• Otherwise, in particular if #define NEW_CLONE makes a difference, the 
function shall use Value→clone()* which clones unconditionally. 

Ravel Cells

The ravel of every Value is a simple C array and not a C++ std::vector<Cell>. 
The alternative std::vector<Cell>* has some performance penalties when used for 
the ravel of a Value:

• destructor calls for every Cell when the vector<> is destructed, and 

• no support for short values. 

The other alternative, linked list of Cells, was also not an option due to their 
overhead in memory allocation (one new() delete() per Cell. The huge number of 
Cells in a typical APL program on the one hand and the typical operations 
performed with the Cells on the other result in the following, somewhat conflicting,
requirements:

• fixed Cell size 

• different cell contents (character, integer, float, complex, and nested) to 
support mixed APL values. In the old APL1 all values were homogeneous 
(and the type was a property of the value and its ravel). In APL2 the type 
became a property of the ravel Cells. Some APL interpreters optimize for the 
case of homogeneous ravels (probably a fair guess for APL2 programs 



inherited from an APL1 code base) while GNU APL assumes mixed APL 
values as the default. Both assumptions (homogeneous vs. mixed) have 
advantages and drawbacks: 

• Homogeneous arrays are faster to process, but this backfires when the 
automatic type conversion of APL (bool to integer, integer to float, float
to complex takes place. 

• Loops in the mixed case for scalar functions become much simpler 
because the different combinations of types (e.g. Boolean + Boolean, 
Boolean + integer, integer + integer, …). Making e.g. dyadic +(A, B) a
virtual member function B.+(A) of B and monadic +(B) a virtual 
member function (B.+() of B, removes two case statements (with the 
dyadic one being quite ugly). 

The base class Cell therefore defines a pretty large number of virtual functions (a 
monadic and a dyadic one for each of the scalar APL functions:

   Cell.hh:

   ...
   virtual ErrorCode bif_ceiling(Cell * Z) const
   virtual ErrorCode bif_conjugate(Cell * Z) const
   virtual ErrorCode bif_direction(Cell * Z) const
   ...
   virtual ErrorCode bif_add(Cell * Z, const Cell * A) const
   virtual ErrorCode bif_and(Cell * Z, const Cell * A) const
   virtual ErrorCode bif_and_bitwise(Cell * Z, const Cell * A) const
   ...

The base class Cell is inherited by the following derived classes:

• CharCell, their relevant content is a single 32-bit Unicode, 

• IntCell, their relevant content is a single 64-bit signed integer, 

• RealCell, their relevant content is a 64-bit floating point number, 

• ComplexCell, their relevant content is two 64-bit floating point numbers 

• NumericCell, the base class of IntCell, RealCell, and ComplexCell. Many 
Cell functions are almost identical for these base classes and these functions 
are implemented in NumericCell rather than implementing a copy in each 
base class. The simple trick that replaces hundreds of C/C++ switch 
statements and *case*s is this: 

• base class Cell implements virtual functions that either throws a 
DOMAIN ERROR (e.g. for a character to integer conversion) or else 
return the desired type: 

• virtual Unicode get_char_value() const { DOMAIN_ERROR; } 

• virtual APL_Integer get_int_value() const { DOMAIN_ERROR; } 

• virtual APL_Float get_real_value() const { DOMAIN_ERROR; } 

• virtual APL_Float get_imag_value() const { DOMAIN_ERROR; } 

• virtual Value_P get_pointer_value() const { DOMAIN_ERROR } 



• virtual Cell * get_lval_value() const { LEFT_SYNTAX_ERROR; } 

• the derived classes then overload all access functions that they 
support. For example, 

• CharCell overload only get_char_value() 

• all NumericCells overload get_int_value(), get_real_value(), 
and get_imag_value() but not get_char_value(), 

• etc. 

• PointerCell, their relevant content is a (nested) APL sub value. 

• LvalCell, their relevant content is a Cell pointer. These Cells are used to 
implement "selective specification". A selective specification like (2 1↓A)←B⍴
starts with (all Cells of) its the rightmost variable A, which is then more and 
more reduced (by 1↓ and 2⍴) before the new value B can be assigned to the 
Cells that survive. 

Instead of declaring the data members of Cells in the derived class (the normal 
approach, i.e. APL_Integers as member of IntCells, APL_Float members in 
FloatCells, etc.) they are declared as a union in the base Class Cell:

   Cell.hh:
   ...
   /// A union containing all possible cell values for the different Cell types
   union SomeValue
      {
        Unicode        aval;      ///< for CharCell
        APL_Float_Base cval[2];   ///< for ComplexCell
        ErrorCode      eval;      ///< an error code
        APL_Integer    ival;      ///< for IntCell
        Cell          *lval;      ///< for LvalCell (selective assignment)
        ...
      };

This union ensures that all derived classes have the same size.

Now back to the Cell functions. We take dyadic A + B and monadic + B as an 
example, all other scalar APL functions follow suit:

1. Every scalar APL function is implemented in a separate associated class, 
derived from base class ScalarFunction. GNU APL uses the naming 
convention that the class name starts with Bif_, followed by the function 
arity (F12_ for nomadic functions, F2_ for purely dyadic functions). 

2. The interpreter creates a single static instance of each function (such static 
instances are initialized by the compiler before main() is executed). The 
instance is always called fun, here Bif_F12_PLUS::fun. At the same time, a 
pointer _fun is created. 

3. The single instance of the class is needed because the base class Function 
of class ScalarFunction has virtual functions (which is impossible for fully 
static classes). See Functions below for details. 

4. The eval_XXX() functions like Bif_F12_PLUS::eval_AB() are implemented 
in inline function calls to ScalarFunction::eval_scalar_AB() which takes 



the Cell function Cell::bif_add that distinguishes the behaviors of the (in 
total many) single instances of the classes derived from ScalarFunction. 

5. The naming convention is that the virtual Cell functions is Cell::bif_YYY. 

6. In short: base class ScalarFunction is essentially an iterator over the ravels 
the value arguments provided, and the difference between the derived 
functions are handled at the Cell level by means of different Cell functions. 

7. While this may look a little complicated at the first glance, it is fairly efficient
at runtime and saves a lot of mindless work for the GNU APL designer. 

8. To summarize the example: 

   ScalarFunction.hh:
   ...
   ///
class Bif_F12_PLUS : public ScalarFunction
{
   ...
  /// overloaded Function::eval_B().
   virtual Token eval_B(Value_P B) const
      { return eval_scalar_B(B, &Cell::bif_conjugate); }

   /// overloaded Function::eval_AB().
   virtual Token eval_AB(Value_P A, Value_P B) const
      { return eval_scalar_AB(A, B,
               inverse ? &Cell::bif_add_inverse : &Cell::bif_add); }
   ...
   static Bif_F12_PLUS * fun;           ///< Built-in function.
   static Bif_F12_PLUS  _fun;           ///< Built-in function.
};

Class IndexExpr

Class IndexExpr is a collection of 0 or more Value_Ps or elided indices, where the
Value_P 0 denotes an elided index (= all indices along an axis). IndexExpr objects
are created and deleted by the prfix parser Prefix..cc. More precisely, a 
TOK_R_BRACK (for ]), starts a new IndexExpr, a TOK_SEMICOL (for ; append 
new values (axes) to an IndexExpr, and TOK_L_BRACK finalizes the creation of the 
IndexExpr . The next token (i.e. the token left of the IndexExpr) then calls the 
appropriate function (such as Value::index() or Symbol::assign_indexed() and 
delets the IndexExpr again.

Classes Bif_XXX and Quad_XXX

APL offers a rather large number of primitives. In GNU APL, every primitive is 
implemented in its own class and according to the following rules:

• The class name has a prefix that indicates the arity of the primitive and is 
one of: 

• Bif_F0 for niladic primitives; there is only one: Bif_F0_ZILDE (for ), ⍬

• Bif_F1_ for strictly monadic primitives; there is only one: 
*Bif_F1_EXECUTE (for ), ⍎



• Bif_F2_ for strictly dyadic primitives, 

• Bif_F12_ for strictly nomadic primitives, 

• Bif_OPER1_ for monadic operators, 

• Bif_OPER2_ for dyadic operators, and 

• Quad_ for system functions. These are derived from class 
QuadFunction, primarily for grouping purposes. Note that the Quad_ 
is also used for system variables. Similar to primitives, system 
functions with a large footprint have their own .hh and .cc files, while 
the reamining ones are collected in 
QuadFunction.hh/QuadFunction.cc. 

• classes with a large code footprint have their own implementation files 
(followed by .hh or .cc), where the filename is the class name, 

• the remaining classes (with a small code footprint) are declared/implemented
implemented in files Primitivefunction.hh/Primitivefunction.cc 

• Every class is, directly or indirectly, derived from base class Function). 
Class *FunctionC defines all virtual eval_XXX() so that they thow a 
VALENCE_ERROR. 

• Every class then overrides (only) those virtual eval_XXX() whose signatures
it supports. For example, the strictly monadic primitive  (execute) overrides ⍎

virtual eval_B(), the strictly dyadic primitive  overrides ⌷ virtual eval_AB().
Most primitives are nomadic and therefore override (at least) virtual 
eval_B() and virtual eval_AB(). With this technique arity mismatches 
between the runtime parser and the supported signatures of a function (for 
example: the parser calls the stricly dyadic function ≠ monadically) are 
resolved without any runtime overhead. 

• Due to the virtual eval_XXX() functions, every class needs a single (class 
static) instance which is called _fun and every such instance fun has a 
(static) pointer named _fun pointing to it. 

