
This is a draft specification for Java Transaction Service (JTS). JTS specifies the
implementation of a transaction manager which supports the JTA specification [1] at
the high-level and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 Specification at the low-level.

JTS uses the CORBA OTS interfaces for interoperability and portability, which defines
a standard mechanism for any implementation that utilizes IIOP (Internet InterORB
Protocol) to generate and propagate transaction context between JTS Transaction
Managers.

Please send technical comments on this specification to:

jts-spec@eng.sun.com

Copyright © 1997-1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

Susan Cheung
Version 1.0 Dec 01, 1999

Sun Microsystems Inc.

Java™ Transaction Service (JTS)

Java™ Transaction Service Specification ("Specification")
Version: 1.0
Status: FCS
Release: December 8, 1999

Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions of this license and the Export Control and
General Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying the Specification, you agree that
you have read, understood, and will comply with all of the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under
Sun's intellectual property rights that are essential to practice the Specification, to internally practice the Specification solely for the purpose
of creating a clean room implementation of the Specification that: (i) includes a complete implementation of the current version of the
Specification, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of the Specification, as defined by
Sun, without subsetting or supersetting; (iii) includes a complete implementation of any optional components (as defined by Sun in the
Specification) which you choose to implement, without subsetting or supersetting; (iv) implements all of the interfaces and functionality of
such optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the "java.*"
or "javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing requirements available from Sun relating
to the most recently published version of the Specification six (6) months prior to any release of the clean room implementation or upgrade
thereto; (vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any Sun source code or binary
code materials without an appropriate and separate license from Sun. The Specification contains the proprietary information of Sun and
may only be used in accordance with the license terms set forth herein. This license will terminate immediately without notice from Sun if
you fail to comply with any provision of this license. Upon termination or expiration of this license, you must cease use of or destroy the
Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, JDK, Enterprise JavaBeans and JDBC are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the
Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS
OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/
OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor
or subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in
this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the
right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites thereof.

Java Transaction Service

Sun Microsystems Inc. 5 December 1, 1999

Table of Contents

1. Introduction ... 6

1.1 Background .. 6
1.2 Target Audience ... 8

2. Transaction Manager Functionality .. 9

2.1 Transaction Model .. 9
2.2 Transaction Context ... 9
2.3 Transaction Termination ...9
2.4 Transaction Integrity..10

3. Transaction Manager Implementation .. 11

3.1 Support for JTA ... 11
3.2 Java Mapping of CORBA Object Transaction Service (OTS) 12
3.3 Support for pre-JTA Resource Managers ... 12
3.4 Support for CORBA Applications .. 13
3.5 Transaction Manager Interoperability .. 13
3.6 ORB Identification ... 13

3.6.1 TransactionService Interface .. 13

4. Related Documents.. 16

Appendix A - Change History ... 17

Java Transaction Service

Sun Microsystems Inc. 6 December 1, 1999

1 Introduction

This is the Java Transaction Service (JTS) Specification. JTS specifies the
implementation of a transaction manager which supports the JTA specification [1] at
the high-level and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 Specification at the low-level.

JTS uses the CORBA OTS interfaces for interoperability and portability (that is,
CosTransactions and CosTSPortability). These interfaces define a standard mechanism
for any implementation that utilizes IIOP (Internet InterORB Protocol) to generate and
propagate transaction context between JTS Transaction Managers. Note, this also
permits the use of other API over the IIOP transport mechanism to be used; for
example, RMI over IIOP is allowed.

1.1 Background

Distributed transaction services in Enterprise Java middleware involve five players: the
transaction manager, the application server, the resource manager, the application
program, and the communication resource manager. Each player contributes to the
distributed transaction processing system by implementing different sets of transaction
APIs and functionalities.

• A transaction manager provides the services and management functions
required to support transaction demarcation, transactional resource
management, synchronization, and transaction context propagation.

• An application server (or TP monitor) provides the infrastructure required to
support the application run-time environment which includes transaction state
management. An example of such an application server is an EJB [5] server.

• A resource manager (through a resource adapter1) provides the application
access to resources. The resource manager implements a transaction resource
interface that is used by the transaction manager to communicate transaction
association, transaction completion, and recovery work. An example of such a
resource manager is a relational database server.

