
Shishi
Kerberos 5 implementation for the GNU system

for version 0.0.40, 4 March 2009

Simon Josefsson

This manual is last updated 4 March 2009 for version 0.0.40 of Shishi.
Copyright c© 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features and Status . 1
1.3 Overview . 3
1.4 Cryptographic Overview . 5
1.5 Supported Platforms . 9
1.6 Getting help . 10
1.7 Commercial Support . 10
1.8 Downloading and Installing . 11
1.9 Bug Reports . 12
1.10 Contributing . 12

2 User Manual . 14
2.1 Proxiable and Proxy Tickets . 16
2.2 Forwardable and Forwarded Tickets . 17

3 Administration Manual . 19
3.1 Introduction to Shisa . 19
3.2 Configuring Shisa . 19
3.3 Using Shisa . 20
3.4 Starting Shishid . 24
3.5 Configuring DNS for KDC . 26

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names 26
3.5.2 Overview - KDC location information . 26
3.5.3 Example - KDC location information . 27
3.5.4 Security considerations . 27

3.6 Kerberos via TLS . 27
3.6.1 Setting up TLS resume . 27
3.6.2 Setting up Anonymous TLS . 28
3.6.3 Setting up X.509 authenticated TLS . 29

3.6.3.1 Create a Kerberos Certificate Authority 29
3.6.3.2 Create a Kerberos KDC Certificate 30
3.6.3.3 Create a Kerberos Client Certificate 32
3.6.3.4 Starting KDC with X.509 authentication support 33

3.7 Multiple servers . 34
3.8 Developer information . 36

4 Reference Manual . 37
4.1 Environmental Assumptions . 37
4.2 Glossary of terms . 37
4.3 Realm and Principal Naming . 39

4.3.1 Realm Names . 39

ii

4.3.2 Principal Names . 40
4.3.2.1 Name of server principals . 41
4.3.2.2 Name of the TGS . 42

4.3.3 Choosing a principal with which to communicate 42
4.3.4 Principal Name Form . 43

4.4 Shishi Configuration . 43
4.4.1 ‘default-realm’ . 43
4.4.2 ‘default-principal’ . 44
4.4.3 ‘client-kdc-etypes’ . 44
4.4.4 ‘verbose’, ‘verbose-asn1’, ‘verbose-noise’,

‘verbose-crypto’, ‘verbose-crypto-noise’ 44
4.4.5 ‘realm-kdc’ . 44
4.4.6 ‘server-realm’ . 44
4.4.7 ‘kdc-timeout’, ‘kdc-retries’ . 44
4.4.8 ‘stringprocess’ . 45
4.4.9 ‘ticket-life’ . 45
4.4.10 ‘renew-life’ . 45

4.5 Shisa Configuration . 46
4.5.1 ‘db’ . 46

4.6 Parameters for shishi . 47
4.7 Parameters for shishid . 48
4.8 Parameters for shisa . 49
4.9 Environment variables . 51
4.10 Date input formats . 51

4.10.1 General date syntax . 52
4.10.2 Calendar date items . 53
4.10.3 Time of day items . 53
4.10.4 Time zone items . 54
4.10.5 Day of week items . 54
4.10.6 Relative items in date strings . 55
4.10.7 Pure numbers in date strings . 56
4.10.8 Seconds since the Epoch . 56
4.10.9 Specifying time zone rules . 56
4.10.10 Authors of get_date . 57

5 Programming Manual . 58
5.1 Preparation . 58

5.1.1 Header . 58
5.1.2 Initialization . 58
5.1.3 Version Check . 58
5.1.4 Building the source . 59
5.1.5 Autoconf tests . 59

5.1.5.1 Autoconf test via ‘pkg-config’ . 59
5.1.5.2 Standalone Autoconf test using Libtool 60
5.1.5.3 Standalone Autoconf test . 60

5.2 Initialization Functions . 61
5.3 Ticket Set Functions . 65
5.4 AP-REQ and AP-REP Functions . 71

iii

5.5 SAFE and PRIV Functions . 92
5.6 Ticket Functions . 103
5.7 AS Functions . 114
5.8 TGS Functions . 119
5.9 Ticket (ASN.1) Functions . 125
5.10 AS/TGS Functions . 131
5.11 Authenticator Functions . 153
5.12 KRB-ERROR Functions . 162
5.13 Cryptographic Functions . 173
5.14 X.509 Functions . 199
5.15 Utility Functions . 201
5.16 ASN.1 Functions . 208
5.17 Error Handling . 220

5.17.1 Error Values . 220
5.17.2 Error Functions . 221

5.18 Examples . 223
5.19 Kerberos Database Functions . 224
5.20 Generic Security Service . 231

6 Acknowledgements . 232

Appendix A Criticism of Kerberos 233

Appendix B Protocol Extensions 234
B.1 STARTTLS protected KDC exchanges . 234

B.1.1 TCP/IP transport with TLS upgrade (STARTTLS) 234
B.1.2 Extensible typed hole based on reserved high bit 235
B.1.3 STARTTLS requested by client (extension mode 1) 235
B.1.4 STARTTLS request accepted by server (extension mode 2)

. 235
B.1.5 Proceeding after successful TLS negotiation 235
B.1.6 Proceeding after failed TLS negotiation 236
B.1.7 Interaction with KDC addresses in DNS 236
B.1.8 Using TLS authentication logic in Kerberos 236
B.1.9 Security considerations . 236

B.2 Telnet encryption with AES-CCM . 236
B.2.1 Command Names and Codes . 236
B.2.2 Command Meanings . 237
B.2.3 Implementation Rules . 237
B.2.4 Integration with the AUTHENTICATION telnet option

. 238
B.2.5 Security Considerations . 238

B.2.5.1 Telnet Encryption Protocol Security Considerations
. 239

B.2.5.2 AES-CCM Security Considerations 239
B.2.6 Acknowledgments . 239

B.3 Kerberized rsh and rlogin . 239

iv

B.3.1 Establish connection . 239
B.3.2 Kerberos identification . 240
B.3.3 Kerberos authentication . 240
B.3.4 Extended authentication . 240
B.3.5 Window size . 241
B.3.6 End of authentication . 241
B.3.7 Encryption . 241
B.3.8 KCMDV0.3 . 242
B.3.9 MIT/Heimdal authorization . 243

B.4 Key as initialization vector . 243
B.5 The Keytab Binary File Format . 244
B.6 The Credential Cache Binary File Format . 247

Appendix C Copying Information 250
C.1 GNU Free Documentation License . 250
C.2 GNU General Public License . 257

Function and Data Index . 269

Concept Index . 276

Chapter 1: Introduction 1

1 Introduction

Shishi is an implementation of the Kerberos 5 network authentication system, as specified
in RFC 4120. Shishi can be used to authenticate users in distributed systems.

Shishi contains a library (’libshishi’) that can be used by application developers to add
support for Kerberos 5. Shishi contains a command line utility (’shishi’) that is used by
users to acquire and manage tickets (and more). The server side, a Key Distribution Center,
is implemented by ’shishid’. Of course, a manual documenting usage aspects as well as the
programming API is included.

Shishi currently supports AS/TGS exchanges for acquiring tickets, pre-authentication,
the AP exchange for performing client and server authentication, and SAFE/PRIV for
integrity/privacy protected application data exchanges.

Shishi is internationalized; error and status messages can be translated into the users’ lan-
guage; user name and passwords can be converted into any available character set (normally
including ISO-8859-1 and UTF-8) and also be processed using an experimental Stringprep
profile.

Most, if not all, of the widely used encryption and checksum types are supported, such
as 3DES, AES, ARCFOUR and HMAC-SHA1.

Shishi is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

Shishi is free software licensed under the GNU General Public License version 3.0 or
later.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the Kerberos
5 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License version 3.0 (see Section C.2 [GNU GPL], page 257) or
later.

Chapter 1: Introduction 2

It’s thread-safe
The library uses no global variables.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
yet. However, some basic functionality is implemented. A few implemented feature are
mentioned below.

• Initial authentication (AS) from raw key or password. This step is typically used to
acquire a ticket granting ticket and, less commonly, a server ticket.

• Subsequent authentication (TGS). This step is typically used to acquire a server ticket,
by authenticating yourself using the ticket granting ticket.

• Client-Server authentication (AP). This step is used by clients and servers to prove to
each other who they are, using negotiated tickets.

• Integrity protected communication (SAFE). This step is used by clients and servers to
exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

• Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

• Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview], page 5).

• Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

• PAM module. This is used to login locally on a machine.

• KDC addresses located using DNS SRV RRs.

• Modularized low-level crypto interface. Currently Gnulib and Libgcrypt are sup-
ported. If you wish to add support for another low-level cryptographic library, you
only have to implement a few APIs for DES, AES, MD5, SHA1, HMAC, etc. Look at
‘gl/gc-gnulib.c’ or ‘gl/gc-libgcrypt.c’ as a starting pointer.

The following table summarize what the current objectives are (i.e., the todo list) and
an estimate on how long it will take to implement the feature, including some reasonable
startup-time to get familiar with Shishi in general. If you like to start working on anything,
please let me know so work duplication can be avoided.

• Parse ‘/etc/krb5.keytab’ to extract keys to use for telnetd etc (week)

• Cross-realm support (week).

• PKINIT (use libksba, weeks)

Chapter 1: Introduction 3

• Finish GSSAPI support via GSSLib (weeks) Shishi will not support GSSLib natively,
but a separate project “GSSLib” is under way to produce a generic GSS implementa-
tion, and it will use Shishi to implement the Kerberos 5 mechanism.

• Port to cyclone (cyclone need to mature first)
• Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-

tionality is found in lib/asn1.c, although the interface is rather libtasn1 centric.
• KDC (initiated, weeks)
• LDAP backend for Shisa.
• Set/Change password protocol (weeks?)
• Port applications to use Shishi (indefinite)
• Finish server-realm stuff
• Improve documentation
• Improve internationalization
• Add AP-REQ replay cache (week).
• Study benefits by introducing a PA-TGS-REP. This would provide mutual authentica-

tion of the KDC in a way that is easier to analyze. Currently the mutual authentication
property is only implicit from successful decryption of the KDC-REP and the 4 byte
nonce.

• GUI applet for managing tickets. This is supported via the ticket-applet, of which a
Shishi port is published on the Shishi home page.

• Authorization library (months?) The shishi authorized p() is not a good solution,
better would be to have a generic and flexible authorization library. Possibly based on
S-EXP’s in tickets? Should support non-Kerberos uses as well, of course.

• Proof read manual.
• X.500 support, including DOMAIN-X500-COMPRESS. I will accept patches that im-

plement this, if it causes minimal changes to the current code.

1.3 Overview

This section describes RFC 1510 from a protocol point of view1.
Kerberos provides a means of verifying the identities of principals, (e.g., a workstation

user or a network server) on an open (unprotected) network. This is accomplished without
relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it

1 The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, copyright likely owned by the RFC 1510 authors or some contributor.

Chapter 1: Introduction 4

takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for
the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve
privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that
it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and

Chapter 1: Introduction 5

integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. In this section we
give the names of the supported encryption suites, and some notes about them, and their
associated checksum suite.

Statements such as “it is weak” should be read as meaning that there is no credible
security analysis of the mechanism available, and/or that should an attack be published
publicly, few people would likely be surprised. Also keep in mind that the key size mentioned
is the actual key size, not the effective key space as far as a brute force attack is concerned.

As you may infer from the descriptions, there is currently no encryption algorithm and
only one checksum algorithm that inspire great confidence in its design. Hopefully this will
change over time.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

arcfour-hmac
arcfour-hmac-exp

arcfour-hmac-* are a proprietary stream cipher with 56 bit (arcfour-hmac-
exp) or 128 bit (arcfour-hmac) keys, used in a proprietary way described in an
expired IETF draft ‘draft-brezak-win2k-krb-rc4-hmac-04.txt’. Deriving
keys from passwords is supported, and is done by computing a message digest
(MD4) of a 16-bit Unicode representation of the ASCII password, with no salt.
Data is integrity protected with a keyed hash (HMAC-MD5), where the key is
derived from the base key in a creative way. It is weak. It is associated with
the arcfour-hmac-md5 checksum.

des-cbc-none
des-cbc-none is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. It is weak, because it offers no
integrity protection. This is typically only used by RFC 1964 GSS-API im-
plementations (which try to protect integrity using an ad-hoc solution). It is
associated with the NULL checksum.

des-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using the key as IV (see Section B.4 [Key as initialization
vector], page 243). The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed but
encrypted CRC32-like checksum. It is weak. It is associated with the rsa-md5-
des checksum.

Chapter 1: Introduction 6

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD4 hash. It is weak. It is associated with the
rsa-md4-des checksum.

des-cbc-md5
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD5 hash. It is weak. It is associated with the rsa-
md5-des checksum. This is the strongest RFC 1510 interoperable encryption
mechanism.

des3-cbc-none
des3-cbc-none is DES encryption and decryption with three 56 bit keys (ef-
fective key size 112 bits) and 8 byte blocks in CBC mode. The keys can be
derived from passwords by the same algorithm as des3-cbc-sha1-kd. It is
weak, because it offers no integrity protection. This is typically only used by
GSS-API implementations (which try to protect integrity using an ad-hoc so-
lution) for interoperability with some existing Kerberos GSS implementations.
It is associated with the NULL checksum.

des3-cbc-sha1-kd
des3-cbc-sha1-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"2 by Uri Blumenthal and Steven M. Bellovin
(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
SHA1 hash in HMAC mode. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. Note that the key derivation function is not widely used outside
of Kerberos, hence not widely studied. It is associated with the hmac-sha1-
des3-kd checksum.

aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha1-96

aes128-cts-hmac-sha1-96 and aes256-cts-hmac-sha1-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Pass-
word Based Key Derivation Function 23, which is allegedly provably secure in
a random oracle model. Data is integrity protected with a keyed SHA1 hash,

2 http://www.research.att.com/~smb/papers/ides.pdf
3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

http://www.research.att.com/~smb/papers/ides.pdf
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 7

in HMAC mode, truncated to 96 bits. There is no security proof, but the
schemes are assumed to provide adequate security in the sense that knowledge
on how to crack them is not known to the public. Note that AES has yet to
receive the test of time, and the AES cipher encryption mode (CBC with Ci-
phertext Stealing, and a non-standard IV output) is not widely standardized
(hence not widely studied). It is associated with the hmac-sha1-96-aes128
and hmac-sha1-96-aes256 checksums, respectively.