Except for the APL name (i.e. a single APL character for APL primitives and APL 
character  followed by 0 or more letters for APL system functions) there is no ⎕
major difference between APL primitives and APL system functions. The different 
names are handled in Tokenizer.cc; the other noteworthy difference is that all 
APL primitives, but only a rather small subset of APL system functions (and, for 
that matter, system variables) were standardized in the ISO standard for APL2.

Symbols

A symbol identifies an APL object created by the user, i.e. a defined function or a 
user defined variable. In GNU APL, system functions ( -functions, e.g. FX) are ⎕ ⎕
NOT symbols but APL primitives. The commonality between -functions and APL ⎕
primitives is larger than the similarity between -variables and -functions. The ⎕ ⎕
only noteworthy difference between APL primitives and -functions is their name ⎕
and the fact that the APL primitives are defined in the APL standard, while most -⎕
functions and -variables are not. They are used by APL interpreter vendors to ⎕



extend their functionality (and to lock-in their customers). The C++ class 
hierarchy in GNU APL (excerpts, the full picture is shown in the .png files) are:

    html/classSystemVariable__inherit__graph.png:

        ┌─────────────┐
        │ NamedObject │
        └─────────────┘
               ↑
           ┌────────┐
           │ Symbol │
           └────────┘
               ↑
      ┌────────────────┐
      │ SystemVariable │
      └────────────────┘
               ↑
     ┌───────────────────┐
     │ NL-SystemVariable │
     └───────────────────┘
               ↑
     ╔═══════════════════╗
     ║ RO-SystemVariable ║
     ╚═══════════════════╝

and:

    html/classFunction__inherit__graph.png:

                                         ┌─────────────────────────────────┐
                                         │           NamedObject           │
                                         └─────────────────────────────────┘
                                           ↑                             ↑
                          ┌────────────────────────────────────┐     ┌────────┐
                          │             Function               │     │ Symbol │
                          └────────────────────────────────────┘     └────────┘
                            ↑                                 ↑          ↑
    ┌─────────────────────────────────────────────────────┐ ┌──────────────┐
    │               PrimitiveFunction                     │ │ UserFunction │
    └─────────────────────────────────────────────────────┘ └──────────────┘
            ↑               ↑                   ↑                  ↑
    ╔══════════════╗┌────────────────┐┌───────────────────┐    ┌───────┐
    ║ QuadFunction ║│ ScalarFunction ││ NonscalarFunction │    │ Macro │
    ╚══════════════╝└────────────────┘└───────────────────┘    └───────┘

Some explanations might be helpful:

• the common base class NamedObject: 

• provides virtual UCS_string get_name() to obtain the name of the 
object. 

• virtual const Function * NamedObject::get_function() returns a 
valid Function * for functions, otherwise 0. 

• virtual Symbol * NamedObject::get_symbol() returns a valid 
Symbol * for symbols, otherwise 0. 

• SystemVariables are variables like IO⎕ , FC⎕ , … 

• NL_SystemVariables are Non-Local system variables (for which localizing is
permitted, but has no effect): L⎕ , R⎕ , … 



• RO_SystemVariables are Read-Only global system variables (for which 
localizing makes no sense): AI⎕ , ARG⎕ , … 

• base class Function defines default behavior of (virtual eval_B(), 
eval_XB(), eval_AB(), eval_AXB() …). The default behavior is to throw a 
VALENCE ERROR, and derived classes simply overload the eval_XXX() 
functions that they implement. 

• QuadFunction, ScalarFunction, and NonscalarFunction are groupings 
that simplify the implementation. For example, all scalar functions are 
implemented in the same way and only differ by their details at the Cell level.

• UserFunctions are the only functions that are also Symbols (so that their 
name appears in the symbol table. The system functions get their name via 
their ID. 

• Macro is a UserFunction that is defined and can only be used by the 
interpreter itself. It cannot be called from APL programs and simplifies built-
in operators when they are called with UserFunction arguments 
considerably. 

Symbols are created when the tokenizer detects a name for the first time 
SymbolTable::lookup_symbol(), SymbolTable::lookup_existing_symbol(), and
SymbolTable::add_symbol(). Every symbol has a stack Symbol::value_stack of 
ValueStackItems, which is pushed when the symbol is localized (at the beginning 
of a defined function) and popped when the execution of the defined function ends.
The ValueStackItem at the top of the Symbol::value_stack defines the role 
(scope) that the symbol currently has. The possibilities are:

    NamedObject.hh:

enum NameClass
{
  NC_INVALID          =  0x0100,   ///< invalid name class.
  NC_UNUSED_USER_NAME =  0x0200,   ///< unused user name, not yet assigned
  NC_LABEL            =  0x0401,   ///< Label.
  NC_VARIABLE         =  0x0802,   ///< (assigned) variable.
  NC_FUNCTION         =  0x1003,   ///< (defined) function.
  NC_OPERATOR         =  0x2004,   ///< (defined) operator.
  NC_SYSTEM_VAR       =  0x4005,   ///< system variable.
  NC_SYSTEM_FUN       =  0x8006,   ///< system function.
  NC_case_mask        =  0x00FF,   ///< almost NC⎕
  NC_bool_mask        =  0xFF00,   ///< for fast selection

  NC_FUN_OPER         = (NC_FUNCTION | NC_OPERATOR) & NC_bool_mask,
  NC_left             = (NC_VARIABLE         |
                         NC_UNUSED_USER_NAME |
                         NC_SYSTEM_VAR       |
                         NC_INVALID          //  , , xx⎕ ⍞ ⎕
                        ) & NC_bool_mask
};

The NameClass is equally well suited for C/C++ switch statements (by using the 
lower byte) and for testing groups of NameClasses (by using the upper byte). 
After the tokenization (or localization) of a symbol it has the NameClass 
NC_UNUSED_USER_NAME; this changes to e.g. NC_VARIABLE when a value is 
assigned to the symbol, or to NC_FUNCTION when a defined function with the 



name of the symbol is defined with FX⎕  or the ∇-editor.

The actual role of a user defined symbol can change over time, while the role of a 
system name is fixed and cannot be changed. E.g. IO⎕  is always a variable and 

UCS⎕  is always a function.

Classes SymbolTable and SystemSymTab

Every Symbol is contained in one of two symbol tables:

• User-defined symbols are stored in a static instance of class SymbolTable, 
while 

• system defined symbols (for system functions and system variables) are 
stored in a static instance of class SystemSymTab. 

Both symbol tables are contained in the base class Workspace_0 of the static 
instance Workspace::the_workspace. The classes SymbolTable and 
SystemSymTab have a lot in common, but also differences. The common 
functionality is implemented in their template base class SymbolTableBase:

SymbolTable.hh:
   ...
/// common part of user-defined names and distinguished names
template <typename T, size_t SYMBOL_COUNT>
class SymbolTableBase
{
   ...
};

The differences are:

• the table size (256 entries for SystemSymTab and 65536 entries for user 
defined names (constant SYMBOL_HASH_TABLE_SIZE in file 
SystemLimits.def 

• On success the lookup of a user defined name returns a Symbol *, while a 
lookup of a system name returns a SystemName *. Symbols are somewhat 
more complicated than SystemName because their role (like function or 
variable) can change over time while every SystemName has a fixed role 
(either function or variable) cannot. Also, every SystemName has a unique Id
(defined in Id.def) while all user defined symbols have the same Id named 
ID_USER_SYMBOL. 

• In a way SystemNames are more lightweight versions of Symbols. 

• Symbol lookup. A lookup function has a single UCS_string argument with the
name of a symbol. It returns a valid pointer on success and 0 otherwise. 

• The base class SymbolTableBase has a lookup function 
SymbolTableBase::lookup_existing_symbol() which returns a valid 
(non-zero) pointer. 

• The derived class SymbolTable has another lookup function 
SymbolTable::lookup_symbol() which always succeeds. Instead of 
returning 0 to indicate that a given symbol name is not in the table, it 



creates a new symbol with the name given. 

• In contrast, class SystemSymTab has functions add_function() and 
add_variable() to add system functions and system varibles (whose 
role is, unlike for user defined names, implied by their Id). 

• Both tables use a hash function SymbolTableBase::function 
compute_hash() to determine the position of a name in the table, from 
which a linked list of colliding names starts. 

• Erased names are not removed from a symbol table, but rather marked 
erased in the Symbol itself, while the symbol name remains in the table. This 
is to avoid searching of a user defined symbol in all existing tokens. Also, a 
symbol name could be )ERASEd at the top level but still exist as the name of 
a local in some defined function. 

The lookup (and possibly insertion of a new) Symbol uses the following algorithm 
(SymbolTable::lookup_symbol(const UCS_string & sym_name)):

1. compute a hash value from sym_name 

2. if symbol_table[hash] is 0 then the name is the first symbol with that hash 
(unsuccessful lookup case 1.) 

1. Create a new Symbol with the name sym_name, 

2. Store the new symbol in symbol_table[hash], and 

3. return. the new symbol. 

3. Otherwise one or more symbols with the same hash already exists and the 
name may or may not already exist in the symbol table. 

1. Chase the linked list from symbol_table[hash] to its end (via pointer 
Symbol::next). 

2. If a symbol with name sym_name is detected on the way then return 
that symbol (successful lookup). 

4. Otherwise sym_name was not in the table. Chase the linked list again. 

1. If a symbol is detected on the way with: 

1. an empty value stack, or 

2. a value stack with 1 item and name class 
NC_UNUSED_USER_NAME, 

3. then re-initialize that symbol with a new name sym_name and 
return the symbol (unsuccessful lookup case 2). The condition 
4.a.i. or ii. is returned by Symbol::is_erased(). 

• Otherwise (unsuccessful lookup case 3), the linked list 
contains no erased symbols that could be re-used. Append a
new Symbol at the end of a list, like in (unsuccessful lookup
case 1.) above. 