• A component-based transactional application that operates in a modern
application server environment relies on the application server to provide
transaction management support through declarative transaction attribute
settings—for example, an application developed using the industry standard
Enterprise JavaBeans (EJB) component architecture. In addition, other stand-

1.A Resource Adapter is a system level software library that is used by an application server or client to
connect to a Resource Manager. A Resource Adapter is typically specific to a Resource Manager. It is avail-
able as a library and is used within the address space of the client using it. Examples of Resource adapters
are: JDBC driver to connect to relational databases, ODMG driver to connect to an object database, JRFC
library to connect to SAP R/3 system. A resource adapter may provide additional services besides the con-
nection API.

Java Transaction Service

Sun Microsystems Inc. 7 December 1, 1999

alone Java client programs may wish to control their transaction boundaries
using a high-level interface provided by the application server or the transaction
manager.

• A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests. The JTS document does not specify requirements pertaining to
communication. We assume the CRM is present to support transaction
propagation as defined in the CORBA OTS and GIOP specifications.

From the transaction manager’s perspective, the actual implementation of the
transaction services does not need to be exposed; only high-level interfaces need to be
defined to allow transaction demarcation, resource enlistment, synchronization, and
recovery process to be driven by the users of the transaction services.

The diagram below shows the high-level API exposed from the transaction manager
that implements the JTS specification. The dotted-line in the Transaction Manager box
illustrates the private interface within the TM to allow the JTA support module to
interact with the low-level OTS implementation. Section 2 specifies the Transaction
Manager external functionality. Section 3 specifies the Transaction Manager
implementation requirements and considerations.

Communication Resource
Manager (CRM)

Application

 Application
Server

Resource
ManagerTransaction

Manager

Service

Implementation

Transaction

EJB
JDBC, JMS

javax.transaction.xa.
UserTransaction XAResource

Inbound tx Outbound tx

(OTS 1.1)

IIOPIIOP

javax.transaction.

javax.transaction.
TransactionManager

Java Transaction Service

Sun Microsystems Inc. 8 December 1, 1999

1.2 Target Audience

This document is intended for implementors of Transaction Managers and application

servers written in the Javatm programming language.

Java Transaction Service

Sun Microsystems Inc. 9 December 1, 1999

2 Transaction Manager Functionality

This section describes the transaction manager functionality through support of the
Java Transaction API (JTA). The implementation of the Java mapping of OMG OTS
1.1 interfaces are not exposed to the clients of the Transaction Manager. The clients of
the Transaction Manager are those who use the JTA interfaces to access the Transaction
Manager functionality.

The Transaction Manager provides the following services:

• Provides applications and application servers the ability to control the scope and
duration of a transaction.

• Allows multiple application components to perform work that is part of a single,
atomic transaction.

• Provides the ability to associate global transactions with work performed by
transactional resources.

• Coordinates the completion of global transactions across multiple resource
managers.

• Supports transaction synchronization.

• Provides the ability to interoperate with other Transaction Manager
implementations using the CORBA ORB/TS standard interfaces (this is
transparent to clients of the Transaction Manager).

2.1 Transaction Model

The Transaction Manager is required to support distributed flat transactions. A flat
transaction cannot have a child transaction. Flat transactions are also known as top-
level transactions in OTS terminology. A Transaction is started by issuing a request to
begin a transaction.

Support for nested transactions is not required.

2.2 Transaction Context

The Transaction Manager maintains the association of a thread’s transaction context
with a transaction. A thread’s transaction context is eithernull or refers to a specific
global transaction. The Transaction Manager allows multiple threads to be associated
with the same transaction concurrently, in the same JVM or in multiple JVMs.

Transaction context is implicitly transmitted by the implementation of the transaction
service at the ORB and wire-protocol level. The transaction context propagation is
performed transparent to the Transaction Manager clients (application and application
server).

2.3 Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transaction.
Typically, a transaction is terminated by the client originating the transaction. In the

Java Transaction Service

Sun Microsystems Inc. 10 December 1, 1999

EJB component model environment, the Transaction Manager must allow transactions
to be terminated by any thread within the same JVM of the transaction originator.

Application components that rely on an application server to manage their transaction
states are not allowed to terminate transactions. An application server can force the
transaction to be rolled back after the application encounters an unexpected error
condition in the form of a Java exception. The Transaction Manager is not required to
monitor the failures of the resource managers participating in the transaction.

2.4 Transaction Integrity

The Transaction Manager is required to guarantee data integrity equivalent to that
provided by the interfaces which support the X/Open DTP transaction model. The
Transaction Manager must guarantee the checked transaction behavior—a transaction
cannot be committed until all computations acting on behalf of the transaction have
completed.