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

arcfour-hmac-md5
arcfour-hmac-md5 is a keyed HMAC-MD5 checksum computed on a MD5 mes-
sage digest, in turn computed on a four byte message type indicator concate-
nated with the application data. (The arcfour designation is thus somewhat
misleading, but since this checksum mechanism is described in the same docu-
ment as the arcfour encryption mechanisms, it is not a completely unnatural
designation.) It is weak. It is compatible with all encryption mechanisms.

rsa-md4

rsa-md4 is a unkeyed MD4 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5

rsa-md5 is a unkeyed MD5 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a

Chapter 1: Introduction 8

constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

hmac-sha1-des3-kd
hmac-sha1-des3-kd is a keyed SHA1 hash in HMAC mode computed over
the message. The key is derived from the base protocol by the simplified key
derivation function (similar to the password key derivation functions of des3-
cbc-sha1-kd, which does not appear to be widely used outside Kerberos and
hence not widely studied). It has no security proof, but is assumed to provide
good security. The weakest part is likely the proprietary key derivation function.
It is compatible with the des3-cbc-sha1-kd encryption mechanism.

hmac-sha1-96-aes128
hmac-sha1-96-aes256

hmac-sha1-96-aes* are keyed SHA1 hashes in HMAC mode computed over
the message and then truncated to 96 bits. The key is derived from the base
protocol by the simplified key derivation function (similar to the password key
derivation functions of aes*-cts-hmac-sha1-96, i.e., PKCS#5). It has no
security proof, but is assumed to provide good security. It is compatible with
the aes*-cts-hmac-sha1-96 encryption mechanisms.

Several of the cipher suites have long names that can be hard to memorize. For your
convenience, the following short-hand aliases exists. They can be used wherever the full
encryption names are used.

arcfour

Alias for arcfour-hmac.

des-crc

Alias for des-cbc-crc.

des-md4

Alias for des-cbc-md4.

des-md5
des

Alias for des-cbc-md5.

des3
3des

Alias for des3-cbc-sha1-kd.

aes128

Alias for aes128-cts-hmac-sha1-96.

aes
aes256

Alias for aes256-cts-hmac-sha1-96.

Chapter 1: Introduction 9

1.5 Supported Platforms

Shishi has at some point in time been tested on the following platforms. On-
line build reports for each platforms and Shishi version is available at
http://autobuild.josefsson.org/shishi/.

1. Debian GNU/Linux 3.0 (Woody)
GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, i686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,
mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.4 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. SuSE Linux
GCC 3.2.2 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

7. RedHat Linux 7.2
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

8. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

9. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

10. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

11. Mandrake Linux 9.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

12. IRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

13. AIX 4.3.2
IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

http://autobuild.josefsson.org/shishi/

Chapter 1: Introduction 10

14. HP-UX 11
HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

15. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

16. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

17. OpenBSD 3.1 and 3.2
GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

18. FreeBSD 4.7 and 4.8
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, i386-unknown-freebsd4.8.

19. MacOS X 10.2 Server Edition
GCC 3.1 and GNU Make. powerpc-apple-darwin6.5.

20. Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see
Section 1.9 [Bug Reports], page 12).

1.6 Getting help

A mailing list where users of Shishi may help each other exists, and you can reach it
by sending e-mail to help-shishi@gnu.org. Archives of the mailing list discussions,
and an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-shishi.

1.7 Commercial Support

Commercial support is available for users of Shishi. The kind of support that can be
purchased may include:
• Implement new features. Such as support for some optional part of the Kerberos

standards, e.g. PKINIT, hardware token authentication.
• Port Shishi to new platforms. This could include porting Shishi to an embedded plat-

forms that may need memory or size optimization.
• Integrate Kerberos 5 support in your existing project.
• System design of components related to Kerberos 5.

If you are interested, please write to:
Simon Josefsson Datakonsult
Hagagatan 24
113 47 Stockholm
Sweden

mailto:help-shishi@gnu.org
http://lists.gnu.org/mailman/listinfo/help-shishi

Chapter 1: Introduction 11

E-mail: simon@josefsson.org

If your company provide support related to Shishi and would like to be mentioned here,
contact the author (see Section 1.9 [Bug Reports], page 12).

1.8 Downloading and Installing

The package can be downloaded from several places, including:

ftp://alpha.gnu.org/pub/gnu/shishi/

The latest version is stored in a file, e.g., ‘shishi-0.0.40.tar.gz’ where the ‘0.0.40’
indicate the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://alpha.gnu.org/pub/gnu/shishi/shishi-0.0.40.tar.gz
$ tar xfz shishi-0.0.40.tar.gz
$ cd shishi-0.0.40/
$./configure
...
$ make
...
$ make install
...

After this you should be prepared to continue with the user, administration or program-
ming manual, depending on how you want to use Shishi.

A few configure options may be relevant, summarized in the table.

--disable-des
--disable-3des
--disable-aes
--disable-md
--disable-null
--disable-arcfour

Disable a cryptographic algorithm at compile time. Usually it is better to
disable algorithms during run-time with the configuration file, but this allows
you to reduce the code size slightly.

--disable-starttls
Disable the experimental TLS support for KDC connections. If you do not use
a Shishi KDC, this support is of no use so you could safely disable it.

--without-stringprep
Disable internationalized string processing.

For the complete list, refer to the output from configure --help.

ftp://alpha.gnu.org/pub/gnu/shishi/

Chapter 1: Introduction 12

1.9 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.
• Please make sure that the bug is really in Shishi, and preferably also check that it

hasn’t already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

1.10 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.9 [Bug
Reports], page 12). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-

defined〉).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see 〈undefined〉 [top], page 〈undefined〉)
before submitting your work.

• Use the unified diff format ‘diff -u’.
• Return errors. The only valid reason for ever aborting the execution of the program is

due to memory allocation errors, but for that you should call ‘shishi_xalloc_die’ to
allow the application to recover if it wants to.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

Chapter 1: Introduction 13

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: User Manual 14

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a pass-
word, and then contacts a server to receive a so called ticket granting ticket. From now on,
you rarely interacts with Shishi directly. Applications that needs security services instruct
the Shishi library to use the ticket granting ticket to get new tickets for various servers. An
example could be if you log on to a host remotely via ‘telnet’. The host usually requires
authentication before permitting you in. The ‘telnet’ client uses the ticket granting ticket
to get a ticket for the server, and then use this ticket to authenticate you against the server
(typically the server is also authenticated to you). You perform the initial authentication
by typing shishi at the prompt. Sometimes it is necessary to supply options telling Shishi
what your principal name (user name in the Kerberos realm) or realm is. In the example,
I specify the client name simon@JOSEFSSON.ORG.

$ shishi simon@JOSEFSSON.ORG
Enter password for ‘simon@JOSEFSSON.ORG’:
simon@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:44:49 2003
Endtime: Fri Aug 15 05:01:29 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: INITIAL (512)
$

As you can see, Shishi also prints a short description of the ticket received.
A logical next step is to display all tickets you have received (by the way, the tickets are

usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --list.
$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)
Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte.josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.
$

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

Chapter 2: User Manual 15

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server-name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:54:33 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: user/billg key des-cbc-md4 (2)
Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)
$

As you can see, I acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview], page 5) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

$ shishi --server-name=imap/latte.josefsson.org --destroy
1 ticket removed.
$ shishi --server-name=foobar --destroy
No tickets removed.
$ shishi --destroy
3 tickets removed.
$

Since the ‘--server-name’ parameter takes a long to type, it is possible to type the
server name directly, after the client name. The following example demonstrate a AS-REQ
followed by a TGS-REQ for a specific server (assuming you did not have any tickets from
the start).

$ src/shishi simon@latte.josefsson.org imap/latte.josefsson.org
Enter password for ‘simon@latte.josefsson.org’:
simon@latte.josefsson.org:
Acquired: Wed Aug 27 17:21:06 2003
Expires: Wed Aug 27 17:37:46 2003
Server: imap/latte.josefsson.org key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE (12)
$

Refer to the reference manual for all available parameters (see Section 4.6 [Parameters
for shishi], page 47). The rest of this section contains description of more specialized usage
modes that can be ignored by most users.

Chapter 2: User Manual 16

2.1 Proxiable and Proxy Tickets

At times it may be necessary for a principal to allow a service to perform an operation on
its behalf. The service must be able to take on the identity of the client, but only for a
particular purpose. A principal can allow a service to take on the principal’s identity for a
particular purpose by granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used to provide
credentials for use with specific services. Though conceptually also a proxy, users wishing
to delegate their identity in a form usable for all purpose MUST use the ticket forwarding
mechanism described in the next section to forward a ticket-granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket) with a
different network address based on this ticket. This flag is set if requested by the client on
initial authentication. By default, the client will request that it be set when requesting a
ticket-granting ticket, and reset when requesting any other ticket.

This flag allows a client to pass a proxy to a server to perform a remote request on its
behalf (e.g. a print service client can give the print server a proxy to access the client’s files
on a particular file server in order to satisfy a print request).

In order to complicate the use of stolen credentials, Kerberos tickets are usually valid
from only those network addresses specifically included in the ticket[4]. When granting a
proxy, the client MUST specify the new network address from which the proxy is to be
used, or indicate that the proxy is to be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application
servers MAY check this flag and at their option they MAY require additional authentication
from the agent presenting the proxy in order to provide an audit trail.

Here is how you would acquire a PROXY ticket for the service ‘imap/latte.josefsson.org’:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
Enter password for ‘jas@JOSEFSSON.ORG’:
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:02:35 2003
Starttime: Mon Sep 8 20:02:36 2003
Endtime: Tue Sep 9 04:02:35 2003
Server: imap/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: PROXY (16)
$

As you noticed, this asked for your password. The reason is that proxy tickets must be
acquired using a proxiable ticket granting ticket, which was not present. If you often need
to get proxy tickets, you may acquire a proxiable ticket granting ticket from the start:

$ shishi --proxiable
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:04:27 2003

Chapter 2: User Manual 17

Endtime: Tue Sep 9 04:04:27 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: PROXIABLE INITIAL (520)

Then you should be able to acquire proxy tickets based on that ticket granting ticket,
as follows:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:04:27 2003
Starttime: Mon Sep 8 20:04:32 2003
Endtime: Tue Sep 9 04:04:27 2003
Server: imap/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: PROXY (16)
$

2.2 Forwardable and Forwarded Tickets

Authentication forwarding is an instance of a proxy where the service that is granted is
complete use of the client’s identity. An example where it might be used is when a user logs
in to a remote system and wants authentication to work from that system as if the login
were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. The FORWARDABLE flag has an inter-
pretation similar to that of the PROXIABLE flag, except ticket-granting tickets may also
be issued with different network addresses. This flag is reset by default, but users MAY
request that it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to enter a
password again. If the flag is not set, then authentication forwarding is not permitted, but
the same result can still be achieved if the user engages in the AS exchange specifying the
requested network addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FORWARDED
KDC option and supplying a set of addresses for the new ticket. It is also set in all tickets
issued based on tickets with the FORWARDED flag set. Application servers may choose to
process FORWARDED tickets differently than non-FORWARDED tickets.

If addressless tickets are forwarded from one system to another, clients SHOULD still
use this option to obtain a new TGT in order to have different session keys on the different
systems.

Here is how you would acquire a FORWARDED ticket for the service
‘host/latte.josefsson.org’:

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
Enter password for ‘jas@JOSEFSSON.ORG’:

Chapter 2: User Manual 18

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:07:11 2003
Starttime: Mon Sep 8 20:07:12 2003
Endtime: Tue Sep 9 04:07:11 2003
Server: host/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: FORWARDED (4)
$

As you noticed, this asked for your password. The reason is that forwarded tickets must
be acquired using a forwardable ticket granting ticket, which was not present. If you often
need to get forwarded tickets, you may acquire a forwardable ticket granting ticket from
the start:

$ shishi --forwardable
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:08:53 2003
Endtime: Tue Sep 9 04:08:53 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: FORWARDABLE INITIAL (514)
$

Then you should be able to acquire forwarded tickets based on that ticket granting ticket,
as follows:

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:08:53 2003
Starttime: Mon Sep 8 20:08:57 2003
Endtime: Tue Sep 9 04:08:53 2003
Server: host/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: FORWARDED (4)
$

Chapter 3: Administration Manual 19

3 Administration Manual

Here you will learn how to set up, run and maintain the Shishi Kerberos server. Kerberos is
incompatible with the standard Unix ‘/etc/passwd’ password database1, therefor the first
step will be to create a Kerberos user database. Shishi’s user database system is called
Shisa. Once Shisa is configured, you can then start the server and begin issuing Kerberos
tickets to your users. The Shishi server is called ‘shishid’. After getting the server up and
running, we discuss how you can set up multiple Kerberos servers, to increase availability
or offer load-balancing. Finally, we include some information intended for developers, that
will enable you to customize Shisa to use an external user database, such as a LDAP server
or SQL database.

3.1 Introduction to Shisa

The user database part of Shishi is called Shisa. The Shisa library is independent of the
core Shishi library. Shisa is responsible for storing the name of your realms, the name
of your principals (users), accounting information for the users (i.e., when each account
start to be valid and when it expire), and the cryptographic keys each user have. Some
Kerberos internal data can also be stored, such as the key version number, the last dates for
when various ticket requests were made, the cryptographic salt, string-to-key parameters
and password for each user. Not all information need to be stored. For example, in some
situations it is prudent to leave the password field empty, so that somebody who manage to
steal the user database will only be able to compromise your system, and not other systems
were your user may have re-used the same password. On the other hand, you may already
store the password in your customized database, in which case being able to change it via
the Shisa interface can be useful.

Shisa is a small (a few thousand lines of C code) standalone library. Shisa does not
depend on the Shishi library. Because a user database with passwords may be useful for
other applications as well (e.g., GNU SASL), it may be separated into its own project later
on. You should keep this in mind, so that you don’t consider writing a Shisa backend for
your own database a purely Shishi specific project. You may, for example, chose to use the
Shisa interface in your own applications to have a simple interface to your user database.
Your experience and feedback is appreciated if you chose to explore this.

Note that the Shisa database does not expose everything you may want to know about a
user, such as its full human name, telephone number or even the user’s login account name
or home directory. It only store what is needed to authenticate a peer claiming to be an
entity. Thus it does not make sense to replace your current user database or ‘/etc/passwd’
with data derived from the Shisa database. Instead, it is intended that you write a Shisa
backend that export some of the information stored in your user database. You may be able
to replace some existing functionality, such as the password field in ‘/etc/passwd’ with a
Kerberos PAM module, but there is no requirement for doing so.

3.2 Configuring Shisa

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
You do not have to configure this file, the defaults should be acceptable to first-time users.