This algorithm

• avoids unnecessary creation of new symbols by re-using formerly erased 



symbols (step 4.a.i above), and 

• avoids unnecessary removals and insertions into the linked list by not 
removing symbols that are (temporarily) not used, e.g. after an )ERASE 
command. 

The case 4.a.i is not (or no longer) supposed to happen since all Symbol 
constructors now push() an item with name class NC_UNUSED_USER_NAME 
onto the Symbol’s value stack and the pop() function asserts if the last item of the 
value stack would be removed,

The primary user of the symbol tables is the tokenizer (which translates human 
readable names into Symbols. The vast majority of symbol table lookups occur 
when APL code is tokenized (∇-editor, FX) along with only a few system functions⎕
(those that use variable or function names or APL code strings at runtime).

Executables

Every APL input line is first tokenized, and the result of this tokenization is an 
Executable. The primary content of any Executable is a TokenString named 
body:

   Token.hh:

class Token_string : public  std::vector<Token> { ... }

    Executable.hh:

// Base class for ExecuteList, StatementList, and UserFunction
class Executable
{
   ...
   Token_string body;
   ...
}

The rest of class Executable are helper functions that support the execution of the
raw body.

There are 3 cases where Executables are produced (in order of decreasing 
relevance):

1. The definition of a defined function, either interactively with the ∇-editor, or 
programmatically in APL with FX⎕ . 

2. The evaluation of a single input line in immediate execution, and 

3. The evaluation of an APL string with APL primitive  (aka. Execute). ⍎

For each of these 3 cases (which also correspond to the ParseMode mentioned 
above), a corresponding class for that case is derived:

    Executable.hh:
    ...
class UserFunction : public Function, public Executable { ... }
class StatementList : public Executable { ... }
class ExecuteList : public Executable { ... }
    ....



In some debug outputs, as well as in some commands and in SI, the derived class ⎕
of a particular Executable is displayed as a single character like this:

• class UserFunction: ∇ 

• class StatementList: ◊ 

• class ExecuteList:  ⍎

Each of a derived class has a static function fix() which creates an instance of that 
class. The fix() function acts as a constructor for the derived class. Unlike a 
normal constructor (which either returns a valid object of the class or else throws 
an execption, the fix() function returns 0 if the construction fails (typically due to 
some SYNTAX ERROR in the input line(s) passed to it. The fix() functon of class 
UserFunction is essentially the implementation of monadic FX⎕ , and is also 
called after the ∇-editor finalizes a function definition (trailing ∇).

The main differences between the 3 classes are:

Derived Class Number of
lines 

Statements/
Line 

Jumps/
Labels

Arguments Result

ExecuteList single line one no no yes

StatementList single line several no no no

UserFunction ∇, 
FX⎕

multiple lines several yes yes yes

UserFunction 
{ … }

single line one no yes yes

Classes ExecuteList and StatementList

The execution of ExecuteLists and StatementLists is rather simple: the tokens of
their body are intepreted from the start of the body to its end, no arguments can 
be passed to the body, no change of the execution with branches (→N), etc..

Class UserFunction

Defined functions (class UserFunction) are far more complex. As can be seen 
above, class UserFunction inherits from the two classes Function and 
Executable.

The inheritance from Function overrides its various virtual eval_XXX() functions, 
so that a defined function can be called like an APL primitive, The arity of a defined
function (monadic, dyadic, operator, etc.) is determined by the function header and
since class UserFunction cannot know it before the header is parsed, it must 
overload all possible virtual eval_XXX() declared in base class Function.

The inheritance from Executable provides the construction of the body 
(tokenization of the function lines (in class Tokenizer), pre-parsing (in class 
Parser), and some optimizations (also in class Parser).



There are two aspects of class UserFunction that are not considered in either of 
its base classes:

• Local variables, and 

• Branches (→N) 

These aspects are implemented by means of two member variables * 
vector<Function_PC> UserFunction::line_starts is a jump table that tells, for 
every function line N, which token is the start of line N in the (linear) body of the 
executable. For APL jump statement, say →N, line_starts[N] is the first token in 
line N and its execution simply continues at token body[line_starts[N]. * when a 
defined function is called then its arguments (if any) are assigned to the formal 
arguments declared in the function header and the local variables in the header 
are pushed. This happens in member UserFunction::UserFunction_header 
header, which is a functional grouping of the somewhat large class 
UserFunction.

Let:

Z←A SUM B;C;D∇
 Z←A + B
∇

The typical life-cycle of Userfunction SUM is then:

1. The Userfunction named SUM, is created with the ∇-editor or with FX⎕  
(which calls Userfunction::fix()). 

2. The APL pattern matching (Prefix.cc) detects a call of SUM, say pattern 3 
SUM 42. 

3. The function is called: 

1. Symbols Z, A, B, C, and D are pushed (and become, at this point in 
time, temporarily undefined). 

2. The actual arguments 2 and 42 of SUM are assigned to the formal 
arguments A and B of SUM. that is, A←3 ◊ B←42; C and D remain 
unassigned. 

3. The Executable::body is executed. This computes Z←45. 

4. At some point in time SUM returns (either when the end of the body is 
reached, or the when execution is stopped explitly (e.g. →0). 

1. The current value of Z (if any) is set aside (and will later be returned to
the caller). 

2. The Symbols Z, A, B, C, and D are popped again (restored). 

3. The pattern matched above (3 FOO 42) is replaced by former value of 
Z (i.e. 45). 

Class StateIndicator

An Executable, as described above, is a static object that is essentially the 



tokenization of some APL source code string(s). An Executable is created once and 
deleted if no longer needed. Between the creation and the deletion of an 
Executable it remains unchanged (aka. static). An Executable is therefore 
comparable to the object code (binary) of a compiled language.

To produce a result, an Executable must be executed. While the Executable itself 
remains unchanged, the different executions of the same Executable can have 
rather different results, e.g. an APL value in one execution and an error in another.

Every execution of an Executable is performed in a context which tracks the state 
and the progress of the execution. This context is an object of class 
StateIndicator. The complete execution of an Executable consists of the following
principle steps:

1. Creation of a new StateIndicator, then 

2. Execution of the Tokens in the body of the executable, then 

3. returning the result of the execution (if any) to the initiator of the execution, 
and finally 

4. Destruction of the StateIndicator. 

In step 2. above, the execution of (the same or a different) executable is started, 
i.e. before the current execution has completed. To accomplish this, the different 
contexts of different executions, regardless of whether the execution concerns the 
same Executable (direct recursion) or different ones (function call, possibly 
indirect recursion), are organized as a stack, known as the )SI stack. In GNU APL 
the )SI stack is a singly-linked list of StateIndicator objects, the link between 
adjacent StateIndicator objects in the )SI stack is member 
StateIndicator::parent.

The constructor of StateIndicator has two arguments: the executable to be 
executed and the parent that has initiated the execution:

StateIndicator.hh:
   ...
  /// constructor
   StateIndicator(const Executable * exec, StateIndicator * _par);
   ...

The constructor initializes StateIndicator::parent, which does not change 
thereafter. Since the )SI stack is a linked list, it can be represented as a single 
pointer to the most recent StateIndicator object. This pointer is stored in class 
Workspace:

Workspace.hh:
   ...
   /// the SI stack. Initially top_SI is 0 (empty stack)
   StateIndicator * top_SI;

The full picture is something like this:

╔═══ Workspace ═══╗     ╔═════ StateIndicator ═══╗



║        ┌──────┐ ║     ║┌──────┐                ║
║        │top_SI├─╫─ → ─╢│  0   │                ║    (latest )SI entry)
║        └──────┘ ║     ║└──────┘                ║
╚═════════════════╝     ╚╤═══════════════════════╝
                         ↑
                     ╔═══╪═ StateIndicator ═══╗
                     ║┌──┴───┐                ║
                     ║│parent│                ║
                     ║└──────┘                ║
                     ╚╤═══════════════════════╝
                      ↑
                               ...
                      ↑
                  ╔═══╪═ StateIndicator ═══╗
                  ║┌──┴───┐                ║
                  ║│parent│                ║
                  ║└──────┘                ║
                  ╚╤═══════════════════════╝
                   ↑
               ╔═══╪═ StateIndicator ═══╗
               ║┌──┴───┐                ║
               ║│parent│                ║    (oldest )SI entry)
               ║└──────┘                ║
               ╚════════════════════════╝

By and large the only active StateIndicator is the topmost one. The StateIndicators
below it are relatively passive and only come back to life when the topmost 
StateIndicator, sometimes refered to as TOS (for Top Of Stack has finalized step 4.
above. An error in the execution of TOS normally does not end it, but pushed 
another StateIndicator (with mode immediate execution) onto the stack. The only 
cases that remove (pop) one or more items from the SI stack are:

• the executable in TOS reaches the end of the body of its Executable. This is 
the normal case, 

• the user issues )SIC command (in immediate execution mode). This clears 
the entire )SI stack, 

• the executable in TOS performs a → statement (aka. Escape), which rolls 
back the stack until the pop’ed StateIndicator was an Executable with mode 
immediate execution. That Executable was the one pushed above (i.e. due to 
an error). This pops the topmost item(s) until the TOS is an immediate 
execution context, 

• the execution of TOS had an error and TOS was under the control of EA, ⎕
EB, or EC. This pops the topmost item(s) until TOS has the EA, EB, or ⎕ ⎕ ⎕ ⎕
EC that catches the error (as opposed to the normal error handling which ⎕

would have pushed another StateIndicator onto the stack rather than 
popping items of it). 

The TOS is needed in many different situations, therefore class Workspace 
provides, for convenience, a number of static wrapper functions that access 
frequently used members of its top_SI.