Java Transaction Service

Sun Microsystems Inc. 11 December 1, 1999

3 Transaction Manager Implementation

This section describes the implementation choices from a Transaction Manager
implementor’s view. As shown in the diagram below, the Transaction Manager must
implement the JTA interfaces to support the application server and the resource
managers. Support for JDBC 1.0 driver and non-JTA aware resource managers is
optional. Support for various CORBA application entities like Transactional Clients,
Transactional Servers and Recoverable Servers, is also optional.

3.1 Support For JTA

The Transaction Manager provides complete support of the Java Transaction API
(JTA) Specification [1].

3.1.1 Transaction Demarcation

The Transaction Manager implements the following JTA interfaces to allow
application servers and stand-alone Java client applications to control transaction
boundary demarcation and perform transaction operations.

Native

CORBA

Interfaces

OTS-based
non-XA
Resource

Manager

org.omg.

Resource

Application

DB

custom

driver

NativeC-XA

JTS Transaction Manager

Plugin

CosTransactions.
Resource

OTS 1.1

JTA

Support

Adapter

Server
javax.transaction.

TransactionManager

javax.transaction.xa.
XAResource Java

Mapping

of

Support

C-XA
CosTransactions.

org.omg.

Resource

JDBC-ODBC

org.omg.

(Optional)

(Optional)

CosTransactions.
Resource

Resource

Manager

Resource

Manager

RDBMS

Java
Appli-
cations

(Optional)

Impl.

JTS

Transaction

Manager

org.omg.CosTransactions

org.omg.CosTSPortability

(another)

(or OTS-based)

Java Transaction Service

Sun Microsystems Inc. 12 December 1, 1999

• javax.transaction.TransactionManager

• javax.transaction.Transaction

• javax.transaction.UserTransaction

3.1.2 Transaction Synchronization

The Transaction Manager supports transaction synchronization by allowing
Synchronization callback objects to be registered by the application server. The
Transaction Manager invokes the Synchronization methods before and after transaction
completion. Synchronization registration is available via the
javax.transaction.Transaction.registerSynchronization method.

3.1.3 Transaction and Resource Association

The Transaction Manager supports transactional resource enlistment via the
enlistResource anddelistResource methods defined in the
javax.transaction.Transaction interface.

The Transaction Manager associates resources with transactions and coordinates
transaction completion using thejavax.transaction.xa.XAResource interface as
defined in JTA.

3.1.4 Transaction Recovery

The Transaction Manager uses therecover andforget methods in the
javax.transaction.xa.XAResource interface to recover transactions that are in
prepared or heuristically completed states.

3.2 Java Mapping of CORBA Object Transaction Service (OTS)

The Transaction Manager implements the Java Mapping of the CORBA Object
Transaction Service 1.1 Specification [2]. In particular, the Transaction Manager
implements the following Java packages:org.omg.CosTransactions and
org.omg.CosTSPortability.

The Transaction Manager is not required to support nested transactions.

The Transaction Manager is not required to expose its OTS implementation to those
users who are accessing the Transaction Manager through the
javax.transaction.TransactionManager interface as defined in JTA.

3.3 Support for Pre-JTA Resource Managers

The Transaction Manager may optionally support pre-JTA resource managers.
Specifically, the Transaction Manager may implement a native C-XA support module
to provide transaction coordination using the native C-XA procedural interfaces as
defined in the X/Open XA Specification [4].

As shown in the previous diagram, to support existing relational database servers that
implement the C-XA procedural interface, the Transaction Manager implements a
native C-XA support module which uses theCosTransactions.Resource interface

Java Transaction Service

Sun Microsystems Inc. 13 December 1, 1999

to interact with the transaction service module. External to the Transaction Manager, a
custom JDBC driver will need to be implemented with a native-XA library built
specific to each database server.

3.4 Support for CORBA Applications

The Transaction Manager may optionally support the following CORBA application
entities as defined in the Object Transaction Specification: Transactional Client,
Transactional Objects, Recoverable Objects, Transactional Servers, and Recoverable
Servers. These application entities access the Transaction Manager using the interfaces
defined in theCosTransactions module as specified in the OTS 1.1 Specification.

3.5 Transaction Managers Interoperability

The Transaction Manager is required to support distributed transactions that involve
multiple resource managers in a single ORB execution environment.

If the Transaction Manager implementation supports inter-ORB interoperability, it
must implement the implicit transaction context propagation that conforms to the
CosTransactions.PropagationContext structure; this allows the Transaction
Manager to support inter-ORB transaction context propagation as defined by the
CORBA OTS 1.1 Specification.