1 And besides, Shishi is intended to work on non-Unix platforms as well.

Chapter 3: Administration Manual 20

The file is used to define where you user database reside, and some options such as making
the database read-only or whether errors detected when accessing the database should
be ignored. (The latter may be useful if the server is a remote LDAP server that may be
unavailable, and you want to fail over to a local copy of the database.)

The default will store the user database using directories and files, rooted by default in
‘/usr/local/var/shishi’. You may use standard file permission settings to control access
to the directory hierarchy. It is strongly recommended to restrict access to the directory.
Storing the directory on local storage (i.e., hard disk or removal media) is recommended.
We discourage placing the database on a network file system, but realize it can be useful in
some situations (see Section 3.7 [Multiple servers], page 34).

See the reference manual (see Section 4.5 [Shisa Configuration], page 46) for the details
of the configuration file. Again, you are not expected to need to modify anything unless
you are an experienced Shishi administrator.

3.3 Using Shisa

There is a command line interface to the Shisa library, aptly named ‘shisa’. You will
use this tool to add, remove and change information stored in the database about realms,
principals and keys. The tool can also be used to “dump” all information in the database,
for backup or debugging purposes. (Currently the output format cannot be read by any tool,
but functionality to do this will be added in the future, possibly as a read-only file-based
Shisa database backend.)

The reference manual (see Section 4.8 [Parameters for shisa], page 49) explains all pa-
rameters, but here we will give you a walk-through of the typical uses of the tool.

Installing Shishi usually create a realm with two principals; one ticket granting ticket for
the realm, and one host key for the server. This is what you typically need to get started,
but it doesn’t serve our purposes. So we start by removing the principals and the realm. To
do that, we need to figure out the name of the realm. The ‘--list’ or ‘--dump’ parameters
can be used for this. (Most “long” parameters, like ‘--dump’, have shorter names as well,
in this case ‘-d’, Section 4.8 [Parameters for shisa], page 49).

jas@latte:~$ shisa -d
latte

krbtgt/latte
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype aes256-cts-hmac-sha1-96 (0x12, 18).
Salt lattekrbtgt/latte.

host/latte
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype aes256-cts-hmac-sha1-96 (0x12, 18).
Salt lattehost/latte.

jas@latte:~$

Chapter 3: Administration Manual 21

The realm names are printed at column 0, the principal names are indented with one
‘TAB’ character (aka ‘\t’ or ASCII 0x09 Horizontal Tabulation), and the information about
each principal are indented with two ‘TAB’ characters. The above output means that there
is one realm ‘latte’ with two principals; ‘krbtgt/latte’ (which is used to authenticate
Kerberos ticket requests) and ‘host/latte’ (used to authenticate host-based applications
like Telnet). They were created during ‘make install’ on a host called ‘latte’.

If the installation did not create a default database for you, you might get an error
similar to the following.

jas@latte:~$ shisa -d
shisa: Cannot initialize ‘file’ database backend.
Location ‘/usr/local/var/shishi’ and options ‘N/A’.
shisa: Initialization failed:
Shisa database could not be opened.
jas@latte:~$

This indicate the database do not exist. For a file database, you can create it by simply
creating the directory, as follows. Note the access permission change with ‘chmod’. Typi-
cally the ‘root’ user would own the files, but as these examples demonstrate, setting up a
Kerberos server does not require root access. Indeed, it may be prudent to run all Shishi
applications as a special non-‘root’ user, and have all Shishi related files owned by that
user, so that any security vulnerabilities does not lead to a system compromise. (However,
if the user database is stolen, system compromises of other systems may be possible if you
use, e.g., Kerberos Telnet.)

jas@latte:~$ mkdir /usr/local/var/shishi
jas@latte:~$ chmod go-rwx /usr/local/var/shishi

Back to the first example, where you have a realm ‘latte’ with some principals. We
want to remove the realm to demonstrate how you create the realm from scratch. (Of
course, you can have more than one realm in the database, but for this example we assume
you want to set up a realm named the same as Shishi guessed you would name it, so the
existing realm need to be removed first.) The ‘--remove’ (short form ‘-r’) parameter is
used for this purpose, as follows.

jas@latte:~$ shisa -r latte host/latte
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
jas@latte:~$ shisa -r latte krbtgt/latte
Removing principal ‘krbtgt/latte@latte’...
Removing principal ‘krbtgt/latte@latte’...done
jas@latte:~$ shisa -r latte
Removing realm ‘latte’...
Removing realm ‘latte’...done
jas@latte:~$

You may be asking yourself “What if the realm has many more principals?”. If you fear
manual labor (or a small ‘sed’ script, recall the format of ‘--list’?), don’t worry, there is
a ‘--force’ (short form ‘-f’) flag. Use with care. Here is a faster way to do the above:

jas@latte:~$ shisa -r latte -f
Removing principal ‘krbtgt/latte@latte’...

Chapter 3: Administration Manual 22

Removing principal ‘krbtgt/latte@latte’...done
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
Removing realm ‘latte’...
Removing realm ‘latte’...done
jas@latte:~$

You should now have a working, but empty, Shisa database. Let’s set up the realm
manually, step by step. The first step is to decide on name for your realm. The full story is
explained elsewhere (see Section 4.3 [Realm and Principal Naming], page 39) but the short
story is to take your DNS domain name and translate it to upper case. For example, if your
organization uses example.org it is a good idea to use EXAMPLE.ORG as the name of your
Kerberos realm. We’ll use EXAMPLE.ORG as the realm name in these examples. Let’s create
the realm.

jas@latte:~$ shisa -a EXAMPLE.ORG
Adding realm ‘EXAMPLE.ORG’...
Adding realm ‘EXAMPLE.ORG’...done
jas@latte:~$

Currently, there are no properties associated with entire realms. In the future, it may be
possible to set a default realm-wide password expiry policy or similar. Each realm normally
have one principal that is used for authenticating against the “ticket granting service” on
the Kerberos server with a ticket instead of using the password. This is used by the user
when she acquire a ticket for servers. This principal must look like ‘krbtgt/REALM’ (see
[Name of the TGS], page 42). Let’s create it.

jas@latte:~$ shisa -a EXAMPLE.ORG krbtgt/EXAMPLE.ORG
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.ORG’...
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.ORG’...done
jas@latte:~$

Now that wasn’t difficult, although not very satisfying either. What does adding a
principal mean? The name is created, obviously, but it also mean setting a few values in
the database. Let’s view the entry to find out which values.

jas@latte:~$ shisa -d
EXAMPLE.ORG

krbtgt/EXAMPLE.ORG
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype aes256-cts-hmac-sha1-96 (0x12, 18).
Salt EXAMPLE.ORGkrbtgt/EXAMPLE.ORG.

jas@latte:~$

To use host based security services like SSH or Telnet with Kerberos, each
host must have a key shared between the host and the KDC. The key is typically
stored in ‘/usr/local/etc/shishi/shishi.keys’. We assume your server is called
‘mail.example.org’ and create the principal. To illustrate a new parameter, we also
set the specific algorithm to use by using the ‘--encryption-type’ (short form ‘-E’)
parameter.

Chapter 3: Administration Manual 23

jas@latte:~$ shisa -a EXAMPLE.ORG host/mail.example.org -E des3
Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...
Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...done
jas@latte:~$

To export the key, there is another Shisa parameter ‘--keys’ that will print the key in
a format that is recognized by Shishi. Let’s use it to print the host key.

jas@latte:~$ shisa -d --keys EXAMPLE.ORG host/mail.example.org
EXAMPLE.ORG

host/mail.example.org
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype des3-cbc-sha1-kd (0x10, 16).
-----BEGIN SHISHI KEY-----
Keytype: 16 (des3-cbc-sha1-kd)
Principal: host/mail.example.org
Realm: EXAMPLE.ORG

iQdA8hxdvOUHZNliZJv7noM02rXHV8gq
-----END SHISHI KEY-----

Salt EXAMPLE.ORGhost/mail.example.org.
jas@latte:~$

So to set up the host, simply redirect output to the host key file.
jas@latte:~$ shisa -d --keys EXAMPLE.ORG \

host/mail.example.org > /usr/local/etc/shishi/shishi.keys
jas@latte:~$

The next logical step is to create a principal for some user, so you can use your password
to get a Ticket Granting Ticket via the Authentication Service (AS) from the KDC, and
then use the Ticket Granting Service (TGS) from the KDC to get a ticket for a specific
host, and then send that ticket to the host to authenticate yourself. Creating this end-user
principle is slightly different from the earlier steps, because you want the key to be derived
from a password instead of being a random key. The ‘--password’ parameter indicate this.
This make the tool ask you for the password.

jas@latte:~$ shisa -a EXAMPLE.ORG simon --password
Password for ‘simon@EXAMPLE.ORG’:
Adding principal ‘simon@EXAMPLE.ORG’...
Adding principal ‘simon@EXAMPLE.ORG’...done
jas@latte:~$

The only special thing about this principal now is that it has a password field set in the
database.

jas@latte:~$ shisa -d EXAMPLE.ORG simon --keys
EXAMPLE.ORG

simon
Account is enabled.
Current key version 0 (0x0).

Chapter 3: Administration Manual 24

Key 0 (0x0).
Etype aes256-cts-hmac-sha1-96 (0x12, 18).

-----BEGIN SHISHI KEY-----
Keytype: 18 (aes256-cts-hmac-sha1-96)
Principal: simon
Realm: EXAMPLE.ORG

Ja7ciNtrAI3gtodLaVDQ5zhcH58ffk0kS5tGAM7ILvM=
-----END SHISHI KEY-----

Salt EXAMPLE.ORGsimon.
Password foo.

jas@latte:~$

You should now be ready to start the KDC, which is explained in the next section (see
Section 3.4 [Starting Shishid], page 24), and get tickets as explained earlier (see Chapter 2
[User Manual], page 14).

3.4 Starting Shishid

The Shishi server, or Key Distribution Center (KDC), is called Shishid. Shishid is respon-
sible for listening on UDP and TCP ports for Kerberos requests. Currently it can handle
initial ticket requests (Authentication Service, or AS), typically authenticated with keys
derived from passwords, and subsequent ticket requests (Ticket Granting Service, or TGS),
typically authenticated with the key acquired during an AS exchange.

Currently there is very little configuration available, the only variables are which ports
the server should listen on and an optional user name to setuid into after successfully
listening to the ports.

By default, Shishid listens on the ‘kerberos’ service port (typically translated to 88 via
‘/etc/services’) on the UDP and TCP protocols via IPv4 and (if your machine support
it) IPv6 on all interfaces on your machine. Here is a typical startup.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid
Initializing GNUTLS...
Initializing GNUTLS...done
Listening on IPv4:*:kerberos/udp...done
Listening on IPv4:*:kerberos/tcp...done
Listening on IPv6:*:kerberos/udp...failed
socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed
socket: Address family not supported by protocol
Listening on 2 ports...

Running as root is not recommended. Any security problem in shishid and your host
may be compromised. Therefor, we recommend using the ‘--setuid’ parameter, as follows.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid --setuid=jas
Initializing GNUTLS...
Initializing GNUTLS...done
Listening on IPv4:*:kerberos/udp...done
Listening on IPv4:*:kerberos/tcp...done

Chapter 3: Administration Manual 25

Listening on IPv6:*:kerberos/udp...failed
socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed
socket: Address family not supported by protocol
Listening on 2 ports...
User identity set to ‘jas’ (22541)...

An alternative is to run shishid on an alternative port as a non-privileged user. To
continue the example of setting up the EXAMPLE.ORG realm as a non-privileged user from
the preceding section, we start the server listen on port 4711 via UDP on IPv4.

jas@latte:~$ /usr/local/sbin/shishid -l IPv4:*:4711/udp
Initializing GNUTLS...
Initializing GNUTLS...done
Listening on *:4711/tcp...
Listening on 1 ports...
shishid: Starting (GNUTLS ‘1.0.4’)
shishid: Listening on *:4711/tcp socket 4

If you have set up the Shisa database as in the previous example, you can now acquire
tickets as follows.

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE.ORG

Enter password for ‘simon@EXAMPLE.ORG’:
simon@EXAMPLE.ORG:
Authtime: Fri Dec 12 01:41:01 2003
Endtime: Fri Dec 12 01:57:41 2003
Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE RENEWABLE INITIAL (12)
jas@latte:~$

The output from Shishid on a successful invocation would look like:
shishid: Has 131 bytes from *:4711/udp on socket 4
shishid: Processing 131 from *:4711/udp on socket 4
shishid: Trying AS-REQ
shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORG@EXAMPLE.ORG
shishid: Matching client etype 18 against user key etype 18
shishid: Have 511 bytes for *:4711/udp on socket 4
shishid: Sending 511 bytes to *:4711/udp socket 4 via UDP
shishid: Listening on *:4711/udp socket 4

You may use the ’-v’ parameter for Shishid and Shishi to generate more debugging
information.

To illustrate what an application, such as the Shishi patched versions of GNU lsh or
Telnet from GNU InetUtils, would do when contacting the host ‘mail.example.org’ we
illustrate using the TGS service as well.

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE.ORG host/mail.example.org

simon@EXAMPLE.ORG:

Chapter 3: Administration Manual 26

Authtime: Fri Dec 12 01:46:54 2003
Endtime: Fri Dec 12 02:03:34 2003
Server: host/mail.example.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE (45398796)
jas@latte:~$

This conclude our walk-through of setting up a new Kerberos realm using Shishi. It is
quite likely that one or more steps failed, and if so we encourage you to debug it and submit
a patch, or at least report it as a problem. Heck, even letting us know if you got this far
would be of interest. See Section 1.9 [Bug Reports], page 12.

3.5 Configuring DNS for KDC

Making sure the configuration files on all hosts running Shishi clients include the addresses
of your server is tedious. If the configuration files do not mention the KDC address for a
realm, Shishi will try to look up the information from DNS. In order for Shishi to find that
information, you need to add the information to DNS. For this to work well, you need to set
up a DNS zone with the same name as your Kerberos realm. The easiest is if you own the
publicly visible DNS name, such as ‘example.org’ if your realm is ‘EXAMPLE.ORG’, but you
can set up an internal DNS server with the information for your realm only. If this is done,
you do not need to keep configuration files updated for the KDC addressing information.

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names

In Kerberos, realm names are case sensitive. While it is strongly encouraged that all realm
names be all upper case this recommendation has not been adopted by all sites. Some sites
use all lower case names and other use mixed case. DNS on the other hand is case insensitive
for queries but is case preserving for responses to TXT queries. Since "MYREALM",
"myrealm", and "MyRealm" are all different it is necessary that only one of the possible
combinations of upper and lower case characters be used. This restriction may be lifted in
the future as the DNS naming scheme is expanded to support non-ASCII names.