Strictly speaking the APL )SI stack refers to the entire linked list of 
contexts, i.e. to Workspace::top_SI. In GNU APL, though, the 
StateIndicator class implements an individual entry in that linked list.

The Class has two more members of interest:



StateIndicator.hh:
   ...
   /// details of the last error in this context.
   Error error;

   /// the current-stack of this context.
   Prefix current_stack;
   ...

StateIndicator::error contains the error information (if any) for the 
StateIndicator, e.g. for EM. There can be several StateIndicators on the stack ⎕
that were (temporarily) suspended and can be continued later (by some →N back 
into the failed Executable and therefore information on several errors may be 
present in the different StateIndicator objects.

StateIndicator::current_stack is far more interesting. It manages the inner loop 
that runs along the body of the Executable of the StateIndicator. See below.

Class Prefix

Class Prefix is an iterator over the body of an Executable. Its most important 
member is a stack named content:

Prefix.hh:

   ...
   /// put pointer (for the next token at PC). Since content is a stack,
   /// its put position is also its size.
   int put;

   /** the lookahead tokens (tokens that were shifted but not yet reduced).
       \b content is in body order, that is, content[0] is the oldest
       (= rightmost in APL order) token and content[put - 1] is the latest.
    **/
   Token_loc content[MAX_CONTENT];
   ...
   /// one phrase in the phrase table
   struct Phrase
      {
        const char *   phrase_name;     ///< phrase name
        const char *   reduce_name;     ///< reduce function name
        void (Prefix::*reduce_fun)();   ///< reduce function
        unsigned int   phrase_hash;     ///< phrase hash
        int            prio;            ///< phrase priority
        int            misc;            ///< 1 if MISC phrase
        int            phrase_len;      ///< phrase length
        uint8_t        sub_nodes[TC_MAX_PHRASE+1];   ///< parent nodes
      };

Member Prefix::content is by and large processed as follows:

1. The constructor Prefix::Prefix() starts with an empty stack. 

2. If the stack starts with a valid phrase, then: 

1. The function Phrase::reduce_fun in the phrase is called; 

2. The reduce_fun() is a non-static member of class Prefix and can 
therefore access the content in order to produce a result. The 



reduce_fun() has no arguments because accessing content directly is 
far more efficient than using (C++) function arguments. 

3. The reduce_fun() will then: 

1. extract the relevant data from the tokens Prefix::content, 
remove (pop) the tokens from the Prefix::content, and 

2. push the result (if any) onto the Prefix::content. 

3. Otherwise the stack does not start with a valid phrase. In this case the next 
Token_loc is fetched from the body of the Executable. 

The following picture may illustrate the above (the entire algorithm is somewhat 
more complicated):

      ╔══ StateIndicator::Executable->body ═════╗
      ║                                         ║
      ║ PC=0  ... PC=k-1  PC=k   ...            ║   PC is Prefix::PC
      ║┌────┐     ┌─────┐ ┌───┐ ┌───┐ ┌───┐     ║
      ║│ T0 │ ... │ T ₁│ │ T │ │ T │ │ T │ ... ║   bodyₖ₋ ₖ
      ║└────┘     └─────┘ └─┬─┘ └───┘ └───┘     ║
      ╚═════════════════════│═══════════════════╝
                            │
                            ↓ Prefix::push_next_token()
                            │
                        ╔═══│══ Prefix::content ═════════╗
                        ║ ┌─┴─┐┌─────┐ ┌─────┐ ┌───┐     ║
                ┌─── → ───│ T ││ T ₁│ │ T ₂│ │ T │ ... ║ₖ ₖ₋ ₖ₋
                │       ║ └─┬─┘└──┬──┘ └──┬──┘ └───┘     ║
                │       ╚═══│═════│═══════│══════════════╝
                │           │     │       │
                ↑         at0() at1()   at2()
                │           │     │       │
                │         ┌─┴─────┴───────┴─┐
                │         │  reduce_XXX()   │   i.e. (*Phrase::reduce_fun)()
                │         └───────┬─────────┘
                │                 │
                └──── result ─────┘
                Prefix::pop_args_push_result(result)

Apart from Prefix::content, Prefix has the following members of interest (the 
others just helpers that make the code more readable):

• The Functions Prefix::at0(), Prefix::at1(), Prefix::at2(), and Prefix::at3() 
are primarily used by the different Phrase::reduce_funs in order to access 
the (up to) 4 leftmost items in Prefix::content. The phrases have different 
lengths (from 1 to 4) and the matching of a phrase guarantees that 
sufficiently many Token_locs exist on the stack. It is important to note that, 
although the body of the Executable is in reversed order as explained 
earlier, at0(), at1(), at2(), at3() are in APL order (to make the code easier to 
understand). For example the items in phrase A + B are: 

• at0() ←→ A, 

• at1() ←→ +, and 

• at2() ←→ B. 

• Put differently, Prefix::content, has a "hot end" that is manipulated with 



Prefix::push_next_token() and the various reduce_XXX() functions and a "cold
end" containing tokens that are put on ice for a while. 

• Prefix::PC is the Program Counter. The APL interpreter can be considered 
as a (lightweight) virtual machine whose opcodes are Tokens and whose 
program(s) are lists of Tokens (= Executables). In this model PC is the 
program counter of the virtual machine. 

• The excution of an executable starts with PC=0 (= start of the body) in 
constructor Prefix::Prefix(). 

• Whenever a new Token_loc is needed (in Step 3. above) then the new 
Token_loc is: Token_loc(body[PC], PC) and PC is incremented. 

• The execution is complete when PC == body.size() (or after →0 in 
defined functions). 

• saved_MISC: many APL functions are nomadic, which means that they can 
be called monadically or dyadically. This includes most APL primitives and 
all non-niladic defined functions. 

• There is a fixed set of MISC tokens (more precisely: TokenClasses) 
that cause a nomadic function to be evaluated monadically: ← → [ ◊ F C 
M and (. 

• All phrases that start with a MISC token (and differ only by that token) 
use the same Phrase::reduce_fun. For example, the two APL 
statements X←⌊1.5 and -⌊1.5 will both first match phrase MISC_F_B. 
This is because 

• (aka. F) and ← are MISC tokens. Therefore both phrases will first 
compute ⌊1.5 in Prefix::reduce_MISC_F_B_() and result 1. 

• In contrast, in APL statement 2⌊1.5 the leftmost value 2 is NOT a MISC
token and therefore Prefix::reduce_A_F_B_() will be called. 

• Unfortunately the decision about whether 
Prefix::reduce_MISC_F_B_() or Prefix::reduce_A_F_B_() matches 
can only be made after either MISC or A was fetched. IOW: this 
decision requires a lookahead of 1 token (and Prefix is therefore 
essentially a so-called LALR(1) parser). If the decision is in favor of 
Prefix::reduce_A_F_B_(), then everything is fine. However, for 
Prefix::reduce_MISC_F_B_() the MISC token is not used and must be 
considered somehow. The solution is to store the MISC token in C++ 
variable Prefix::saved_MISC. Note that one cannot simply decrement 
the PC in order to undo the fetching of the MISC token. Decrementing 
the PC looks much simpler at first glance, but would only work if the 
MISC token came directly from the body of the Executable. 
Sometimes, though, (defined function F, defined operator M, or 
complete index C) the MISC token is the result of a Symbol resolution 
(cases F and M) or even of a prior computation with side effects (case 
complete index C). 

The following picture is a slightly more detailed version of the previous one:



      ╔══ StateIndicator::Executable->body ═════╗
      ║                                         ║
      ║ PC=0  ... PC=k-1  PC=k   ...            ║   PC is Prefix::PC
      ║┌────┐     ┌─────┐ ┌───┐ ┌───┐ ┌───┐     ║
      ║│ T0 │ ... │ T ₁│ │ T │ │ T │ │ T │ ... ║   bodyₖ₋ ₖ
      ║└────┘     └─────┘ └─┬─┘ └───┘ └───┘     ║
      ╚═════════════════════│═══════════════════╝
                            ↓
    Prefix::saved_MISC      │
                 ┌────┐     │
             ┌───┤ T  ├─ → ─┤ saved_MISC ≠ TOK_VOID, otherwise body[PC++]ₖ
             │   └─┬──┘     ↓       in: Prefix::push_next_token()
             │     │        │
             │     ↑    ╔═══│══ Prefix::content ═════════╗
             │     └──MISC──┤                            ║
             │          ║   ↓                            ║
             ↑          ║ ┌─┴─┐┌─────┐ ┌─────┐ ┌───┐     ║
             │  ┌─── → ───│ T ││ T ₁│ │ T ₂│ │ T │ ... ║ₖ ₖ₋ ₖ₋
             │  │       ║ └─┬─┘└──┬──┘ └──┬──┘ └───┘     ║
             │  │       ╚═══│═════│═══════│══════════════╝
             │  │           │     │       │
             │  ↑         at0() at1()   at2()
             │  │           │     │       │
             │  │         ┌─┴─────┴───────┴─┐
             │  │         │  reduce_XXX()   │   i.e. (*Phrase::reduce_fun)()
             │  │         └──────┬──┬───────┘
             │  │                │  │
             │  └──── result ────┘  │    in: Prefix::reduce_XXX()
             │                      │           └─── pop_args_push_result()
             │                      │
             └──── clear_MISC() ────┘    in: Prefix::reduce_A_XXX()
                                 but not in: Prefix::reduce_MISC_XXX()

APL Functions

APL knows two types of functions:

• APL primitives (functions and operators) and system functions. They are 
defined by the interpreter itself and are implemented in C++, and 

• defined functions, They are defined by the APL programmer. 