To provide interaction between the ORB and the Transaction Manager, the Transaction
Manager is required to

• Implement theCosTSPortability module’sSender andReceiver interfaces
as callback objects to allow the ORB to notify the TM whenever a transaction
request is sent or received by the ORB.

• Invoke theTSIdentification interface methods to pass theSender and
Receiver objects to the ORB, prior to handling the first transactional request.

How the ORB and the Transaction Manager locate each other’s objects is discussed in
section 3.6 below. The wire protocol message format for transmitting the transaction
context is defined in the CORBA General Inter-ORB Protocol specification.

3.6 ORB Identification

The CORBA OTS 1.1 Specification does not define how the ORB and Transaction
Manager identify each other. In order for different ORB instances and the Transaction
Manager to interoperate and locate each other, JTS defines a simple
TransactionService interface to facilitate the identification of the ORB to the
Transaction Manager.

3.6.1 TransactionService Interface

The JTS Transaction Manager implements thejavax.jts.TransactionService

interface to allow an ORB to identify itself to the Transaction Manager.

The ORB calls theTransactionService.identifyORB method during its
initialization procedure and prior to handling any user request.

Java Transaction Service

Sun Microsystems Inc. 14 December 1, 1999

Typically, the following operations occur:

1. The application server creates theTransactionService object.

2. The application server binds theTransactionService object to the JNDI
naming directory.

3. The application server initializes an ORB instance.

4. The ORB, during its initialization, creates aTSIdentification object and
uses JNDI to lookup theTransactionService object reference.

5. The ORB then invokes theTransactionService.identifyORB method and
supplies the following three parameters:

• An ORB object that identifies the ORB instance.
• A TSIdentification object implemented by the ORB.
• A properties list for custom configuration information.

6. The Transaction Manager, while executing theidentifyORB method, invokes
theTSIdentification.identify_sender and
TSIdentification.identify_receiver methods to pass theSender and
Receiver callback objects to the ORB.

Application
Server TransactionService ORB TSIdentification

JNDI
Context

TM ORB

new

bind

init

lookup

identifyORB

identify_sender

identify_receiver

new

Java Transaction Service

Sun Microsystems Inc. 15 December 1, 1999

Interface TransactionService

interface javax.jts. TransactionService {
public void identifyORB (org.omg.CORBA.ORB orb,

org.omg.TSIdentification tsi, Properties prop);
}

The javax.jts.TransactionService interface is implemented by the JTS Transaction Manager to
allow the ORB to identify itself to the Transaction Manager and for the Transaction Manager to pass the Sender
and Receiver callback objects to the ORB. The Sender and Receiver objects are used by the ORB to deliver the
user request’s transaction context to the Transaction Manager.

Methods

• identifyORB

public abstract void identifyORB(org.omg.CORBA.ORB orb,
org.omg.CORBA.TSIdentification tsi,
java.util.Properties prop);

)

The identifyORB method is called by the ORB as part of its initialization procedure.

Parameters:
orb

The ORB instance
tsi

The TSIdentification object for the TM to identify its Sender and Receiver callback objects.
prop

The properties list for any customed information to the TM.

Java Transaction Service

Sun Microsystems Inc. 16 December 1, 1999

4 Related Documents

[1] Java Transaction API (JTA) Specification (http://java.sun.com/products/jta)

[2] OMG Object Transaction Service (http://www.omg.org/corba/sectrans.html#trans)

[3] ORB Portability Submission, OMG document orbos/97-04-14.

[4] X/Open CAE Specification – Distributed Transaction Processing: The XA Specifi-
cation, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[5] Enterprise JavaBeansTM Specification (http://java.sun.com/products/ejb)

[6] JDBCTM 2.0 Standard Extension API Specification (http://java.sun.com/products/
jdbc)

[7] Java Message Service Specification (http://java.sun.com/products/jms)

Java Transaction Service

Sun Microsystems Inc. 17 December 1, 1999

Appendix A: Change History

A.1 Changes from 0.8 to 0.9

JTS revision 0.9 incorporated the following changes:

• Modified the diagram in Section 3 to include interoperability with another TM.

• Added section 3.6 to specify theTransactionService interface which allows
the ORB and the TM to locate each other.

A.2 Changes from 0.9 to 0.95

• Added Copyright statement.

• Minor editorial changes.

A.3 Changes from 0.95 to 1.0

• Modified the diagram in Section 3 - changed the direction of the arrow
connecting the Transaction Manager and the Application Server; fixed
org.omg.CosTransactions.Resource package name in the diagram.

• Minor editorial changes.