3.5.2 Overview - KDC location information

KDC location information is to be stored using the DNS SRV RR [RFC 2052]. The format
of this RR is as follows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target
The Service name for Kerberos is always " kerberos".
The Proto can be either " udp", " tcp", or " tls. tcp". If these SRV records are to

be used, a " udp" record MUST be included. If the Kerberos implementation supports
TCP transport, a " tcp" record MUST be included. When using " tcp" with " kerberos",
this indicates a "raw" TCP connection without any additional encapsulation. A " tls. tcp"
record MUST be specified for all Kerberos implementations that support communication
with the KDC across TCP sockets encapsulated using TLS [RFC2246] (see Section B.1
[STARTTLS protected KDC exchanges], page 234).

The Realm is the Kerberos realm that this record corresponds to.
TTL, Class, SRV, Priority, Weight, and Target have the standard meaning as defined in

RFC 2052.

Chapter 3: Administration Manual 27

As per RFC 2052 the Port number should be the value assigned to "kerberos" by the
Internet Assigned Number Authority (88).

3.5.3 Example - KDC location information

These are DNS records for a Kerberos realm ASDF.COM. It has two Kerberos servers,
kdc1.asdf.com and kdc2.asdf.com. Queries should be directed to kdc1.asdf.com first as per
the specified priority. Weights are not used in these records.

_kerberos._udp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._udp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.

3.5.4 Security considerations

As DNS is deployed today, it is an unsecure service. Thus the infor- mation returned by it
cannot be trusted.

Current practice for REALM to KDC mapping is to use hostnames to indicate KDC
hosts (stored in some implementation-dependent location, but generally a local config file).
These hostnames are vulnerable to the standard set of DNS attacks (denial of service,
spoofed entries, etc). The design of the Kerberos protocol limits attacks of this sort to
denial of service. However, the use of SRV records does not change this attack in any
way. They have the same vulnerabilities that already exist in the common practice of using
hostnames for KDC locations.

Implementations SHOULD provide a way of specifying this information locally without
the use of DNS. However, to make this feature worthwhile a lack of any configuration
information on a client should be interpretted as permission to use DNS.

3.6 Kerberos via TLS

If Shishi is built with support for GNUTLS, the messages exchanged between clients and
Shishid can be protected with TLS. TLS is only available over TCP connections. A full
discussion of the features TLS have is out of scope here, but in short it means the com-
munication is integrity and privacy protected, and that users can use OpenPGP, X.509 or
SRP (i.e., any mechanism supported by TLS) to authenticate themselves to the Kerberos
server. For details on the implementation, See Section B.1 [STARTTLS protected KDC
exchanges], page 234.

3.6.1 Setting up TLS resume

Resuming earlier TLS session is supported and enabled by default. This improves the speed
of the TLS handshake, because results from earlier negotiations can be re-used. Currently
the TLS resume database is stored in memory (in constract to storing it on disk), in both
the client and in the server. Because the server typically runs for a long time, this is not a
problem for that side. The client is typically not a long-running process though; the client
usually is invoked as part of applications like ‘telnet’ or ‘login’. However, because each
use of the client library typically result in a ticket, which is stored on disk and re-used by

Chapter 3: Administration Manual 28

later processes, this is likely not a serious problem because the number of different tickets
required by a user is usually quite small. For the client, TLS resume is typically only useful
when you perform an initial authentication (using a password) followed by a ticket request
for a service, in the same process.

You can configure the server, ‘shishid’ to never use TLS resume, or to increase or
decrease the number of distinct TLS connections that can be resumed before they are
garbage collected, see the ‘--resume-limit’ parameter (see Section 4.7 [Parameters for
shishid], page 48).

3.6.2 Setting up Anonymous TLS

Anonymous TLS is the simplest to set up and use. In fact, only the client need to be
informed that your KDC support TLS. This can be done in the configuration file with the
‘/tls’ parameter for ‘kdc-realm’ (see [Shishi Configuration], page 44), or by placing the
KDC address in DNS using the ‘_tls’ SRV record (see Section 3.5 [Configuring DNS for
KDC], page 26).

Let’s start Shishid, listening on a TCP socket. TLS require TCP. TCP sockets are
automatically upgraded to TLS if the client request it.

jas@latte:~$ /usr/local/sbin/shishid -l IPv4:*:4711/tcp
Initializing GNUTLS...done
Listening on IPv4:*:4711/tcp...
Listening on 1 ports...
shishid: Starting (GNUTLS ‘1.0.4’)
shishid: Listening on IPv4:*:4711/tcp socket 4

Let’s use the client to talk with it, using TLS.
jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711/tls \

simon@EXAMPLE.ORG
Enter password for ‘simon@EXAMPLE.ORG’:
simon@EXAMPLE.ORG:
Authtime: Tue Dec 16 05:20:47 2003
Endtime: Tue Dec 16 05:37:27 2003
Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE (12)
jas@latte:~$

On success, the server will print the following debug information.
shishid: Accepted socket 6 from socket 4 as IPv4:*:4711/tcp peer 127.0.0.1
shishid: Listening on IPv4:*:4711/tcp socket 4
shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 4 bytes from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying STARTTLS
shishid: TLS handshake negotiated protocol ‘TLS 1.0’, key exchange ‘Anon DH’, certficate type ‘X.509’, cipher ‘AES 256 CBC’, mac ‘SHA’, compression ‘NULL’, session not resumed
shishid: TLS anonymous authentication with 1024 bit Diffie-Hellman
shishid: Listening on IPv4:*:4711/tcp socket 4
shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 131 bytes from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6

Chapter 3: Administration Manual 29

shishid: Processing 131 from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying AS-REQ
shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORG@EXAMPLE.ORG
shishid: Matching client etype 18 against user key etype 18
shishid: Have 511 bytes for IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Sending 511 bytes to IPv4:*:4711/tcp peer 127.0.0.1 socket 6 via TLS
shishid: Listening on IPv4:*:4711/tcp socket 4
shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Peer IPv4:*:4711/tcp peer 127.0.0.1 disconnected on socket 6
shishid: Closing IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Listening on IPv4:*:4711/tcp socket 4

3.6.3 Setting up X.509 authenticated TLS

Setting up X.509 authentication is slightly more complicated than anonymous authentica-
tion. You need a X.509 certificate authority (CA) that can generate certificates for your
Kerberos server and Kerberos clients. It is often easiest to setup the CA yourself. Managing
a CA can be a daunting task, and we only give the bare essentials to get things up and
running. We suggest that you study the relevant literature. As a first step beyond this
introduction, you may wish to explore more secure forms of key storage than storing them
unencrypted on disk.

The following three sections describe how you create the CA, KDC certificate, and
client certificates. You can use any tool you like for this task, as long as they generate
X.509 (PKIX) certificates in PEM format and RSA keys in PKCS#1 format. Here we use
‘certtool’ that come with GNUTLS, which is widely available. We conclude by discussing
how you use these certificates in the KDC and in the Shishi client.

3.6.3.1 Create a Kerberos Certificate Authority

First create a CA key.
jas@latte:~$ certtool --generate-privkey \

--outfile /usr/local/etc/shishi/shishi.key
Generating a private key...
Generating a 1024 bit RSA private key...
jas@latte:~$

Then create the CA certificate. Use whatever details you prefer.
jas@latte:~$ certtool --generate-self-signed \

--load-privkey /usr/local/etc/shishi/shishi.key \
--outfile /usr/local/etc/shishi/shishi.cert

Generating a self signed certificate...
Please enter the details of the certificate’s distinguished name. \
Just press enter to ignore a field.
Country name (2 chars): SE
Organization name: Shishi Example CA
Organizational unit name:
Locality name:
State or province name:
Common name: CA

Chapter 3: Administration Manual 30

This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): 0

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.
Does the certificate belong to an authority? (Y/N): y
Is this a web server certificate? (Y/N): n
Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Validity:

Not Before: Sun Dec 21 10:59:00 2003
Not After: Fri Jun 18 11:59:00 2004

Subject: C=SE,O=Shishi Example CA,CN=CA
Subject Public Key Info:

Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:TRUE

Is the above information ok? (Y/N): y

Signing certificate...
jas@latte:~$

3.6.3.2 Create a Kerberos KDC Certificate

First create the key for the KDC.

jas@latte:~$ certtool --generate-privkey \
--outfile /usr/local/etc/shishi/shishid.key

Generating a private key...
Generating a 1024 bit RSA private key...
jas@latte:~$

Then create actual KDC certificate, signed by the CA certificate created in the previous
step.

jas@latte:~$ certtool --generate-certificate \

Chapter 3: Administration Manual 31

--load-ca-certificate /usr/local/etc/shishi/shishi.cert \
--load-ca-privkey /usr/local/etc/shishi/shishi.key \
--load-privkey /usr/local/etc/shishi/shishid.key \
--outfile /usr/local/etc/shishi/shishid.cert

Generating a signed certificate...
Loading CA’s private key...
Loading CA’s certificate...
Please enter the details of the certificate’s distinguished name. \
Just press enter to ignore a field.
Country name (2 chars): SE
Organization name: Shishi Example KDC
Organizational unit name:
Locality name:
State or province name:
Common name: KDC
This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): 0

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.
Does the certificate belong to an authority? (Y/N): n
Is this a web server certificate? (Y/N): n
Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Validity:

Not Before: Sun Dec 21 11:02:00 2003
Not After: Fri Jun 18 12:02:00 2004

Subject: C=SE,O=Shishi Example KDC,CN=KDC
Subject Public Key Info:

Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:FALSE

Is the above information ok? (Y/N): y

Chapter 3: Administration Manual 32

Signing certificate...
jas@latte:~$

3.6.3.3 Create a Kerberos Client Certificate

First create the key for the client.

jas@latte:~$ certtool --generate-privkey \
--outfile ~/.shishi/client.key

Generating a private key...
Generating a 1024 bit RSA private key...
jas@latte:~$

Then create the client certificate, signed by the CA. An alternative would be to have the
KDC sign the client certificates.

jas@latte:~$ certtool --generate-certificate \
--load-ca-certificate /usr/local/etc/shishi/shishi.cert \
--load-ca-privkey /usr/local/etc/shishi/shishi.key \
--load-privkey ~/.shishi/client.key \
--outfile ~/.shishi/client.certs

Generating a signed certificate...
Loading CA’s private key...
Loading CA’s certificate...
Please enter the details of the certificate’s distinguished name. \
Just press enter to ignore a field.
Country name (2 chars): SE
Organization name: Shishi Example Client
Organizational unit name:
Locality name:
State or province name:
Common name: Client
This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): 0

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.
Does the certificate belong to an authority? (Y/N): n
Is this a web server certificate? (Y/N): n
Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Chapter 3: Administration Manual 33

Version: 3
Serial Number (hex): 00
Validity:

Not Before: Sun Dec 21 11:04:00 2003
Not After: Fri Jun 18 12:04:00 2004

Subject: C=SE,O=Shishi Example Client,CN=Client
Subject Public Key Info:

Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:FALSE

Is the above information ok? (Y/N): y

Signing certificate...
jas@latte:~$

3.6.3.4 Starting KDC with X.509 authentication support

The KDC need the CA certificate (to verify client certificates) and the server certificate and
key (to authenticate itself to the clients). See elsewhere (see Section 4.7 [Parameters for
shishid], page 48) for the entire description of the parameters.

jas@latte:~$ shishid -l *:4711/tcp \
--x509cafile /usr/local/etc/shishi/shishi.cert \
--x509certfile /usr/local/etc/shishi/shishid.cert \
--x509keyfile /usr/local/etc/shishi/shishid.key

Initializing GNUTLS...
Parsed 1 CAs...
Loaded server certificate/key...
Generating Diffie-Hellman parameters...
Initializing GNUTLS...done
Listening on *:4711/tcp...
Listening on 1 ports...
shishid: Starting (GNUTLS ‘1.0.4’)
shishid: Listening on *:4711/tcp socket 4

Then acquire tickets as usual. In case you wonder how shishi finds the client certificate
and key, the filenames used above when generating the client certificates happen to be the
default filenames for these files. So it pick them up automatically.

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711/tls’ \
simon@EXAMPLE.ORG

Enter password for ‘simon@EXAMPLE.ORG’:
simon@EXAMPLE.ORG:
Authtime: Sun Dec 21 11:15:47 2003
Endtime: Sun Dec 21 11:32:27 2003
Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-sha1-96 (18)

Chapter 3: Administration Manual 34

Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE RENEWABLE HWAUTHENT TRANSITEDPOLICYCHECKED OKASDELEGATE (12)
jas@latte:~$

Here is what the server would print.
shishid: Accepted socket 6 from socket 4 as *:4711/tcp peer 127.0.0.1
shishid: Listening on *:4711/tcp socket 4
shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 4 bytes from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying STARTTLS
shishid: TLS handshake negotiated protocol ‘TLS 1.0’, key exchange ‘RSA’, certficate type ‘X.509’, cipher ‘AES 256 CBC’, mac ‘SHA’, compression ‘NULL’, session not resumed
shishid: TLS client certificate ‘C=SE,O=Shishi Example Client,CN=Client’, issued by ‘C=SE,O=Shishi Example CA,CN=CA’, serial number ‘00’, MD5 fingerprint ‘a5:d3:1f:58:76:e3:58:cd:2d:eb:f7:45:a2:4b:52:f9:’, activated ‘Sun Dec 21 11:04:00 2003’, expires ‘Fri Jun 18 12:04:00 2004’, version #3, key RSA modulus 1024 bits, currently EXPIRED
shishid: Listening on *:4711/tcp socket 4
shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 131 bytes from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Processing 131 from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying AS-REQ
shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORG@EXAMPLE.ORG
shishid: Matching client etype 18 against user key etype 18
shishid: Have 511 bytes for *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Sending 511 bytes to *:4711/tcp peer 127.0.0.1 socket 6 via TLS
shishid: Listening on *:4711/tcp socket 4
shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Peer *:4711/tcp peer 127.0.0.1 disconnected on socket 6
shishid: Closing *:4711/tcp peer 127.0.0.1 socket 6
shishid: Listening on *:4711/tcp socket 4

3.7 Multiple servers

Setting up multiple servers is as easy as replicating the user database. Since the default
‘file’ user database is stored in the normal file system, you can use any common tools to
replicate a file system. Network file system like NFS (properly secured by, e.g., a point-to-
point symmetrically encrypted IPSEC connection) and file synchronizing tools like ‘rsync’
are typical choices.