Every function has a signature that defines the combination of arguments that the
function can be called with. The total number of possible signatures is somewhat 
large, but a single function only implements a rather small subset of them and 
returns a VALENCE ERROR when the Prefix parser calls a function with a 
signature that the called function does hot support. In GNU APL the signature is a 
bitmap of signature atoms where every atom corresponds to a possible position 
of an argument in a Prefix pattern. However, not all possible bitmaps are valid 
signatures (e.g. a function with a left argument but no right argument):

   APL_types.hh:
   ...
/// signature of a defined function
enum Fun_signature
{
   // signature atoms
   //
   SIG_NONE            = 0,      ///<
   SIG_Z               = 0x01,   ///< function has a result
   SIG_A               = 0x02,   ///< function has a left argument



   SIG_LO              = 0x04,   ///< operator left operand
   SIG_FUN             = 0x08,   ///< function (always set)
   SIG_RO              = 0x10,   ///< operator right operand
   SIG_X               = 0x20,   ///< RO has an axis
   SIG_B               = 0x40,   ///< function has a right argument

  // operator variants
   //
   SIG_FUN_X           = SIG_FUN | SIG_X,     ///< function with axis
   SIG_OP1             = SIG_LO  | SIG_FUN,   ///< monadic operator
   SIG_OP1_X           = SIG_OP1 | SIG_X,     ///< monadic operator with axis
   SIG_OP2             = SIG_OP1 | SIG_RO,    ///< dyadic operator
   SIG_LORO            = SIG_LO  | SIG_RO,    ///< monadic or dyadic operator

   // argument variants
   //
   SIG_NIL             = SIG_NONE,            ///< niladic function
   SIG_MON             = SIG_B,               ///< monadic function or operator
   SIG_DYA             = SIG_A | SIG_B,       ///< dyadic function or operator

   // allowed combinations of operator variants and argument variants...

   // niladic
   //
   SIG_F0              = SIG_FUN | SIG_NIL,             ///< dito

   SIG_Z_F0            = SIG_Z   | SIG_F0,              ///< dito

   // monadic
   //
   SIG_F1_B            = SIG_MON | SIG_FUN,             ///< dito
   SIG_F1_X_B          = SIG_MON | SIG_FUN_X,           ///< dito
   SIG_LO_OP1_B        = SIG_MON | SIG_OP1,             ///< dito
   SIG_LO_OP1_X_B      = SIG_MON | SIG_OP1_X,           ///< dito
   SIG_LO_OP2_RO_B     = SIG_MON | SIG_OP2,             ///< dito

   SIG_Z_F1_B          = SIG_Z   | SIG_F1_B,            ///< dito
   SIG_Z_F1_X_B        = SIG_Z   | SIG_F1_X_B,          ///< dito
   SIG_Z_LO_OP1_B      = SIG_Z   | SIG_LO_OP1_B,        ///< dito
   SIG_Z_LO_OP1_X_B    = SIG_Z   | SIG_LO_OP1_X_B,      ///< dito
   SIG_Z_LO_OP2_RO_B   = SIG_Z   | SIG_LO_OP2_RO_B,     ///< dito

   // dyadic
   //
   SIG_A_F2_B          = SIG_DYA | SIG_FUN,             ///< dito
   SIG_A_F2_X_B        = SIG_DYA | SIG_FUN_X,           ///< dito
   SIG_A_LO_OP1_B      = SIG_DYA | SIG_OP1,             ///< dito
   SIG_A_LO_OP1_X_B    = SIG_DYA | SIG_OP1_X,           ///< dito
   SIG_A_LO_OP2_RO_B   = SIG_DYA | SIG_OP2,             ///< dito

   SIG_Z_A_F2_B        = SIG_Z   | SIG_A_F2_B,          ///< dito
   SIG_Z_A_F2_X_B      = SIG_Z   | SIG_A_F2_X_B,        ///< dito
   SIG_Z_A_LO_OP1_B    = SIG_Z   | SIG_A_LO_OP1_B,      ///< dito
   SIG_Z_A_LO_OP1_X_B  = SIG_Z   | SIG_A_LO_OP1_X_B,    ///< dito
   SIG_Z_A_LO_OP2_RO_B = SIG_Z   | SIG_A_LO_OP2_RO_B,   ///< dito
};
   ...

There are 0x80 = 128 possible signature bitmaps of which 22 are valid.

The base class Function of all functions has a non-virtual function 
get_signature() which is computed from some virtual functions related to 
signature atoms:

   Function.cc:
   ...



un_signature
Function::get_signature() const
{
int sig = SIG_FUN;
   if (has_result())   sig |= SIG_Z;
   if (has_axis())     sig |= SIG_X;

   if (get_oper_valence() == 2)   sig |= SIG_RO;
   if (get_oper_valence() >= 1)   sig |= SIG_LO;

   if (get_fun_valence() == 2)    sig |= SIG_A;
   if (get_fun_valence() >= 1)    sig |= SIG_B;

   return Fun_signature(sig);
}

System functions do not use signatures because their classes know the signatures 
that they support already at compile time. Defined functions are different because 
all are handled by the same class UserFunction even though the signatures of 
different functions are defined by the user in the function header and the 
signatures differ. The only class that cares about the signature (of its left function 
argument) is Bif_OPER1_EACH.

For every signature XXX that a function class supports it must overload the 
corresponding eval_XXX() function. In our example, primitive + supports monadic
+B and dyadic A+B. It therefore overloads eval_B() and eval_AB(). Likewise the 
axis variant A[X] is overloaded with eval_AB() and then delegated to their 
companions in class ScalarFunction.

   ScalarFunction.hh:
   ...
   class Bif_F12_PLUS : public ScalarFunction
   {
   ...
  virtual Token eval_B(Value_P B) const
      { return eval_scalar_B(B, &Cell::bif_conjugate); }

   /// overloaded Function::eval_AB().
   virtual Token eval_AB(Value_P A, Value_P B) const
      { return eval_scalar_AB(A, B,
               inverse ? &Cell::bif_add_inverse : &Cell::bif_add); }
   ...
   }

You may wonder what is the matter with bif_add_inverse(). Some 
primitives have an inverse function which, if present, can be used by the 
dyadic operator ⍣ (power operator, not to be confused with the power 
function ⋆) for negative power arguments. The inverse of A+B is A-B 
because A = (A+B)-B. Most of the circular functions "A○B" have inverses 
but most others do not. The power operator is, for good reasons, neither 
defined in the ISO APL standard, nor in the IBM APL2 language reference, 
but implemented in GNU APL. Avoid it where possible.

To summarize the execution of APL functions:

1. The Prefix parser matches a pattern, for example A F B. 

2. The reduce function for the pattern A F B is reduce_A_F_B(). 

3. The Function * in token F is e.g. Bif_F12_PLUS::fun. 



4. The pattern also implies that the eval_AB() function of F, i.e. 
Bif_F12_PLUS::fun→eval_AB(A, B) shall be called in order to prduce the 
reduction result. 

5. Bif_F12_PLUS::fun→eval_AB() is inlined and calls 
ScalarFunction::eval_AB() with argument Cell::bif_add. It returns some 
result Z. 

6. The Prefix parser replaces A F B with Z which finalizes the execution of A F 
B. 

All other derivates of class Function are executed in the same fashion.

Important differences

An important difference between ExecuteList, StatementList, and 
UserFunction concerns the last token in their body. This token is not produced by
the tokenizer (since there is no APL code for it), but by the corrsponding fix() 
function of the derived class. The last token determines if and how a value is 
returned to the caller of the executable:

Executable Type Final Token Result
ExecuteList TOK_RETURN_EXEC APL Value

StatementList TOK_RETURN_STATS None

UserFunction w/o result TOK_RETURN_VOID None

UserFunction with 
result

TOK_RETURN_SYMBOL APL Value (if assigned)

Class Nable

Class Nable implements the interactive function editor (for lack of a better name, 
sometimes referred to as the ∇-editor). The constructor Nable::Nabla(const 
UCS_string & cmd) starts the editor with the first editor command (which either 
creates a new function or else modifies an existing one). Every serious APL 
programmer knows the ∇-editor and its implementation is straightforward.

IBM APL2 defines the ∇-editor to be recursive (so one can start the editing of some
other defined function while editing another defined function), this feature was not
implemented in the GNU APL editor.

Class Workspace

Class Workspace is a container that includes all objects that were created or 
modified by the user (through the execution of APL programs, APL commands, 
and/or APL expressions). These objects are:

• Defined functions, 

• User variables, 

• (The values of) System variables, 



• the symbol table, and 

• The state indicator, aka. the SI stack. 

APL primitives are constant in nature therefore need not be stored in a workspace.

The APL interpreter has (only) one static Workspace instance named 
Workspace::the_workspace.

The )SAVE command serializes the binary Workspace::the_workspace into a 
human readable .xml file. The )LOAD or )COPY commands may later de-serialized 
a .xml back into the Workspace::the_workspace of another APL session. Many of 
the APL commands modify the state of Workspace::the_workspace. According to 
Workspace.hh the data relevant members of class Workspace are:

    Workspace
    ╔═══════════════════════════════════╗
    ║ ┌─────────┐ ┌────────────┐        ║
    ║ │ WS_name │ │ APL prompt │        ║
    ║ └─────────┘ └────────────┘        ║
    ║                                   ║
    ║   ┌─────────────────┐             ║
    ║ ┌─┴───────────────┐ │             ║
    ║ │ System Variable ├─┘          ║∘∘∘
    ║ └─────────────────┘               ║
    ║                                   ║
    ║   ┌────────────────┐              ║
    ║ ┌─┴──────────────┐ │              ║
    ║ │ StateIndicator ├─┘           ║∘∘∘
    ║ └────────────────┘                ║
    ╚═══════════════════════════════════╝

As a matter of fact, class Workspace is derived from a simple container 
Workspace_0 which contains 2 more items symbol_table and 
distinguished_names,

Workspace.hh:

class Workspace_0
{
protected:
   /// the symbol table for user-defined names of this workspace.
   SymbolTable symbol_table;

   /// the symbol table for system names (aka. distinguished names) of
   /// this workspace.
   SystemSymTab distinguished_names;
};

The idea between this distribution between base class Workspace_0 and derived 
class Workspace is twofold:

1. It ensures that the two symbol tables symbol_table (for user-defined names)
and distinguished_names for system functions and system variables are 
properly initialized (to empty tables) so that the constructor of the derived 
class Workspace can simply add system functions and variables without 
taking care of draining the tables first. 

