Point Cloud Library (PCL) 1.15.0
Loading...
Searching...
No Matches
sac_model_circle3d.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2012-, Open Perception, Inc.
6 *
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * * Neither the name of the copyright holder(s) nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38#pragma once
39
40#include <pcl/sample_consensus/sac_model.h>
41#include <pcl/sample_consensus/model_types.h>
42
43namespace pcl
44{
45 /** \brief SampleConsensusModelCircle3D defines a model for 3D circle segmentation.
46 *
47 * The model coefficients are defined as:
48 * - \b center.x : the X coordinate of the circle's center
49 * - \b center.y : the Y coordinate of the circle's center
50 * - \b center.z : the Z coordinate of the circle's center
51 * - \b radius : the circle's radius
52 * - \b normal.x : the X coordinate of the normal's direction
53 * - \b normal.y : the Y coordinate of the normal's direction
54 * - \b normal.z : the Z coordinate of the normal's direction
55 *
56 * \author Raoul Hoffmann, Karol Hausman, Radu B. Rusu
57 * \ingroup sample_consensus
58 */
59 template <typename PointT>
61 {
62 public:
69
73
74 using Ptr = shared_ptr<SampleConsensusModelCircle3D<PointT> >;
75 using ConstPtr = shared_ptr<const SampleConsensusModelCircle3D<PointT> >;
76
77 /** \brief Constructor for base SampleConsensusModelCircle3D.
78 * \param[in] cloud the input point cloud dataset
79 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
80 */
82 bool random = false)
83 : SampleConsensusModel<PointT> (cloud, random)
84 {
85 model_name_ = "SampleConsensusModelCircle3D";
86 sample_size_ = 3;
87 model_size_ = 7;
88 }
89
90 /** \brief Constructor for base SampleConsensusModelCircle3D.
91 * \param[in] cloud the input point cloud dataset
92 * \param[in] indices a vector of point indices to be used from \a cloud
93 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
94 */
96 const Indices &indices,
97 bool random = false)
98 : SampleConsensusModel<PointT> (cloud, indices, random)
99 {
100 model_name_ = "SampleConsensusModelCircle3D";
101 sample_size_ = 3;
102 model_size_ = 7;
103 }
104
105 /** \brief Empty destructor */
106 ~SampleConsensusModelCircle3D () override = default;
107
108 /** \brief Copy constructor.
109 * \param[in] source the model to copy into this
110 */
113 {
114 *this = source;
115 model_name_ = "SampleConsensusModelCircle3D";
116 }
117
118 /** \brief Copy constructor.
119 * \param[in] source the model to copy into this
120 */
123 {
125 return (*this);
126 }
127
128 /** \brief Check whether the given index samples can form a valid 2D circle model, compute the model coefficients
129 * from these samples and store them in model_coefficients. The circle coefficients are: x, y, R.
130 * \param[in] samples the point indices found as possible good candidates for creating a valid model
131 * \param[out] model_coefficients the resultant model coefficients
132 */
133 bool
134 computeModelCoefficients (const Indices &samples,
135 Eigen::VectorXf &model_coefficients) const override;
136
137 /** \brief Compute all distances from the cloud data to a given 3D circle model.
138 * \param[in] model_coefficients the coefficients of a 2D circle model that we need to compute distances to
139 * \param[out] distances the resultant estimated distances
140 */
141 void
142 getDistancesToModel (const Eigen::VectorXf &model_coefficients,
143 std::vector<double> &distances) const override;
144
145 /** \brief Compute all distances from the cloud data to a given 3D circle model.
146 * \param[in] model_coefficients the coefficients of a 3D circle model that we need to compute distances to
147 * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
148 * \param[out] inliers the resultant model inliers
149 */
150 void
151 selectWithinDistance (const Eigen::VectorXf &model_coefficients,
152 const double threshold,
153 Indices &inliers) override;
154
155 /** \brief Count all the points which respect the given model coefficients as inliers.
156 *
157 * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
158 * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
159 * \return the resultant number of inliers
160 */
161 std::size_t
162 countWithinDistance (const Eigen::VectorXf &model_coefficients,
163 const double threshold) const override;
164
165 /** \brief Recompute the 3d circle coefficients using the given inlier set and return them to the user.
166 * @note: these are the coefficients of the 3d circle model after refinement (e.g. after SVD)
167 * \param[in] inliers the data inliers found as supporting the model
168 * \param[in] model_coefficients the initial guess for the optimization
169 * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
170 */
171 void
172 optimizeModelCoefficients (const Indices &inliers,
173 const Eigen::VectorXf &model_coefficients,
174 Eigen::VectorXf &optimized_coefficients) const override;
175
176 /** \brief Create a new point cloud with inliers projected onto the 3d circle model.
177 * \param[in] inliers the data inliers that we want to project on the 3d circle model
178 * \param[in] model_coefficients the coefficients of a 3d circle model
179 * \param[out] projected_points the resultant projected points
180 * \param[in] copy_data_fields set to true if we need to copy the other data fields
181 */
182 void
183 projectPoints (const Indices &inliers,
184 const Eigen::VectorXf &model_coefficients,
185 PointCloud &projected_points,
186 bool copy_data_fields = true) const override;
187
188 /** \brief Verify whether a subset of indices verifies the given 3d circle model coefficients.