The secondary server should be configured just like the master server. If you use the
‘file’ database over NFS you do not have to make any modifications. If you use, e.g., a
cron job to ‘rsync’ the directory every hour or so, you may want to add a ‘--read-only’
flag to the Shisa ‘db’ definition (see Section 4.5 [Shisa Configuration], page 46). That way,
nobody will be lured into creating or changing information in the database on the secondary
server, which only would be overwritten during the next synchronization.

db --read-only file /usr/local/var/backup-shishi

The ‘file’ database is designed so it doesn’t require file locking in the file system, which
may be unreliable in some network file systems or implementations. It is also designed
so that multiple concurrent readers and writers may access the database without causing
corruption.

Warning: The last paragraph is currently not completely accurate. There may be race
conditions with concurrent writers. None should cause infinite loops or data loss. However,

Chapter 3: Administration Manual 35

unexpected results might occur if two writers try to update information about a principal
simultaneous.

If you use a remote LDAP server or SQL database to store the user database, and access
it via a Shisa backend, you have make sure your Shisa backend handle concurrent writers
properly. If you use a modern SQL database, this probably is not a concern. If it is a
problem, you may be able to work around it by implementing some kind of synchronization
or semaphore mechanism. If all else sounds too complicated, you can set up the secondary
servers as ‘--read-only’ servers, although you will lose some functionality (like changing
passwords via the secondary server, or updating timestamps when the last ticket request
occurred).

One function that is of particular use for users with remote databases (be it LDAP
or SQL) is the “database override” feature. Using this you can have the security critical
principals (such as the ticket granting ticket) stored on local file system storage, but use the
remote database for user principals. Of course, you must keep the local file system storage
synchronized between all servers, as before. Here is an example configuration.

db --read-only file /var/local/master
db ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem

This instruct the Shisa library to access the two databases sequentially, for each
query using the first database that know about the requested principal. If you put
the ‘krbtgt/REALM’ principal in the local ‘file’ database, this will override the LDAP
interface. Naturally, you can have as many ‘db’ definition lines as you wish.

Users with remote databases can also investigate a so called High Availability mode.
This is useful if you wish to have your Kerberos servers be able to continue to operate even
when the remote database is offline. This is achieved via the ‘--ignore-errors’ flag in the
database definition. Here is a sample configuration.

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --read-only file /var/cache/ldap-copy

This instruct the Shisa library to try the LDAP backend first, but if it fails, instead
of returning an error, continue to try the operation on a read only local ‘file’ based
database. Of course, write requests will still fail, but it may be better than halting the
server completely. To make this work, you first need to set up a cron job on a, say, hourly
basis, to make a copy of the remote database and store it in the local file database. That
way, when the remote server goes away, fairly current information will still be available
locally.

If you also wish to experiment with read-write fail over, here is an idea for the configu-
ration.

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --ignore-errors --read-only file /var/cache/ldap-copy
db file /var/cache/local-updates

This is similar to the previous, but it will ignore errors reading and writing from the
first two databases, ultimately causing write attempts to end up in the final ‘file’ based
database. Of course, you would need to create tools to feed back any local updates made
while the remote server was down. It may also be necessary to create a special backend for
this purpose, which can auto create principals that are used.

We finish with an example that demonstrate all the ideas presented.

Chapter 3: Administration Manual 36

db --read-only file /var/local/master
db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --ignore-errors --read-only file /var/cache/ldap-copy
db file /var/cache/local-updates

3.8 Developer information

The Programming API for Shisa is described below (see Section 5.19 [Kerberos Database
Functions], page 224); this section is about extending Shisa, and consequently Shishi, to
use your own user database system. You may want to store your Kerberos user information
on an LDAP database server, for example.

Adding a new backend is straight forward. You need to implement the backend API
function set, add the list of API functions to ‘db/db.c’ and possibly also add any library
dependencies to the Makefile.

The simplest way to write a new backend is to start from the existing ‘file’ based
database, in ‘db/file.c’, and modify the entry points as needed.

Note that the current backend API will likely change before it is frozen. We may describe
it in detail here when it has matured. However, currently it is similar to the external Shisa
API (see Section 5.19 [Kerberos Database Functions], page 224).

There should be no need to modify anything else in the Shisa library, and certainly not
in the Shishi library or the ‘shishid’ server.

Naturally, we would appreciate if you would send us your new backend, if you believe it
is generally useful (see Section 1.9 [Bug Reports], page 12).

Chapter 4: Reference Manual 37

4 Reference Manual

This chapter discuss the underlying assumptions of Kerberos, contain a glossary to Kerberos
concepts, give you background information on choosing realm and principal names, and
describe all parameters and configuration file syntaxes for the Shishi tools.

4.1 Environmental Assumptions

Kerberos imposes a few assumptions on the environment in which it can properly function:
• "Denial of service" attacks are not solved with Kerberos. There are places in the

protocols where an intruder can prevent an application from participating in the proper
authentication steps. Detection and solution of such attacks (some of which can appear
to be not-uncommon "normal" failure modes for the system) is usually best left to the
human administrators and users.

• Principals MUST keep their secret keys secret. If an intruder somehow steals a princi-
pal’s key, it will be able to masquerade as that principal or impersonate any server to
the legitimate principal.

• "Password guessing" attacks are not solved by Kerberos. If a user chooses a poor
password, it is possible for an attacker to successfully mount an offline dictionary
attack by repeatedly attempting to decrypt, with successive entries from a dictionary,
messages obtained which are encrypted under a key derived from the user’s password.

• Each host on the network MUST have a clock which is "loosely synchronized" to the
time of the other hosts; this synchronization is used to reduce the bookkeeping needs
of application servers when they do replay detection. The degree of "looseness" can
be configured on a per-server basis, but is typically on the order of 5 minutes. If the
clocks are synchronized over the network, the clock synchronization protocol MUST
itself be secured from network attackers.

• Principal identifiers are not recycled on a short-term basis. A typical mode of access
control will use access control lists (ACLs) to grant permissions to particular principals.
If a stale ACL entry remains for a deleted principal and the principal identifier is reused,
the new principal will inherit rights specified in the stale ACL entry. By not re-using
principal identifiers, the danger of inadvertent access is removed.

4.2 Glossary of terms

Authentication
Verifying the claimed identity of a principal.

Authentication header
A record containing a Ticket and an Authenticator to be presented to a server
as part of the authentication process.

Authentication path
A sequence of intermediate realms transited in the authentication process when
communicating from one realm to another.

Authenticator
A record containing information that can be shown to have been recently gen-
erated using the session key known only by the client and server.

Chapter 4: Reference Manual 38

Authorization
The process of determining whether a client may use a service, which objects
the client is allowed to access, and the type of access allowed for each.

Capability A token that grants the bearer permission to access an object or service. In
Kerberos, this might be a ticket whose use is restricted by the contents of the
authorization data field, but which lists no network addresses, together with
the session key necessary to use the ticket.

Ciphertext
The output of an encryption function. Encryption transforms plaintext into
ciphertext.

Client A process that makes use of a network service on behalf of a user. Note that
in some cases a Server may itself be a client of some other server (e.g. a print
server may be a client of a file server).

Credentials
A ticket plus the secret session key necessary to successfully use that ticket in
an authentication exchange.

Encryption Type (etype)
When associated with encrypted data, an encryption type identifies the algo-
rithm used to encrypt the data and is used to select the appropriate algorithm
for decrypting the data. Encryption type tags are communicated in other mes-
sages to enumerate algorithms that are desired, supported, preferred, or allowed
to be used for encryption of data between parties. This preference is combined
with local information and policy to select an algorithm to be used.

KDC Key Distribution Center, a network service that supplies tickets and temporary
session keys; or an instance of that service or the host on which it runs. The
KDC services both initial ticket and ticket-granting ticket requests. The initial
ticket portion is sometimes referred to as the Authentication Server (or service).
The ticket-granting ticket portion is sometimes referred to as the ticket-granting
server (or service).

Kerberos The name given to the Project Athena’s authentication service, the protocol
used by that service, or the code used to implement the authentication service.
The name is adopted from the three-headed dog which guards Hades.

Key Version Number (kvno)
A tag associated with encrypted data identifies which key was used for encryp-
tion when a long lived key associated with a principal changes over time. It is
used during the transition to a new key so that the party decrypting a message
can tell whether the data was encrypted using the old or the new key.

Plaintext The input to an encryption function or the output of a decryption function.
Decryption transforms ciphertext into plaintext.

Principal A named client or server entity that participates in a network communication,
with one name that is considered canonical.

Principal identifier
The canonical name used to uniquely identify each different principal.

Chapter 4: Reference Manual 39

Seal To encipher a record containing several fields in such a way that the fields
cannot be individually replaced without either knowledge of the encryption key
or leaving evidence of tampering.

Secret key An encryption key shared by a principal and the KDC, distributed outside
the bounds of the system, with a long lifetime. In the case of a human user’s
principal, the secret key MAY be derived from a password.

Server A particular Principal which provides a resource to network clients. The server
is sometimes referred to as the Application Server.

Service A resource provided to network clients; often provided by more than one server
(for example, remote file service).

Session key
A temporary encryption key used between two principals, with a lifetime limited
to the duration of a single login "session". In the Kerberos system, a session
key is generated by the KDC. The session key is distinct from the sub-session
key, described next..

Sub-session key
A temporary encryption key used between two principals, selected and ex-
changed by the principals using the session key, and with a lifetime limited
to the duration of a single association. The sub- session key is also referred to
as the subkey.

Ticket A record that helps a client authenticate itself to a server; it contains the client’s
identity, a session key, a timestamp, and other information, all sealed using the
server’s secret key. It only serves to authenticate a client when presented along
with a fresh Authenticator.

4.3 Realm and Principal Naming

This section contains the discussion on naming realms and principals from the Kerberos
specification.

4.3.1 Realm Names

Although realm names are encoded as GeneralStrings and although a realm can technically
select any name it chooses, interoperability across realm boundaries requires agreement on
how realm names are to be assigned, and what information they imply.

To enforce these conventions, each realm MUST conform to the conventions itself, and
it MUST require that any realms with which inter-realm keys are shared also conform to
the conventions and require the same from its neighbors.

Kerberos realm names are case sensitive. Realm names that differ only in the case of
the characters are not equivalent. There are presently three styles of realm names: domain,
X500, and other. Examples of each style follow:

domain: ATHENA.MIT.EDU
X500: C=US/O=OSF
other: NAMETYPE:rest/of.name=without-restrictions

Chapter 4: Reference Manual 40

Domain syle realm names MUST look like domain names: they consist of components
separated by periods (.) and they contain neither colons (:) nor slashes (/). Though domain
names themselves are case insensitive, in order for realms to match, the case must match
as well. When establishing a new realm name based on an internet domain name it is
recommended by convention that the characters be converted to upper case.

X.500 names contain an equal (=) and cannot contain a colon (:) before the equal. The
realm names for X.500 names will be string representations of the names with components
separated by slashes. Leading and trailing slashes will not be included. Note that the slash
separator is consistent with Kerberos implementations based on RFC1510, but it is different
from the separator recommended in RFC2253.

Names that fall into the other category MUST begin with a prefix that contains no equal
(=) or period (.) and the prefix MUST be followed by a colon (:) and the rest of the name.
All prefixes must be assigned before they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the first three categories.
All names in this category are reserved. It is unlikely that names will be assigned to this
category unless there is a very strong argument for not using the ’other’ category.

These rules guarantee that there will be no conflicts between the various name styles.
The following additional constraints apply to the assignment of realm names in the domain
and X.500 categories: the name of a realm for the domain or X.500 formats must either be
used by the organization owning (to whom it was assigned) an Internet domain name or
X.500 name, or in the case that no such names are registered, authority to use a realm name
MAY be derived from the authority of the parent realm. For example, if there is no domain
name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can authorize the
creation of a realm with that name.

This is acceptable because the organization to which the parent is assigned is presumably
the organization authorized to assign names to its children in the X.500 and domain name
systems as well. If the parent assigns a realm name without also registering it in the domain
name or X.500 hierarchy, it is the parent’s responsibility to make sure that there will not
in the future exist a name identical to the realm name of the child unless it is assigned to
the same entity as the realm name.

4.3.2 Principal Names

As was the case for realm names, conventions are needed to ensure that all agree on what
information is implied by a principal name. The name-type field that is part of the principal
name indicates the kind of information implied by the name. The name-type SHOULD be
treated only as a hint to interpreting the meaning of a name. It is not significant when
checking for equivalence. Principal names that differ only in the name-type identify the
same principal. The name type does not partition the name space. Ignoring the name type,
no two names can be the same (i.e. at least one of the components, or the realm, MUST
be different). The following name types are defined:

name-type value meaning

NT-UNKNOWN 0 Name type not known
NT-PRINCIPAL 1 Just the name of the principal as in DCE, or for users
NT-SRV-INST 2 Service and other unique instance (krbtgt)

Chapter 4: Reference Manual 41

NT-SRV-HST 3 Service with host name as instance (telnet, rcommands)
NT-SRV-XHST 4 Service with host as remaining components
NT-UID 5 Unique ID
NT-X500-PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]
NT-SMTP-NAME 7 Name in form of SMTP email name (e.g. user@foo.com)
NT-ENTERPRISE 10 Enterprise name - may be mapped to principal name

When a name implies no information other than its uniqueness at a particular time the
name type PRINCIPAL SHOULD be used. The principal name type SHOULD be used
for users, and it might also be used for a unique server. If the name is a unique machine
generated ID that is guaranteed never to be reassigned then the name type of UID SHOULD
be used (note that it is generally a bad idea to reassign names of any type since stale entries
might remain in access control lists).

If the first component of a name identifies a service and the remaining components
identify an instance of the service in a server specified manner, then the name type of SRV-
INST SHOULD be used. An example of this name type is the Kerberos ticket-granting
service whose name has a first component of krbtgt and a second component identifying
the realm for which the ticket is valid.

If the first component of a name identifies a service and there is a single component
following the service name identifying the instance as the host on which the server is running,
then the name type SRV- HST SHOULD be used. This type is typically used for Internet
services such as telnet and the Berkeley R commands. If the separate components of the
host name appear as successive components following the name of the service, then the
name type SRV-XHST SHOULD be used. This type might be used to identify servers on
hosts with X.500 names where the slash (/) might otherwise be ambiguous.

A name type of NT-X500-PRINCIPAL SHOULD be used when a name from an X.509
certificate is translated into a Kerberos name. The encoding of the X.509 name as a Kerberos
principal shall conform to the encoding rules specified in RFC 2253.

A name type of SMTP allows a name to be of a form that resembles a SMTP email
name. This name, including an "@" and a domain name, is used as the one component of
the principal name.

A name type of UNKNOWN SHOULD be used when the form of the name is not known.
When comparing names, a name of type UNKNOWN will match principals authenticated
with names of any type. A principal authenticated with a name of type UNKNOWN,
however, will only match other names of type UNKNOWN.