2. It separates the interpreter state produced by the user (and which is )SAVEd



into a .xml file) from the interpreter state produced by the intialization of the 
interpreter itself. Since system functions are constant in nature, they have no
state related to them. Therefore the initial state of the interpreter is 
primarily the state of all system variables, for example after a )CLEAR 
command. 

Class XML_Archive

The )SAVEing or )LOADing of workspaces into or from resp. .xml files is a 
somewhat lengthy process. It therefore has its own implementation files 
Archive.hh and Archive.cc. Class Workspace is the only user of these classes. 
There are actually 3 classes:

• Class XML_Archive is the base class. It merely contains an enum 
ArchiveSyntax for verifying that the archive software versions of a
)LOADed .xml file is compatible with the software version that )SAVEd the 
archive (and warns the user if not). 

• Derived class XML_Saving_Archive contains the functions for serializing a 
Workspace object into a file. Serializing means that the internal (binary) 
representation of a workspace is written into a (human readable) format 
from which it can later be de-serialized. IOW: class derived 
XML_Saving_Archive implements the )SAVE command. 

• Class XML_Loading_Archive contains the functions for de-serializing a 
Workspace object from the (human readable) format back to its internal 
(binary) representation. IOW: class XML_Loading_Archive implements the 
various )LOAD and )COPY commands for .xml files. 

Serialization (APL to XML)

The serialization is split into a small number of categories or loops. Each such loop
interates over the same kind of data structures in the workspace. To simplify the 
later de-serialization of a .xml file, the order of the different loops matters, while 
the order of items inside a loop is arbitrary. The loops are:

1. loop over all defined functions, then 

2. loop over all APL values, then 

3. loop over all symbols, then 

4. loop over user defined commands (a non-standard GNU APL feature), then 

5. loop over )SI stack entries. 

The de-serializer expects the XML tags to appear in the same order. The following 
table shows the mapping between C++ types and XML tags (some trivial C++ 
types were omitted):

C++ type XML Tag(s) and attributes
Cell [] <Ravel vid="…" bytes="…"/>

Prefix <Parser size="…" assign-pending="…" action="…" lookahead-



C++ type XML Tag(s) and attributes
high="…"> … </Parser>

StateIndicator <SI-entry level="…" pc="…" line="…"> Body </SI-entry>

Symbol <Symbol name="…" stack-size="…"> Value Stack… </Symbol>

SymbolTable [] <SymbolTable size="…"> Symbols… </SymbolTable>

Token <Token pc="…" tag="…" val="…" />

UserFunction <Function vid="…"/> Body </Function>

UserCommand 
[]

<Commands size="…"> Command… </Commands>

UserCommand <Command name="…" mode="…" fun="…"/> rk="…" 
sh_0="…"…/>

UCS_string <UCS uni="…"/>

Value <Value flg="…" vid="…" parent="…"

Some remarks:

• The XML tag corresponds to the C++ type, 

• the tag attributes correspond to the data members of the C++ type. To the 
extent possible, all data members are stored in a single tag (i.e. <TAG … /> 
in XML) as opposed to start and end tags (i.e. <TAG …> … </TAG> in XML. 
The exceptions are C++ classes of variable size (arrays, vectors, linked lists, 
etc.), whose items are serialized between the corresponding start and end 
tags. 

• empty vectors etc. may be omitted 

Most C++ types are mapped to XML in a straightforward fashion. The exceptions 
are described in more detail in the following.

Serialization of APL Values

The serialization of APL Values is implemented with two different loops: one for 
the (typically large) ravel of the value, and one for the rest (i.e. shape, flags, etc.

In C++, objects refer to each other by their addresses in the memory (aka. 
pointers in C, and/or references in C++). Even though one could, in theory, 
emulate pointers with file offsets, this would lead to a rather complicated 
implementation. Instead, GNU APL uses IDs that define relations between different
objects in the serialization; the IDs thus replace pointers and/or references in C+
+.

The IDs are different enum types (so that the C++ compiler can detect the use of 
incompatible pointers). The enum Vid { … } is the ID that relates XML <Value 
…/> tags to the correspinding XML <Ravel …/> tag.



For example, Let:

   )CLEAR
   )WSID TEST

   Z←1 2 3

   )SAVE

The )SAVE command serializes workspace TEST (into file TEST.xml) like this:

TEST.xml:
   ...
   <Ravel vid="15" cells="³1³2³3"/>
   ...
   <Value flg="0x400" vid="15" parent="-1" rk="1" sh-0="3"/>
   ...
  <SymbolTable size="1">
    <Symbol name="Z" stack-size="1">
      <Variable vid="15"/>
    </Symbol>
  </SymbolTable>

The serialization of the <Ravel> deserves some more explananion. As already 
explained, the vid="15" attribute of the <Ravel> tag links the ravel to the <Value 
with the (same) vid="15". This information alone suffices to de-serialize the right 
side 1 2 3 of the assignment Z←1 2 3. However, the assignment to APL variable 
(aka. Symbol) Z has created a second tag <Variable vid="15"/> which links the 
(current) APL value 1 2 3 to symbol Z. In the above example Z is a global variable, 
therefore there is only one <Variable …> tag between the <Symbol> … 
</Symbol> tags. However, if the symbol Z were localized, then every localization 
would have added a new XML item between the <Symbol> … </Symbol> tags.

Now, a "proper" XML would have serialized the ravel 1 2 3 as follows:

<Ravel vid="15"> <Cell type="integer" value="1"/> <Cell type="integer" 
value="2"/> <Cell type="integer" value="3"/> </Ravel>

Since ravels tend to be rather long (so that Cells are frequent), the "proper" 
<Cell /> tags were optimized into a far more compact format which may be called 
micro tags (or μ-tags ). A micro tag is a single Unicode character that defines the
following properties and purposes that are related to (and later needed to de-
serialize) a Cell:

• the C++ Cell Type (CharCell, IntCell, FloatCell, ComplexCell, PointerCell, or 
LvalCell) 

• the Encoding used for the Cell value (only relevant for CharCell), and 

• to serve as a delimiter between adjacent Cells of the ravel. 

The different encodings of CharCells are needed because XML has restrictions on 
the characters that are permitted in XML attributes and to abbreviate the most 
likely characters (i.e ASCII).

The following table lists the micro tags used:



μ-Tag C++ Cell Type Encoding Example Cells
⁰ CharCell end of Unicode character sequence ²Hello⁰ ≥ 1

¹ CharCell sprintf("%X", ASCII-value) ¹A (aka. LF) 1

² CharCell start of Unicode character 
sequence

²World⁰ ≥ 1

³ IntCell integer (sequence of digits 0-9) ³42 1

⁴ FloatCell sprintf("%.17g", value) ⁴42.56 1

⁵ ComplexCell sprintf("%17gJ%17g", real, imag) ⁵1.2J3.4 1

⁶ PointerCell integer (vid) ⁶42 1

⁷ LvalCell sprintf("%d[%lld]", vid, offset) ⁷42[2] 1

⁸ FloatCell integer ÷ integer ⁸2÷3 1

All Cell types except CharCell use one tag per Cell and the Cell value extends from 
the first character after the μ-Tag to the character before the next μ-Tag. Since the
number of ASCII characters in the Cell value is somewhat larger, the overhead for 
the μ-Tag is relatively small.

In contrast, CharCells contain one character and the μ-tags tags for a string like 
"Hello" would require 5 bytes for the ASCII "Hello", plus 10 to 15 bytes for the 5 μ-
Tags (since the Unicodes of the μ-Tags are UTF8-encoded, and most have 2 or 3 
bytes per Unicode).

Therefore, and since APL characters more often occur in groups than as individual 
characters, the ²…⁰ values can span entire strings with only one start μ-Tag ² and 
one end μ-Tag ⁰. This is similar to APL where Hello is the same as H e l l o.

Serialization of UCS_strings

UCS_strings do not only appear as groups of characters in the ravels of APL values
(as described above) but also in other contexts (e.g. the APL text that defines a 
defined function). For these cases, a common XML tag <UCS uni="…"/> is used; 
the value of the tag attribute uni= is encoded with μ-Tags ⁰, ¹, and ² as described 
above. For example. the APL function:

Z←A DIV B∇
 Z←A÷B
∇

will be serialized as:

    <Symbol name="DIV" stack-size="1">
      <Function fid="0x55BCF671DC80" creation-time="1687101368729013"
                exec-properties="0,0,0,0">
        <UCS uni="²Z←A DIV B ¹A⁰
                  ² Z←A÷B ¹A⁰



                  "/>
      </Function>
    </Symbol>

Note the ¹A above, which is the ASCII line feed character 0x0A (which is not 
allowed in a tag attribute value in XML).

De-Serialization (XML to APL)

All the complexity above was motivated by the following design goals:

• )SAVEd workspaces should be resonably compact, 

• it should be possible to fix a broken workspace with a simple ASCII text 
editor such as vi or emacs, with only some basic knowledge of the XML 
syntax, and 

• the )LOADing and )COPYing of workspaces (i.e. the decoding of XML files 
should be simple and, for portability and maintenance reasons, not depend 
on external libraries. 