189 * \param[in] indices the data indices that need to be tested against the 3d circle model
190 * \param[in] model_coefficients the 3d circle model coefficients
191 * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
192 */
193 bool
194 doSamplesVerifyModel (const std::set<index_t> &indices,
195 const Eigen::VectorXf &model_coefficients,
196 const double threshold) const override;
197
198 /** \brief Return a unique id for this model (SACMODEL_CIRCLE3D). */
199 inline pcl::SacModel
200 getModelType () const override { return (SACMODEL_CIRCLE3D); }
201
202 protected:
205
206 /** \brief Check whether a model is valid given the user constraints.
207 * \param[in] model_coefficients the set of model coefficients
208 */
209 bool
210 isModelValid (const Eigen::VectorXf &model_coefficients) const override;
211
212 /** \brief Check if a sample of indices results in a good sample of points indices.
213 * \param[in] samples the resultant index samples
214 */
215 bool
216 isSampleGood(const Indices &samples) const override;
217
218 private:
219 /** \brief Functor for the optimization function */
220 struct OptimizationFunctor : pcl::Functor<double>
221 {
222 /** Functor constructor
223 * \param[in] indices the indices of data points to evaluate
224 * \param[in] estimator pointer to the estimator object
225 */
226 OptimizationFunctor (const pcl::SampleConsensusModelCircle3D<PointT> *model, const Indices& indices) :
227 pcl::Functor<double> (indices.size ()), model_ (model), indices_ (indices) {}
228
229 /** Cost function to be minimized
230 * \param[in] x the variables array
231 * \param[out] fvec the resultant functions evaluations
232 * \return 0
233 */
234 int operator() (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const
235 {
236 // Same for all points, so define outside of loop:
237 // C : Circle Center
238 const Eigen::Vector3d C (x[0], x[1], x[2]);
239 // N : Circle (Plane) Normal
240 const Eigen::Vector3d N (x[4], x[5], x[6]);
241 // r : Radius
242 const double r = x[3];
243 for (int i = 0; i < values (); ++i)
244 {
245 // what i have:
246 // P : Sample Point
247 Eigen::Vector3d P =
248 (*model_->input_)[indices_[i]].getVector3fMap().template cast<double>();
249
250 Eigen::Vector3d helperVectorPC = P - C;
251 // 1.1. get line parameter
252 //float lambda = (helperVectorPC.dot(N)) / N.squaredNorm() ;
253 double lambda = (-(helperVectorPC.dot (N))) / N.dot (N);
254 // Projected Point on plane
255 Eigen::Vector3d P_proj = P + lambda * N;
256 Eigen::Vector3d helperVectorP_projC = P_proj - C;
257
258 // K : Point on Circle
259 Eigen::Vector3d K = C + r * helperVectorP_projC.normalized ();
260 Eigen::Vector3d distanceVector = P - K;
261
262 fvec[i] = distanceVector.norm ();
263 }
264 return (0);
265 }
266
268 const Indices &indices_;
269 };
270 };
271}
272
273#ifdef PCL_NO_PRECOMPILE
274#include <pcl/sample_consensus/impl/sac_model_circle3d.hpp>
275#endif
PointCloud represents the base class in PCL for storing collections of 3D points.
SampleConsensusModelCircle3D defines a model for 3D circle segmentation.
typename SampleConsensusModel< PointT >::PointCloudConstPtr PointCloudConstPtr
SampleConsensusModelCircle3D(const PointCloudConstPtr &cloud, const Indices &indices, bool random=false)
Constructor for base SampleConsensusModelCircle3D.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given 3d circle model coefficients.
typename SampleConsensusModel< PointT >::PointCloudPtr PointCloudPtr
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the 3d circle model.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModelCircle3D(const SampleConsensusModelCircle3D &source)
Copy constructor.
pcl::SacModel getModelType() const override
Return a unique id for this model (SACMODEL_CIRCLE3D).
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given 3D circle model.
shared_ptr< SampleConsensusModelCircle3D< PointT > > Ptr
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the 3d circle coefficients using the given inlier set and return them to the user.
shared_ptr< const SampleConsensusModelCircle3D< PointT > > ConstPtr
~SampleConsensusModelCircle3D() override=default
Empty destructor.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Compute all distances from the cloud data to a given 3D circle model.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid 2D circle model, compute the model coefficient...
SampleConsensusModelCircle3D(const PointCloudConstPtr &cloud, bool random=false)
Constructor for base SampleConsensusModelCircle3D.
SampleConsensusModelCircle3D & operator=(const SampleConsensusModelCircle3D &source)
Copy constructor.
SampleConsensusModel represents the base model class.
Definition sac_model.h:71
double radius_min_
The minimum and maximum radius limits for the model.
Definition sac_model.h:565
unsigned int sample_size_
The size of a sample from which the model is computed.
Definition sac_model.h:589
typename PointCloud::ConstPtr PointCloudConstPtr
Definition sac_model.h:74
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition sac_model.h:557
PointCloudConstPtr input_
A boost shared pointer to the point cloud data array.
Definition sac_model.h:554
std::string model_name_
The model name.
Definition sac_model.h:551
unsigned int model_size_
The number of coefficients in the model.
Definition sac_model.h:592
typename PointCloud::Ptr PointCloudPtr
Definition sac_model.h:75
std::vector< double > error_sqr_dists_
A vector holding the distances to the computed model.
Definition sac_model.h:586
@ K
Definition norms.h:54
@ SACMODEL_CIRCLE3D
Definition model_types.h:50
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
Base functor all the models that need non linear optimization must define their own one and implement...
Definition sac_model.h:680
int values() const
Get the number of values.
Definition sac_model.h:704
A point structure representing Euclidean xyz coordinates, and the RGB color.