Names of any type with an initial component of ’krbtgt’ are reserved for the Kerberos
ticket granting service. See [Name of the TGS], page 42, for the form of such names.

4.3.2.1 Name of server principals

The principal identifier for a server on a host will generally be composed of two parts: (1)
the realm of the KDC with which the server is registered, and (2) a two-component name
of type NT-SRV-HST if the host name is an Internet domain name or a multi-component
name of type NT-SRV-XHST if the name of the host is of a form such as X.500 that allows
slash (/) separators. The first component of the two- or multi-component name will identify
the service and the latter components will identify the host. Where the name of the host is
not case sensitive (for example, with Internet domain names) the name of the host MUST

Chapter 4: Reference Manual 42

be lower case. If specified by the application protocol for services such as telnet and the
Berkeley R commands which run with system privileges, the first component MAY be the
string ’host’ instead of a service specific identifier.

4.3.2.2 Name of the TGS

The principal identifier of the ticket-granting service shall be composed of three parts:
(1) the realm of the KDC issuing the TGS ticket (2) a two-part name of type NT-SRV-
INST, with the first part "krbtgt" and the second part the name of the realm which
will accept the ticket-granting ticket. For example, a ticket-granting ticket issued by the
ATHENA.MIT.EDU realm to be used to get tickets from the ATHENA.MIT.EDU KDC has
a principal identifier of "ATHENA.MIT.EDU" (realm), ("krbtgt", "ATHENA.MIT.EDU")
(name). A ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be used to
get tickets from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
(realm), ("krbtgt", "MIT.EDU") (name).

4.3.3 Choosing a principal with which to communicate

The Kerberos protocol provides the means for verifying (subject to the assumptions in
Section 4.1 [Environmental Assumptions], page 37) that the entity with which one com-
municates is the same entity that was registered with the KDC using the claimed identity
(principal name). It is still necessary to determine whether that identity corresponds to the
entity with which one intends to communicate.

When appropriate data has been exchanged in advance, this determination may be
performed syntactically by the application based on the application protocol specification,
information provided by the user, and configuration files. For example, the server principal
name (including realm) for a telnet server might be derived from the user specified host
name (from the telnet command line), the "host/" prefix specified in the application protocol
specification, and a mapping to a Kerberos realm derived syntactically from the domain
part of the specified hostname and information from the local Kerberos realms database.

One can also rely on trusted third parties to make this determination, but only when
the data obtained from the third party is suitably integrity protected while resident on
the third party server and when transmitted. Thus, for example, one should not rely on
an unprotected domain name system record to map a host alias to the primary name of a
server, accepting the primary name as the party one intends to contact, since an attacker can
modify the mapping and impersonate the party with which one intended to communicate.

Implementations of Kerberos and protocols based on Kerberos MUST NOT use insecure
DNS queries to canonicalize the hostname components of the service principal names. In
an environment without secure name service, application authors MAY append a statically
configured domain name to unqualified hostnames before passing the name to the security
mechanisms, but should do no more than that. Secure name service facilities, if available,
might be trusted for hostname canonicalization, but such canonicalization by the client
SHOULD NOT be required by KDC implementations.

Implementation note: Many current implementations do some degree of canonicalization
of the provided service name, often using DNS even though it creates security problems.
However there is no consistency among implementations about whether the service name is
case folded to lower case or whether reverse resolution is used. To maximize interoperability
and security, applications SHOULD provide security mechanisms with names which result

Chapter 4: Reference Manual 43

from folding the user-entered name to lower case, without performing any other modifica-
tions or canonicalization.

4.3.4 Principal Name Form

Principal names consist of a sequence of strings, which is often tedious to parse. Therefor,
Shishi often uses a “printed” form of principal which embed the entire principal name
string sequence, and optionally also the realm, into one string. The format is taken from
the Kerberos 5 GSS-API mechanism (RFC 1964).

The elements included within this name representation are as follows, proceeding from
the beginning of the string:
1. One or more principal name components; if more than one principal name component is

included, the components are separated by ‘/‘. Arbitrary octets may be included within
principal name components, with the following constraints and special considerations:
a. Any occurrence of the characters ‘@‘ or ‘/‘ within a name component must be

immediately preceded by the ‘\‘ quoting character, to prevent interpretation as a
component or realm separator.

b. The ASCII newline, tab, backspace, and null characters may occur directly within
the component or may be represented, respectively, by ‘\n‘, ‘\t‘, ‘\b‘, or ‘\0‘.

c. If the ‘\‘ quoting character occurs outside the contexts described in (1a) and (1b)
above, the following character is interpreted literally. As a special case, this allows
the doubled representation ‘\\‘ to represent a single occurrence of the quoting
character.

d. An occurrence of the ‘\‘ quoting character as the last character of a component is
illegal.

2. Optionally, a ‘@‘ character, signifying that a realm name immediately follows. If no
realm name element is included, the local realm name is assumed. The ‘/‘ , ‘:‘, and null
characters may not occur within a realm name; the ‘@‘, newline, tab, and backspace
characters may be included using the quoting conventions described in (1a), (1b), and
(1c) above.

4.4 Shishi Configuration

The valid configuration file tokens are described here. The user configuration file is typically
located in ‘~/.shishi/shishi.conf’ (compare ‘shishi --configuration-file’) and the
system configuration is typically located in ‘/usr/local/etc/shishi/shishi.conf’ (com-
pare ‘shishi --system-configuration-file’). If the first non white space character of a
line is a ’#’, the line is ignored. Empty lines are also ignored.

All tokens are valid in both the system and the user configuration files, and have the same
meaning. However, as the system file is supposed to apply to all users on a system, it would
not make sense to use some tokens in that file. For example, the ‘default-principal’ is
rarely useful in a system configuration file.

4.4.1 ‘default-realm’

Specify the default realm, by default the hostname of the host is used. E.g.,
default-realm JOSEFSSON.ORG

Chapter 4: Reference Manual 44

4.4.2 ‘default-principal’

Specify the default principal, by default the login username is used. E.g.,

default-principal jas

4.4.3 ‘client-kdc-etypes’

Specify which encryption types client asks server to respond in during AS/TGS exchanges.
List valid encryption types, in preference order. Supported algorithms include aes256-
cts-hmac-sha1-96, aes128-cts-hmac-sha1-96, des3-cbc-sha1-kd, des-cbc-md5, des-cbc-md4,
des-cbc-crc and null. This option also indicates which encryption types are accepted by the
client when receiving the response. Note that the preference order is not cryptographically
protected, so a man in the middle can modify the order without being detected. Thus, only
specify encryption types you trust completely here. The default only includes aes256-cts-
hmac-sha1-96, as suggested by RFC1510bis. E.g.,

client-kdc-etypes=aes256-cts-hmac-sha1-96 des3-cbc-sha1-kd des-cbc-md5

4.4.4 ‘verbose’, ‘verbose-asn1’, ‘verbose-noise’, ‘verbose-crypto’,
‘verbose-crypto-noise’

Enable verbose library messages. E.g.,

verbose
verbose-noise

4.4.5 ‘realm-kdc’

Specify KDC addresses for realms. Value is ‘REALM,KDCADDRESS[/PROTOCOL][,KDCADDRESS[/PROTOCOL]...]’.

KDCADDRESS is the hostname or IP address of KDC.

Optional PROTOCOL is udp for UDP, tcp for TCP, and TLS for TLS
connections. By default UDP is tried first, and TCP used as a fallback if the
KRB ERR RESPONSE TOO BIG error is received.

If not specified, Shishi tries to locate the KDC using SRV RRs, which is recommended.
This option should normally only be used during experiments, or to access badly maintained
realms.

realm-kdc=JOSEFSSON.ORG,ristretto.josefsson.org

4.4.6 ‘server-realm’

Specify realm for servers. Value is ‘REALM,SERVERREGEXP[,SERVERREGEXP...]’.

SERVERREGEXP is a regular expression matching servers in the realm. The first match
is used. E.g.,

server-realm=JOSEFSSON.ORG,.josefsson.org

Note: currently not used.

4.4.7 ‘kdc-timeout’, ‘kdc-retries’

How long shishi waits for a response from a KDC before continuing to next KDC for realm.
The default is 5 seconds. E.g.,

Chapter 4: Reference Manual 45

kdc-timeout=10

How many times shishi sends a request to a KDC before giving up. The default is 3
times. E.g.,

kdc-retries=5

4.4.8 ‘stringprocess’

How username and passwords entered from the terminal, or taken from the command line,
are processed.

"none": no processing is used.
"stringprep": convert from locale charset to UTF-8 and process using experimental RFC

1510 stringprep profile.
It can also be a string indicating a character set supported by iconv via libstringprep,

in which case data is converted from locale charset into the indicated character set. E.g.,
UTF-8, ISO-8859-1, KOI-8, EBCDIC-IS-FRISS are supported on GNU systems. On some
systems you can use "locale -m" to list available character sets. By default, the "none"
setting is used which is consistent with RFC 1510 that is silent on the issue. In practice,
however, converting to UTF-8 improves interoperability.

E.g.,
stringprocess=UTF-8

4.4.9 ‘ticket-life’

Specify default ticket life time.
The string can be in almost any common format. It can contain month names, time

zones, ‘am’ and ‘pm’, ‘yesterday’, ‘ago’, ‘next’, etc. See Section 4.10 [Date input formats],
page 51, for the long story.

As an extra feature, if the time specified by your string correspond to a time during the
last 24 hours, an extra day is added to it. This allows you to specify relative times such as
"17:00" to always mean the next 17:00, even if your system clock happens to be 17:30.

The default is 8 hours.
E.g.,

#ticket-life=8 hours
#ticket-life=1 day
ticket-life=17:00

4.4.10 ‘renew-life’

Specify how long a renewable ticket should remain renewable.
See ticket-life for the syntax. The extra feature that handles negative values within the

last 2 hours is not active here.
The default is 7 days.
E.g.,

#renew-life=1 week
#renew-life=friday 17:00
renew-life=sunday

Chapter 4: Reference Manual 46

4.5 Shisa Configuration

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
If the first non white space character of a line is a ’#’, the line is ignored. Empty lines are
also ignored.

4.5.1 ‘db’

Currently the only configuration options available is the db token that define the databases
to use. The syntax is:

db [OPTIONS] <TYPE> [LOCATION] [PARAMETERS ...]

Specify the data sources for Kerberos 5 data. Multiple entries, even of the same data
source type, are allowed. The data sources are accessed in the same sequence as they are
defined here. If an entry is found in one data source, it will be used for the operations,
without searching the remaining data sources. Valid OPTIONS include:

--read-only No data is written to this data source.
--ignore-errors Ignore failures in this backend.

The default (when the configuration file is empty) uses one "file" data source (see below),
but for a larger installation you may want to combine several data sources. Here is an
example.

db --read-only file /var/local/master
db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --read-only file /var/cache/ldap-copy

This demonstrate how you can store critical principals on local disk (the first entry,
/var/local/master) that will always be found without looking in the LDAP directory. The
critical principals could be, e.g., krbtgt/EXAMPLE.ORG. The second entry denote a LDAP
server that could hold user principals. As you can see, Shisa will not let the caller know
about errors with the LDAP source (they will be logged, however). Instead, if for instance
the LDAP server has crashed, Shisa would continue and read from the /var/cache/ldap-
copy file source. That file source may have been set up to contain a copy of the data in
the LDAP server, perhaps made on an hourly basis, so that your server will be able to
serve recent data even in case of a crash. Any updates or passwords change requests will
however not be possible while the LDAP server is inaccessible, to reduce the problem of
synchronizing data back into the LDAP server once it is online again.

Currently only the "file" data source is supported, and denote a data source that use
the standard file system for storage.

Valid syntaxes for the "file" database:

db file PATH

Examples:

db file /var/shishi
db file /usr/share/shishi read-only

If no ‘db’ tokens are present, the default will be:

db file /usr/local/var/shishi

Chapter 4: Reference Manual 47

4.6 Parameters for shishi

If no command is given, Shishi try to make sure you have a ticket granting ticket for the
default realm, and then display it.

Mandatory arguments to long options are mandatory for short options too.

Usage: shishi [OPTIONS]... [CLIENT [SERVER]]...

-h, --help Print help and exit
-V, --version Print version and exit

Commands:
-d, --destroy Destroy tickets in local cache,

limited by any --client-name or
--server-name. (default=off)

-l, --list List tickets in local cache, limited
by any --client-name and
--server-name. (default=off)

-r, --renew Renew ticket. Use --server-name to
specify ticket, default is the
most recent renewable ticket
granting ticket for the default
realm. (default=off)

Flags:
--forwardable Get a forwardable ticket, i.e., one

that can be used to get forwarded
tickets. (default=off)

--forwarded Get a forwarded ticket. (default=
off)

--proxiable Get a proxiable ticket, i.e., one
that can be used to get proxy
tickets. (default=off)

--proxy Get a proxy ticket. (default=off)
--renewable Get a renewable ticket. (default=

off)

Options:
--client-name=NAME Client name. Default is login

username.
-E, --encryption-type=ETYPE,[ETYPE...] Encryption types to use. ETYPE is

either registered name or integer.
Valid values include ’aes128’,
’aes256’, ’aes’ (same as
’aes256’), ’3des’, ’des-md5’,
’des-md4’, ’des-crc’, ’des’ (same
as ’des-md5’), and ’arcfour’.

-e, --endtime=STRING Specify when ticket validity should

Chapter 4: Reference Manual 48

expire. The time syntax may be
relative (to the start time), such
as ’20 hours’, or absolute, such
as ’2001-02-03 04:05:06 CET’. The
default is 8 hours after the start
time.

--realm=STRING Set default realm.
--renew-till=STRING Specify renewable life of ticket.

Implies --renewable. Accepts same
time syntax as --endtime. If
--renewable is specified, the
default is 1 week after the start
time.

--server-name=NAME Server name. Default is
’krbtgt/REALM’ where REALM is
client realm.

-s, --starttime=STRING Specify when ticket should start to
be valid. Accepts same time
syntax as --endtime. The default
is to become valid immediately.

--ticket-granter=NAME Service name in ticket to use for
authenticating request. Only for
TGS. Defaults to
’krbtgt/REALM@REALM’ where REALM
is client realm.

Other options:
--configuration-file=FILE Read user configuration from FILE.

-c, --ticket-file=FILE Read tickets from FILE.
-o, --library-options=STRING Parse STRING as a configuration file

statement.
-q, --quiet Don’t produce any diagnostic output.

(default=off)
--system-configuration-file=FILE Read system configuration from FILE.
--ticket-write-file=FILE Write tickets from FILE. Default is

to write them back to where they
were read from.