Almost every serialization function, say save_XXX(), in class SavingArchive has a
corresponding de-serialization function read_XXX() in class LoadingArchive:

SavingArchive LoadingArchive C++ class (de-)serialized
save() read_Workspace() entire Workspace

save_Derived() read_Derived() DerivedFunction

save_functions() - UserFunction (all)

save_Function() read_Function() UserFunction (one)

save_Function_name() read_Function_name(
)

(helper for UserFunction)

save_Parser() read_Parser() Prefix

save_Ravel() read_Ravel() Cell (all in a ravel)

save_shape() - Shape

save_SI_entry() read_SI_entry() StateIndicator

save_Symbol() read_Symbol() Symbol

save_symtab() read_SymbolTable() SymbolTable

save_token_loc() read_Token() Token

save_UCS() read_UCS() UCS_string

save_user_commands() read_Commands() Command::user_command []



SavingArchive LoadingArchive C++ class (de-)serialized
save_vstack_item() - (helper for Symbol)

De-serialization (aka, decoding) is inherently more complex than serialization (aka,
encoding). Therefore some more read_XXX() functions have no corresponding 
save_XXX() function.

Parallel (Multi-Core) Execution

Parallel execution of APL has a longer history.

Background

In the early 1980s the author learned APL (after ALGOL, Assembler, and BASIC, 
and before C. C++ was in its early days and not (yet) commercially available. The 
platform was an IBM 5110 desktop, a precursor to the IBM PC which came later. C
compilers and APL interpreters were expensive and the IBM 5110 was slow, 
particularly in comparison with Assembler or compiled languages like C on 
comparable platforms.

Shortly after the owner of the IBM 5110 replaced it with a faster 16-bit machine (a 
Motorola 68000 CPU with an APL 68000 interpreter (today named APL-X) and 
multi-user capabilities). APL performance was still an issue.

To address the performance issue, the author undertook the construction of a 
parallel APL computer. The first draft architecture was based on Transputers, a 
brand new CPU technology at that time (which died out shortly after). The 
advantage of Transputers was that every CPU had 4 fast communication channels 
which could be connected to neighboring Transputers. The resulting topology is 
then a torus (a mesh with the leftmost Transputers connected to the corresponding
rightmost Transputers and the top Transputers connected to the bottom 
Transputers):

    4×4 Transputer Torus

    ┌─────┐   ┌───┐   ┌───┐   ┌───┐
    │ ┌───────────────────────────────┐
    │ │ ╔═╧═╗   ╔═╧═╗   ╔═╧═╗   ╔═╧═╗ │
    │ └─╢ T ╟───╢ T ╟───╢ T ╟───╢ T ╟─┘
    │   ╚═╤═╝   ╚═╤═╝   ╚═╤═╝   ╚═╤═╝
    │ ┌─  │       │       │       │  ─┐
    │ │ ╔═╧═╗   ╔═╧═╗   ╔═╧═╗   ╔═╧═╗ │
    │ └─╢ T ╟───╢ T ╟───╢ T ╟───╢ T ╟─┘
    │   ╚═╤═╝   ╚═╤═╝   ╚═╤═╝   ╚═╤═╝
    │ ┌─  │       │       │       │  ─┐
    │ │ ╔═╧═╗   ╔═╧═╗   ╔═╧═╗   ╔═╧═╗ │
    │ └─╢ T ╟───╢ T ╟───╢ T ╟───╢ T ╟─┘
    │   ╚═╤═╝   ╚═╤═╝   ╚═╤═╝   ╚═╤═╝
    │ ┌─  │       │       │       │  ─┐
    │ │ ╔═╧═╗   ╔═╧═╗   ╔═╧═╗   ╔═╧═╗ │
    │ └─╢ T ╟───╢ T ╟───╢ T ╟───╢ T ╟─┘
    │   ╚═╤═╝ │ ╚═╤═╝ │ ╚═╤═╝ │ ╚═╤═╝
    └─────┘   └───┘   └───┘   └───┘

Another architecture that was initially considered was the Intel Hypercube. 



However, neither the Transputer torus nor the Intel Hypercube seemed to suit APL
very well. We therefore decided to develop our own architecture named DATIS-P 
(derived from the first names of the students that developed the hardware and 
software developed for the DATIS-P and probably the last name of the author. The 
developers were (in DATIS-P order): Dieter Scheerer [Sch], Andreas Gergen [Ger], 
Thomas Mörsdorf [Mör], and last but not least Ina Gläs [Glä]. The DATIS-P was 
prepared for 256 CPUs, but for budgetary reasons our prototype had only 32 
CPUs. The power consumption was about 50 Amperes at 5 Volts (which blew the 
fuses in our lab when we turned it on for the first time). The size was three 19-inch
cabinets (roughly the size of a mainframe at that time).

The most challenging part of the DATIS-P was its communication network. Its 
structure was a 3-stage permutation network as invented by Waksman. Since no 
suitable technology existed at that time we developed an ASIC (a 1-bit wide 8×8 
crossbar; the network for 32 CPUs was 8-bit wide and was comprized of 8-bit × 3 
stages × 4 width = 96 such ASICs. The 3 stages were pipelined, a reconfiguration 
of the network to an arbitrary permutation of the inputs was done in parallel by all 
CPUs and took only 3 CPU instriuctions. The communication bandwith was 2 CPU 
instructions per byte (one MOVE.B instruction to write into the network and one 
MOVE.B to read the byte (written by some other CPU) back. The total bandwidth 
of the network of our 32-CPU machine was therefore (a 16 MHz clock) ÷ (3 clocks 
per MOVE.B) ÷ (2 MOVE.B per transfer) = 2.6 MByte/s or 21 MBit/s per CPU = 
670 MBit/s for the entire network (a lot at that time). The bandwidth of the DATIS-
P scales linearly with the number of CPUs, therefore a 256 CPU machine would 
have had a total communication bandwidth of 5.3 Gigabit/s.

The architecture of the DATIS-P is:

           Entire DATIS-P                      One CPU
           ──────────────                      ───────

    ┌──────────────────────────┐               network       ┌───┐
    │   Permutation Network    │                  │        ┌─┤CP1│
    └──┬────────┬───────────┬──┘           ╔══════╧══════╗ │ └───┘
       │        │           │              ║ MC68020 CPU ╟─┤ ┌───┐
    ╔══╧══╗  ╔══╧══╗     ╔══╧══╗           ║    16 MHz   ║ ├─┤CP2│
    ║ CPU ║  ║ CPU ║ ... ║ CPU ║           ╚══════╤══════╝ │ └───┘
    ╚══╤══╝  ╚══╤══╝     ╚══╤══╝                  │        │  ...
       │        │           │              ┌──────┴──────┐ │ ┌───┐
       └────────┴─┬─────────┘              │ static RAM  │ └─┤CP8│
                  │                        │   1 MByte   │   └───┘
               ╔══╧══╗                     └──────┬──────┘
               ║ CPU ║                            │
               ╚═════╝                          Master

An entire DATIS-P consists of:

• The permutation network, 

• 32 worker CPUs, and 

• one master CPU. This master CPU does the APL interpretation and delegates
all ravel computations to the worker CPUs. To support scalar extensions like 
1 + 2 3 4 5 … the master was able to broadcast the scalar 1 into the dual 
port memories of the worker with a single instruction. 



Every CPU of the DATIS-P:

• was a Mototola 68020 processor (the cutting edge when the development of 
DATIS-P started), 

• had up to 8 numerical co-processors MC 68881 to boost the floating point 
performance 

• A dual-port 1 MByte static memory; one port connected to the local CPU the 
other to the Master CPU. 

The development of the hardware (PCB designs, ASIC design) and the sortware 
took from 1985 to 1989; the author was managing the hardware development and 
finished a Ph.D thesis about the parallel algorithms for the DATIS-P in 1990 [Sau].

The primary conclusion of the thesis was:

──────────────────────────────────────────────────────────────────────
─────────

On the DATIS-P architecture with P processors:

• All scalar APL functions can be computed in parallel with a speed-up of O(P).
That is, the performance of every scalar function scales linearly. 

• Most of the non-scalar APL functions can be computed in parallel with speed-
up O(P÷log P). That is, the other functions scale almost linearly. 

• The remaining non-scalar functions are those that require sorting. Their 
speed-up is O(P÷log²P) (using Batcher’s Bitonic Sort). 

• There is one exception which may happen for particular index vectors X in 
the indexed assignment A[X]←B, in the indexed reference A←B[X], and 
functions derived from them, e.g. X/B. If the index vector X is such that all 
ravel items of A are concentrated on the same worker CPU, then the speed-
up can degrade down to O(1) because that worker CPU has to do all of the 
work while the others are idle. Usually, though, the speed-up is O(P÷log²P) 
i.e. like the sorting functions  and . These days one can use P-RAM ⍋ ⍒

machines that do not suffer from this problem, but in 1990 P-RAMs were not 
available. 

──────────────────────────────────────────────────────────────────────
─────────

The benchmarks perfomed on the DATIS-P essentially confirmed the predictions of 
the Ph.D. thesis. Since we had no APL interpreter at that time, we only 
implemented the most important parallel algorithms performed by the workers. 
The implementation languages were C on the master and Assembler on the 
workers.

These results were also submitted to the 1990 APL conference in Copenhagen, 
Denmark. Without any feedback. The author therefore pursued a career in the 
telecommunications industry.

Around 2000, the author came across a PC demo version of IBM APL2 and played a
little with it. However, the license cost for a full version was entirely out of range 
for a private user. At about the same time he worked with Unicode, UTF8-



encodings and the like and discovered that all APL characters were available in 
Unicode. Probably at that time the idea of writing my own APL interpreter began 
to mature.