-v, --verbose Produce verbose output.
(default=off)

4.7 Parameters for shishid

If no parameters are specified, ‘shishid’ listens on the defaults interfaces and answers
incoming requests using the keys in the default key file.

Mandatory arguments to long options are mandatory for short options too.
Usage: shishid [OPTIONS]...

Chapter 4: Reference Manual 49

-h, --help Print help and exit
-V, --version Print version and exit

Commands:
-l, --listen=[FAMILY:]ADDR:PORT/TYPE Sockets to listen for queries on.

Family is ‘IPv4’ or ‘IPv6’, if
absent the family is decided by
gethostbyname(ADDR). An address of
‘*’ indicates all addresses on the
local host. The default is
‘IPv4:*:kerberos/udp,
IPv4:*:kerberos/tcp,
IPv6:*:kerberos/udp,
IPv6:*:kerberos/tcp’.

-u, --setuid=NAME After binding socket, set user
identity.

TLS settings:
--x509cafile=FILE X.509 certificate authorities used to

verify client certificates, in PEM
format.

--x509certfile=FILE X.509 server certificate, in PEM
format.

--x509crlfile=FILE X.509 certificate revocation list to
check for revoked client
certificates, in PEM format.

--x509keyfile=FILE X.509 server certificate key, in PEM
format.

--resume-limit=SHORT Keep track of up to this many TLS
sessions for resume purposes (0 to
disable TLS resume). (default=‘50’)

Other options:
-c, --configuration-file=FILE Use specified configuration file.
-v, --verbose Produce verbose output.

(default=off)
-q, --quiet Don’t produce any diagnostic output.

(default=off)

4.8 Parameters for shisa

The purpose of ‘shisa’ is to manipulate information stored in the Kerberos 5 database used
by Shishi.

Mandatory arguments to long options are mandatory for short options too.
Usage: shisa [OPTIONS]... [REALM [PRINCIPAL]]...

-h, --help Print help and exit

Chapter 4: Reference Manual 50

-V, --version Print version and exit

Operations:
-a, --add Add realm or principal to database.
-d, --dump Dump entries in database.
-n, --key-add Add new key to a principal in database.

--key-remove Remove a key from a principal in
database.

-l, --list List entries in database.
-m, --modify Modify principal entry in database.
-r, --remove Remove realm or principal from database.

Parameters:
-f, --force Allow removal of non-empty realms.

(default=off)
--enabled Only dump or list enabled principals.

(default=off)
--disabled Only dump or list disabled principals.

(default=off)
--keys Print cryptographic key and password in

hostkey format. (default=off)

Values:
-E, --encryption-type=STRING Override default key encryption type.

Valid values include ’aes128’,
’aes256’, ’aes’ (same as ’aes256’),
’3des’, ’des-md5’, ’des-md4’,
’des-crc’, ’des’ (same as ’des-md5’),
and ’arcfour’.

--key-version=NUMBER Version of key.
--password[=STRING] Derive key from this password.
--random Use a random key. (default)
--salt=STRING Use specified salt for deriving key.

Defaults to concatenation of realm and
(unwrapped) principal name.

--string-to-key-parameter=HEX Encryption algorithm specific parameter
for password derivation. Currently
only the AES algorithm can utilize
this, where it is interpreted as the
iteration count of the PKCS#5 PBKDF2
key deriver.

Other options:
-c, --configuration-file=FILE Use specified configuration file.
-o, --library-options=STRING Parse string as configuration file

statement.
-v, --verbose Produce verbose output.

Chapter 4: Reference Manual 51

(default=off)
-q, --quiet Don’t produce any diagnostic output.

(default=off)

4.9 Environment variables

A few of the compile-time defaults may be overridden at run-time by using environment
variables. The following variables are supported.

• SHISHI_CONFIG Specify the location of the default system configuration file. Used by
the Shishi library. If not specified, the default is specified at compile-time and is usually
‘$prefix/etc/shishi.conf’.

• SHISHI_HOME Specify the user specific directory for configuration files, ticket cache, etc.
Used by the Shishi library. If not specified, it is computed as $HOME/.shishi.

• SHISHI_USER Specify the default principal user name. Used by the Shishi library. If
not specified, it is taken from the environment variable USER.

• SHISHI_TICKETS Specify the file name of the ticket cache. Used by the Shishi li-
brary. If not specified, it will be $SHISHI_HOME/tickets, or $HOME/.shishi/tickets
if $SHISHI_HOME is not specified.

4.10 Date input formats

First, a quote:

Our units of temporal measurement, from seconds on up to months, are so
complicated, asymmetrical and disjunctive so as to make coherent mental reck-
oning in time all but impossible. Indeed, had some tyrannical god contrived
to enslave our minds to time, to make it all but impossible for us to escape
subjection to sodden routines and unpleasant surprises, he could hardly have
done better than handing down our present system. It is like a set of trape-
zoidal building blocks, with no vertical or horizontal surfaces, like a language in
which the simplest thought demands ornate constructions, useless particles and
lengthy circumlocutions. Unlike the more successful patterns of language and
science, which enable us to face experience boldly or at least level-headedly, our
system of temporal calculation silently and persistently encourages our terror
of time.

. . . It is as though architects had to measure length in feet, width in meters
and height in ells; as though basic instruction manuals demanded a knowledge
of five different languages. It is no wonder then that we often look into our own
immediate past or future, last Tuesday or a week from Sunday, with feelings of
helpless confusion. . . .

— Robert Grudin, Time and the Art of Living.

This section describes the textual date representations that gnu programs accept. These
are the strings you, as a user, can supply as arguments to the various programs. The C
interface (via the get_date function) is not described here.

Chapter 4: Reference Manual 52

4.10.1 General date syntax

A date is a string, possibly empty, containing many items separated by whitespace. The
whitespace may be omitted when no ambiguity arises. The empty string means the begin-
ning of today (i.e., midnight). Order of the items is immaterial. A date string may contain
many flavors of items:

• calendar date items
• time of day items
• time zone items
• day of the week items
• relative items
• pure numbers.

We describe each of these item types in turn, below.

A few ordinal numbers may be written out in words in some contexts. This is most
useful for specifying day of the week items or relative items (see below). Among the most
commonly used ordinal numbers, the word ‘last’ stands for −1, ‘this’ stands for 0, and
‘first’ and ‘next’ both stand for 1. Because the word ‘second’ stands for the unit of time
there is no way to write the ordinal number 2, but for convenience ‘third’ stands for 3,
‘fourth’ for 4, ‘fifth’ for 5, ‘sixth’ for 6, ‘seventh’ for 7, ‘eighth’ for 8, ‘ninth’ for 9,
‘tenth’ for 10, ‘eleventh’ for 11 and ‘twelfth’ for 12.

When a month is written this way, it is still considered to be written numerically, instead
of being “spelled in full”; this changes the allowed strings.

In the current implementation, only English is supported for words and abbreviations
like ‘AM’, ‘DST’, ‘EST’, ‘first’, ‘January’, ‘Sunday’, ‘tomorrow’, and ‘year’.

The output of the date command is not always acceptable as a date string, not only
because of the language problem, but also because there is no standard meaning for time
zone items like ‘IST’. When using date to generate a date string intended to be parsed
later, specify a date format that is independent of language and that does not use time zone
items other than ‘UTC’ and ‘Z’. Here are some ways to do this:

$ LC_ALL=C TZ=UTC0 date
Mon Mar 1 00:21:42 UTC 2004
$ TZ=UTC0 date +’%Y-%m-%d %H:%M:%SZ’
2004-03-01 00:21:42Z
$ date --iso-8601=ns | tr T ’ ’ # --iso-8601 is a GNU extension.
2004-02-29 16:21:42,692722128-0800
$ date --rfc-2822 # a GNU extension
Sun, 29 Feb 2004 16:21:42 -0800
$ date +’%Y-%m-%d %H:%M:%S %z’ # %z is a GNU extension.
2004-02-29 16:21:42 -0800
$ date +’@%s.%N’ # %s and %N are GNU extensions.
@1078100502.692722128

Alphabetic case is completely ignored in dates. Comments may be introduced between
round parentheses, as long as included parentheses are properly nested. Hyphens not fol-
lowed by a digit are currently ignored. Leading zeros on numbers are ignored.

Chapter 4: Reference Manual 53

Invalid dates like ‘2005-02-29’ or times like ‘24:00’ are rejected. In the typical case
of a host that does not support leap seconds, a time like ‘23:59:60’ is rejected even if it
corresponds to a valid leap second.

4.10.2 Calendar date items

A calendar date item specifies a day of the year. It is specified differently, depending on
whether the month is specified numerically or literally. All these strings specify the same
calendar date:

1972-09-24 # iso 8601.
72-9-24 # Assume 19xx for 69 through 99,

20xx for 00 through 68.
72-09-24 # Leading zeros are ignored.
9/24/72 # Common U.S. writing.
24 September 1972
24 Sept 72 # September has a special abbreviation.
24 Sep 72 # Three-letter abbreviations always allowed.
Sep 24, 1972
24-sep-72
24sep72

The year can also be omitted. In this case, the last specified year is used, or the current
year if none. For example:

9/24
sep 24

Here are the rules.
For numeric months, the iso 8601 format ‘year-month-day ’ is allowed, where year is

any positive number, month is a number between 01 and 12, and day is a number between
01 and 31. A leading zero must be present if a number is less than ten. If year is 68 or
smaller, then 2000 is added to it; otherwise, if year is less than 100, then 1900 is added
to it. The construct ‘month/day/year ’, popular in the United States, is accepted. Also
‘month/day ’, omitting the year.

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’ or ‘December’. Literal months
may be abbreviated to their first three letters, possibly followed by an abbreviating dot. It
is also permitted to write ‘Sept’ instead of ‘September’.

When months are written literally, the calendar date may be given as any of the following:
day month year

day month

month day year

day-month-year

Or, omitting the year:
month day

4.10.3 Time of day items

A time of day item in date strings specifies the time on a given day. Here are some examples,
all of which represent the same time:

Chapter 4: Reference Manual 54

20:02:00.000000
20:02
8:02pm
20:02-0500 # In est (U.S. Eastern Standard Time).

More generally, the time of day may be given as ‘hour:minute:second ’, where hour is
a number between 0 and 23, minute is a number between 0 and 59, and second is a number
between 0 and 59 possibly followed by ‘.’ or ‘,’ and a fraction containing one or more digits.
Alternatively, ‘:second ’ can be omitted, in which case it is taken to be zero. On the rare
hosts that support leap seconds, second may be 60.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is restricted to run from
1 to 12, and ‘:minute ’ may be omitted (taken to be zero). ‘am’ indicates the first half of
the day, ‘pm’ indicates the second half of the day. In this notation, 12 is the predecessor
of 1: midnight is ‘12am’ while noon is ‘12pm’. (This is the zero-oriented interpretation of
‘12am’ and ‘12pm’, as opposed to the old tradition derived from Latin which uses ‘12m’ for
noon and ‘12pm’ for midnight.)

The time may alternatively be followed by a time zone correction, expressed as ‘shhmm ’,
where s is ‘+’ or ‘-’, hh is a number of zone hours and mm is a number of zone minutes. The
zone minutes term, mm, may be omitted, in which case the one- or two-digit correction is
interpreted as a number of hours. You can also separate hh from mm with a colon. When
a time zone correction is given this way, it forces interpretation of the time relative to
Coordinated Universal Time (utc), overriding any previous specification for the time zone
or the local time zone. For example, ‘+0530’ and ‘+05:30’ both stand for the time zone 5.5
hours ahead of utc (e.g., India). This is the best way to specify a time zone correction by
fractional parts of an hour. The maximum zone correction is 24 hours.

Either ‘am’/‘pm’ or a time zone correction may be specified, but not both.

4.10.4 Time zone items

A time zone item specifies an international time zone, indicated by a small set of letters,
e.g., ‘UTC’ or ‘Z’ for Coordinated Universal Time. Any included periods are ignored. By
following a non-daylight-saving time zone by the string ‘DST’ in a separate word (that
is, separated by some white space), the corresponding daylight saving time zone may be
specified. Alternatively, a non-daylight-saving time zone can be followed by a time zone
correction, to add the two values. This is normally done only for ‘UTC’; for example,
‘UTC+05:30’ is equivalent to ‘+05:30’.

Time zone items other than ‘UTC’ and ‘Z’ are obsolescent and are not recommended,
because they are ambiguous; for example, ‘EST’ has a different meaning in Australia than
in the United States. Instead, it’s better to use unambiguous numeric time zone corrections
like ‘-0500’, as described in the previous section.

If neither a time zone item nor a time zone correction is supplied, time stamps are
interpreted using the rules of the default time zone (see Section 4.10.9 [Specifying time zone
rules], page 56).

4.10.5 Day of week items

The explicit mention of a day of the week will forward the date (only if necessary) to reach
that day of the week in the future.

Chapter 4: Reference Manual 55

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’,
‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated to their first three letters,
optionally followed by a period. The special abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’
for ‘Wednesday’ and ‘Thur’ or ‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supplementary weeks.
It is best used in expression like ‘third monday’. In this context, ‘last day ’ or ‘next day ’
is also acceptable; they move one week before or after the day that day by itself would
represent.

A comma following a day of the week item is ignored.

4.10.6 Relative items in date strings

Relative items adjust a date (or the current date if none) forward or backward. The effects
of relative items accumulate. Here are some examples:

1 year
1 year ago
3 years
2 days

The unit of time displacement may be selected by the string ‘year’ or ‘month’ for moving
by whole years or months. These are fuzzy units, as years and months are not all of equal
duration. More precise units are ‘fortnight’ which is worth 14 days, ‘week’ worth 7 days,
‘day’ worth 24 hours, ‘hour’ worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and
‘second’ or ‘sec’ worth one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally signed number.
Unsigned numbers are taken as positively signed. No number at all implies 1 for a multiplier.
Following a relative item by the string ‘ago’ is equivalent to preceding the unit by a multiplier
with value −1.

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’), the string
‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-valued time dis-
placement, these strings come from the fact a zero-valued time displacement represents the
current time when not otherwise changed by previous items. They may be used to stress
other items, like in ‘12:00 today’. The string ‘this’ also has the meaning of a zero-valued
time displacement, but is preferred in date strings like ‘this thursday’.

When a relative item causes the resulting date to cross a boundary where the clocks
were adjusted, typically for daylight saving time, the resulting date and time are adjusted
accordingly.

The fuzz in units can cause problems with relative items. For example, ‘2003-07-31 -1
month’ might evaluate to 2003-07-01, because 2003-06-31 is an invalid date. To determine
the previous month more reliably, you can ask for the month before the 15th of the current
month. For example:

$ date -R
Thu, 31 Jul 2003 13:02:39 -0700
$ date --date=’-1 month’ +’Last month was %B?’
Last month was July?