Around 2008, the first version of the interpreter was ready. It was not yet a GNU 
project and not very stable either.

In 2013 the interpreter was accepted by the GNU project and became GNU APL. 
Version 1.0 was sort of stable (i.e. it did not crash immediately), but still rather 
buggy (primarily suffering from memory leaks).

In 2014, multi-core support (parallel APL) was added. However, only the APL 
workhorses (i.e. scalar functions and their outer products) were parallelized and 
benchmarked. The results were somewhat disappointing and suggested that non-
scalar functions will not gain much by parallization. They are memory bound (as 
opposed to the more compute bound scalar functions) The main reason seems to 
be that the interface between the CPU cores and the memory does not scale with 
the number of cores so that the cores are competing for memory access. In 
contrast, the DATIS-P had only local memories whose total bandwidth grows 
linearly with the number of CPUs.

Implementation

 
Parallel APL is a purely experimental feature that should not be used for 
production code. Expect crashes from time to time.

The details are described in a separate document Parallel-APL.html, which is 
shipped with GNU APL in the same directory as this document.

Exercise 1

We conclude our journey through the GNU APL source code with a little exercise 
for the alert reader:

Add a new monadic system function named FOO⎕  to GNU APL. FOO⎕  takes a 1-
item integer argument B and returns the APL value (string) "FOO-B".

You may look backwards in this document and consult the GNU APL source code, 
but not peek into the solution sketch below, If you stumble over something that is 
not properly described above then please report that on mailto:bug-apl@gnu.org.

Solution (sketch with comments)

1. Add a symbol FOO to src/Id.def: 

qf( FOO                , " FOO"    ,          )⎕

The proper position of FOO in Id.def is important (after the last -symbol ⎕
group that starts with F, i.e. after the FFT⎕  line.

2. Add a header file src/Quad_FOO.hh like this: 



#ifndef __Quad_FOO_HH_DEFINED__
#define __Quad_FOO_HH_DEFINED__

#include "QuadFunction.hh"
...

class Quad_FOO : public QuadFunction
{
public:
   /// Constructor.
   Quad_FOO()
      : QuadFunction(TOK_Quad_FOO),
        system_wisdom_loaded(false)
   {}

   static Quad_FOO * fun;          ///< Built-in function.
   static Quad_FOO  _fun;          ///< Built-in function.

protected:
   /// overloaded Function::eval_B()
   Token eval_B(Value_P B) const;

   ...
};

#endif // __Quad_FOO_HH_DEFINED__

Since FOO⎕  is monadic, we have one handler eval_B(Value_P B), which 
overloads virtual Function::eval_B() in Function.hh and causes our 
Quad_FOO::eval_B to be called instead of eval_B() of the base class. If 

FOO⎕  should support more signatures then it is better to add them at a later
point in time.

3. Add a C++ source file src/Quad_FOO.cc like this: 

#include "Quad_FOO.hh"

Quad_FOO  Quad_FOO::_fun;
Quad_FOO * Quad_FOO::fun = &Quad_FOO::_fun;

//-----------------------------------------------------------------------------
Token
Quad_FOO::eval_B(Value_P B) const
{
Value_P Z(LOC);                       // makes Z an APL scalar,
   Z->next_ravel_int(42);             // which is the integer 42
   Z->check_value(LOC);               // check Z and set its Z->VF_complete 
flag
   return Token(TOK_APL_VALUE1, Z);   // return the result.
}
//-----------------------------------------------------------------------------

We have not (yet) implemented the requested functionality in 
Quad_FOO::eval_B(). It makes life easier to first integrate FOO⎕  into the 
GNU APL framework (and test the integration) then to add the functionality 
later on.

4. When using SVN then add the new files to the repository: 

$ svn add Quad_FOO.cc Quad_FOO.hh
$ svn commit -m "new file"



5. Add the following line to several source files: 

#include "Quad_FOO.hh"

This makes the new declarations available in the .cc files that need it. The 
files concerned are:

1. src/Archive.cc 

2. src/Id.cc 

3. src/QuadFunction.cc 

4. src/Workspace.cc 

6. Update Makefile.am. 

1. Add the new files Quad_FOO.cc and Quad_FOO.hh to the make 
variable common_SOURCES in src/Makefile.am: 

   Quad_FOO.cc Quad_FOO.hh

keep src/Makefile.am sorted alphabetically and indented in the same 
way as the other files.

2. (re-)run autoreconf (in the GNU APL top-level directory) 

 $ autoreconf

This creates a new src/Makefile.in from src/Makefile.am, and

3. (re-)run ./configure (also in the GNU APL top-level directory). 

 $ ./configure

This includes the new files in src/Makefile so that they are properly 
compiled and linked.

7. Add a TD() macro for FOO⎕  in src/Token.def: 

TD(TOK_Quad_FOO      , TC_FUN1      , TV_FUN  , ID::Quad_FOO     )

This defines a new Token with token class TC_FUN1, value type TV_FUN i.e.
Function (-pointer), and ID ID::Quad_FOO. Note that:

1. TC_FUN1 is an alias for TC_FUN12 (and so is TC_FUN2. These 
aliases are used to make explicit that FOO is monadic. If you should ⎕
add a dyadic signature later on then change the token class to 
TC_FUN12. 

2. Since src/Token.def is a .def file, it will be #inluded by several .cc 



files and magically insert the new token in several source files. 

8. Add a sf_def() macro to src/SystemVariable.def: 

  sf_def(Quad_FOO,   "FOO",   "Definitely not BAR"          )⎕

This takes care of a number of things:

1. )SAVE of functions in .xml workspace snapshots, 

2. Tab expansion of -function names, ⎕

3. update of the )HELP command (short help text), and 

4. Instantiation in workspaces. 

9. And finally: increment ASX_MINOR minor in enum ArchiveSyntax in file 
src/Archive.hh. Adding -functions to GNU is a backward compatible ⎕
change of the .xml file format. The new interpreter can )LOAD files that 
were )SAVEd with older versions, but not vice versa. Incrementing 
ASX_MINOR will then issue a warning in older (but not too old) interpreters.

10.After these changes you can build and test that the new intepreter compiles 
and works (if not then the author has missed something above). 

$ make
$ src/apl

      FOO 5⎕
42

11.If so, then we can add some more beef into Quad_FOO::eval_B(): 

#include "Quad_FOO.hh"

Quad_FOO  Quad_FOO::_fun;
Quad_FOO * Quad_FOO::fun = &Quad_FOO::_fun;

//-----------------------------------------------------------------------------
Token
Quad_FOO::eval_B(Value_P B) const
{
   // check that B is a 1-item integer
   //
   if (B->element_count() != 1)   // rank or length error
      {
        if (B->get_ranke() != 1)   RANK_ERROR;
        else                       LENGTH_ERROR;
      }

const Cell & B0 = B->get_cfirst();          // first item in B
const APL_Integer b = B0.get_int_value();   // DOMAIN_ERROR for non integers
UCS_string z("FOO-");                       // z is string "FOO-"
   z.append_number(b);                      // now z is e.g. "FOO-42"

Value_P Z(z);                         // constructor: APL value from string
   return Token(TOK_APL_VALUE1, Z);   // return the result.
}
//-----------------------------------------------------------------------------



Exercise 2

This exercise is similar to [Exercise 1] above, but this time we want to create a 
system variable instead of a system function:

Add a new system variable named FOO⎕  to GNU APL so that:

• * FOO←B* with 1-item integer B shall remember B, while⎕  

• *Z← FOO* shall be the APL value (string) "FOO-B".⎕  

System variables are inherently more complex than system functions because most
system functions are stateless, while system variables typically have state that 
needs to be )SAVEd in workspaces.

Solution (sketch with comments)

The solution is for the most part, similar to the previous example. We therefore 
only discuss the differences.

• System variables are (directly or indirectly) derived from class 
SystemVariable, while system functions are derived from class Function. 
System functions overload one or more (virtual) eval_XXX(), while system 
variables overload the following (virtual) functions: 

• Value_P get_apl_value() const, called when the variable is 
referenced, 

• assign(Value_P B, …), called when a values is assigned to the 
variable, 

• possibly assign_indexed(), called for indexed assignments (if the 
variable shall support it), and 

• possibly push() and pop() functions if the variable can be localized. 

• Therefore our Quad_FOO.hh reads: 

//----------------------------------------------------------------------------
#ifndef __Quad_FOO_HH_DEFINED__
#define __Quad_FOO_HH_DEFINED__

/**
   System variable Quad-FOO.
 */
/// The class implementing FOO⎕
class Quad_FOO : public SystemVariable
{
public:
   /// Constructor.
   Quad_IO()
   : SystemVariable(ID_Quad_IO)
      {
         Symbol::assign(IntScalar(0, LOC), false, LOC);
      }

protected:
  /// overloaded Symbol::assign().
   virtual void assign(Value_P B, bool clone, const char * loc);

   // overloaded Symbol::push()



   virtual void push()
      {
        Symbol::push();
        Symbol::assign(IntScalar(0, LOC), false, LOC);
      }
};

#endif // __Quad_FOO_HH_DEFINED__

• and the TD() macro now becomes: 

TD(TOK_Quad_FOO      , TC_SYMBOL    , TV_SYM  , ID_Quad_FOO     )

• The sf_def() macro (sf stands for system function) above in 
SystemVariable.def now becomes: 

  rw_sv_def(Quad_FOO,  "FOO",    "not BAR "                 )

where rw_sv_def stands for read/write system variable. If FOO⎕  were read-
only (which implies that localizing it has no effect), then macro ro_sv_def 
would have been used instead.

The name SystemVariable.def is a little misleading because it contains the 
macros for both variables and functions.
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