Chapter 4: Reference Manual 56

$ date --date="$(date +%Y-%m-15) -1 month" +’Last month was %B!’
Last month was June!

Also, take care when manipulating dates around clock changes such as daylight saving
leaps. In a few cases these have added or subtracted as much as 24 hours from the clock,
so it is often wise to adopt universal time by setting the TZ environment variable to ‘UTC0’
before embarking on calendrical calculations.

4.10.7 Pure numbers in date strings

The precise interpretation of a pure decimal number depends on the context in the date
string.

If the decimal number is of the form yyyymmdd and no other calendar date item (see
Section 4.10.2 [Calendar date items], page 53) appears before it in the date string, then
yyyy is read as the year, mm as the month number and dd as the day of the month, for
the specified calendar date.

If the decimal number is of the form hhmm and no other time of day item appears before
it in the date string, then hh is read as the hour of the day and mm as the minute of the
hour, for the specified time of day. mm can also be omitted.

If both a calendar date and a time of day appear to the left of a number in the date
string, but no relative item, then the number overrides the year.

4.10.8 Seconds since the Epoch

If you precede a number with ‘@’, it represents an internal time stamp as a count of seconds.
The number can contain an internal decimal point (either ‘.’ or ‘,’); any excess precision not
supported by the internal representation is truncated toward minus infinity. Such a number
cannot be combined with any other date item, as it specifies a complete time stamp.

Internally, computer times are represented as a count of seconds since an epoch—a well-
defined point of time. On GNU and POSIX systems, the epoch is 1970-01-01 00:00:00 utc,
so ‘@0’ represents this time, ‘@1’ represents 1970-01-01 00:00:01 utc, and so forth. GNU and
most other POSIX-compliant systems support such times as an extension to POSIX, using
negative counts, so that ‘@-1’ represents 1969-12-31 23:59:59 utc.

Traditional Unix systems count seconds with 32-bit two’s-complement integers and can
represent times from 1901-12-13 20:45:52 through 2038-01-19 03:14:07 utc. More modern
systems use 64-bit counts of seconds with nanosecond subcounts, and can represent all the
times in the known lifetime of the universe to a resolution of 1 nanosecond.

On most hosts, these counts ignore the presence of leap seconds. For example, on most
hosts ‘@915148799’ represents 1998-12-31 23:59:59 utc, ‘@915148800’ represents 1999-01-
01 00:00:00 utc, and there is no way to represent the intervening leap second 1998-12-31
23:59:60 utc.

4.10.9 Specifying time zone rules

Normally, dates are interpreted using the rules of the current time zone, which in turn are
specified by the TZ environment variable, or by a system default if TZ is not set. To specify
a different set of default time zone rules that apply just to one date, start the date with a
string of the form ‘TZ="rule"’. The two quote characters (‘"’) must be present in the date,
and any quotes or backslashes within rule must be escaped by a backslash.

Chapter 4: Reference Manual 57

For example, with the GNU date command you can answer the question “What time is
it in New York when a Paris clock shows 6:30am on October 31, 2004?” by using a date
beginning with ‘TZ="Europe/Paris"’ as shown in the following shell transcript:

$ export TZ="America/New_York"
$ date --date=’TZ="Europe/Paris" 2004-10-31 06:30’
Sun Oct 31 01:30:00 EDT 2004

In this example, the ‘--date’ operand begins with its own TZ setting, so the rest of that
operand is processed according to ‘Europe/Paris’ rules, treating the string ‘2004-10-31
06:30’ as if it were in Paris. However, since the output of the date command is processed
according to the overall time zone rules, it uses New York time. (Paris was normally six
hours ahead of New York in 2004, but this example refers to a brief Halloween period when
the gap was five hours.)

A TZ value is a rule that typically names a location in the ‘tz’ database. A recent catalog
of location names appears in the TWiki Date and Time Gateway. A few non-GNU hosts
require a colon before a location name in a TZ setting, e.g., ‘TZ=":America/New_York"’.

The ‘tz’ database includes a wide variety of locations ranging from
‘Arctic/Longyearbyen’ to ‘Antarctica/South_Pole’, but if you are at sea and
have your own private time zone, or if you are using a non-GNU host that does not support
the ‘tz’ database, you may need to use a POSIX rule instead. Simple POSIX rules like
‘UTC0’ specify a time zone without daylight saving time; other rules can specify simple
daylight saving regimes. See Section “Specifying the Time Zone with TZ” in The GNU C
Library .

4.10.10 Authors of get_date

get_date was originally implemented by Steven M. Bellovin (smb@research.att.com)
while at the University of North Carolina at Chapel Hill. The code was later tweaked
by a couple of people on Usenet, then completely overhauled by Rich $alz (rsalz@bbn.com)
and Jim Berets (jberets@bbn.com) in August, 1990. Various revisions for the gnu system
were made by David MacKenzie, Jim Meyering, Paul Eggert and others.

This chapter was originally produced by François Pinard (pinard@iro.umontreal.ca)
from the ‘getdate.y’ source code, and then edited by K. Berry (kb@cs.umb.edu).

http://www.twinsun.com/tz/tz-link.htm
http://twiki.org/cgi-bin/xtra/tzdate
mailto:smb@research.att.com
mailto:rsalz@bbn.com
mailto:jberets@bbn.com
mailto:pinard@iro.umontreal.ca
mailto:kb@cs.umb.edu

Chapter 5: Programming Manual 58

5 Programming Manual

This chapter describes all the publicly available functions in the library.

5.1 Preparation

To use ‘Libshishi’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libshishi’ may be
to look at the examples at the end of this manual (see Section 5.18 [Examples], page 223).

5.1.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘shishi.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <shishi.h>

The name space of ‘Libshishi’ is shishi_* for function names, Shishi* for data types
and SHISHI_* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

5.1.2 Initialization

‘Libshishi’ must be initialized before it can be used. The library is initialized by calling
shishi_init (see Section 5.2 [Initialization Functions], page 61). The resources allocated
by the initialization process can be released if the application no longer has a need to call
‘Libshishi’ functions, this is done by calling shishi_done.

In order to take advantage of the internationalisation features in ‘Libshishi’, such as
translated error messages, the application must set the current locale using setlocale
before initializing ‘Libshishi’.

5.1.3 Version Check

It is often desirable to check that the version of ‘Libshishi’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

shishi check version

[Function]const char * shishi_check_version (const char * req_version)
req version: version string to compare with, or NULL
Check that the the version of the library is at minimum the one given as a string in
req_version.
Return value: the actual version string of the library; NULL if the condition is not
met. If NULL is passed to this function no check is done and only the version string is
returned.

Chapter 5: Programming Manual 59

The normal way to use the function is to put something similar to the following early in
your main:

if (!shishi_check_version (SHISHI_VERSION))
{

printf ("shishi_check_version failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

5.1.4 Building the source

If you want to compile a source file including the ‘shishi.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libshishi’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
shishi. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config shishi --cflags‘

Adding the output of ‘pkg-config shishi --cflags’ to the compilers command line
will ensure that the compiler can find the ‘Libshishi’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
shishi can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘Libshishi’ libararies (in particular, the ‘-lshishi’
option). The example shows how to link ‘foo.o’ with the ‘Libshishi’ library to a program
foo.

gcc -o foo foo.o ‘pkg-config shishi --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config shishi --cflags --libs‘

5.1.5 Autoconf tests

If you work on a project that uses Autoconf (see 〈undefined〉 [top], page 〈undefined〉) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate Shishi into your Autoconf based package. The
preferred approach, is to use Libtool in your project, and use the normal Autoconf header
file and library tests.

5.1.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Shishi. The following illustrate this scenario.

Chapter 5: Programming Manual 60

AC_ARG_ENABLE(kerberos_v5,
AC_HELP_STRING([--disable-kerberos_v5],

[don’t use the KERBEROS_V5 mechanism]),
kerberos_v5=$enableval)
if test "$kerberos_v5" != "no" ; then
PKG_CHECK_MODULES(SHISHI, shishi >= 0.0.0,
[kerberos_v5=yes],

[kerberos_v5=no])
if test "$kerberos_v5" != "yes" ; then
kerberos_v5=no
AC_MSG_WARN([shishi not found, disabling Kerberos 5])
else
kerberos_v5=yes
AC_DEFINE(USE_KERBEROS_V5, 1,

[Define to 1 if you want Kerberos 5.])
fi
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT($kerberos_v5)

5.1.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see 〈undefined〉 [top], page 〈undefined〉), you can use the normal
Autoconf tests to find the Shishi library and rely on the Libtool dependency tracking to
include the proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER(shishi.h,
AC_CHECK_LIB(shishi, shishi_check_version,
[kerberos5=yes AC_SUBST(SHISHI_LIBS, -lshishi)],
kerberos5=no),
kerberos5=no)
AC_ARG_ENABLE(kerberos5,
AC_HELP_STRING([--disable-kerberos5],

[disable Kerberos 5 unconditionally]),
kerberos5=$enableval)
if test "$kerberos5" != "no" ; then
AC_DEFINE(USE_KERBEROS_V5, 1,
[Define to 1 if you want Kerberos 5.])

else
AC_MSG_WARN([Shishi not found, disabling Kerberos 5])
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT($kerberos5)

5.1.5.3 Standalone Autoconf test

If your package does not use Libtool, as well as detecting the Shishi library as in the
previous case, you must also detect whatever dependencies Shishi requires to work (e.g.,

Chapter 5: Programming Manual 61

libidn). Since the dependencies are in a state of flux, we do not provide an example and we
do not recommend this approach, unless you are experienced developer.

5.2 Initialization Functions

shishi

[Function]Shishi * shishi (void)
Initializes the Shishi library, and set up, using shishi_error_set_outputtype(),
the library so that future warnings and informational messages are printed to stderr.
If this function fails, it may print diagnostic errors to stderr.

Return value: Returns Shishi library handle, or NULL on error.

shishi server

[Function]Shishi * shishi_server (void)
Initializes the Shishi library, and set up, using shishi_error_set_outputtype(),
the library so that future warnings and informational messages are printed to the
syslog. If this function fails, it may print diagnostic errors to the syslog.

Return value: Returns Shishi library handle, or NULL on error.

shishi done

[Function]void shishi_done (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Deallocates the shishi library handle. The handle must not be used in any calls to
shishi functions after this.

If there is a default tkts, it is written to the default tkts file (call shishi_tkts_
default_file_set() to change the default tkts file). If you do not wish to write the
default tkts file, close the default tkts with shishi tkts done(handle, NULL) before
calling this function.

shishi init

[Function]int shishi_init (Shishi ** handle)
handle: pointer to handle to be created.

Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file and user tickets from their default locations. The
paths to the system configuration file is decided at compile time, and is
$sysconfdir/shishi.conf. The user configuration file is $HOME/.shishi/config, and
the user ticket file is $HOME/.shishi/ticket.

The handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 62

shishi init with paths

[Function]int shishi_init_with_paths (Shishi ** handle , const char *
tktsfile , const char * systemcfgfile , const char * usercfgfile)

handle: pointer to handle to be created.

tktsfile: Filename of ticket file, or NULL.

systemcfgfile: Filename of system configuration, or NULL.

usercfgfile: Filename of user configuration, or NULL.

Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file, and user tickets from the specified locations. If any
of usercfgfile or systemcfgfile is NULL, the file is read from its default lo-
cation, which for the system configuration file is decided at compile time, and is
$sysconfdir/shishi.conf, and for the user configuration file is $HOME/.shishi/config.
If the ticket file is NULL, a ticket file is not read at all.

The handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISHI OK iff successful.

shishi init server

[Function]int shishi_init_server (Shishi ** handle)
handle: pointer to handle to be created.

Create a Shishi library handle, using shishi_server(), and read the system config-
uration file. The paths to the system configuration file is decided at compile time,
and is $sysconfdir/shishi.conf.

The handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the file.)

Return value: Returns SHISHI OK iff successful.

shishi init server with paths

[Function]int shishi_init_server_with_paths (Shishi ** handle , const char
* systemcfgfile)

handle: pointer to handle to be created.

systemcfgfile: Filename of system configuration, or NULL.

Create a Shishi library handle, using shishi_server(), and read the system con-
figuration file from specified location. The paths to the system configuration file is
decided at compile time, and is $sysconfdir/shishi.conf. The handle is allocated re-
gardless of return values, except for SHISHI HANDLE ERROR which indicates a
problem allocating the handle. (The other error conditions comes from reading the
file.)

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 63

shishi cfg

[Function]int shishi_cfg (Shishi * handle , const char * option)
handle: Shishi library handle create by shishi_init().

option: string with shishi library option.

Configure shishi library with given option.

Return Value: Returns SHISHI OK if option was valid.

shishi cfg from file

[Function]int shishi_cfg_from_file (Shishi * handle , const char * cfg)
handle: Shishi library handle create by shishi_init().

cfg : filename to read configuration from.

Configure shishi library using configuration file.

Return Value: Returns SHISHI OK iff succesful.

shishi cfg print

[Function]int shishi_cfg_print (Shishi * handle , FILE * fh)
handle: Shishi library handle create by shishi_init().

fh: file descriptor opened for writing.

Print library configuration status, mostly for debugging purposes.

Return Value: Returns SHISHI OK.

shishi cfg default systemfile

[Function]const char * shishi_cfg_default_systemfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().

The system configuration file name is decided at compile-time, but may be overridden
by the environment variable SHISHI CONFIG.

Return value: Return system configuration file name.

shishi cfg default userdirectory

[Function]const char * shishi_cfg_default_userdirectory (Shishi *
handle)

handle: Shishi library handle create by shishi_init().

The default user directory (used for, e.g. Shishi ticket cache) is normally computed
by appending BASE DIR ("/.shishi") to the content of the environment variable
$HOME, but can be overridden by specifying the complete path in the environment
variable SHISHI HOME.

Return value: Return directory with configuration files etc.

Chapter 5: Programming Manual 64

shishi cfg userdirectory file

[Function]char * shishi_cfg_userdirectory_file (Shishi * handle , const
char * file)

handle: Shishi library handle create by shishi_init().

file: basename of file to find in user directory.

Get the full path to specified file in the users’ configuration directory.

Return value: Return full path to given relative filename, relative to the user
specific Shishi configuration directory as returned by shishi_cfg_default_
userdirectory() (typically $HOME/.shishi).

shishi cfg default userfile

[Function]const char * shishi_cfg_default_userfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Get filename of default user configuration file, typically $HOME/shishi.conf.

Return value: Return user configuration filename.

shishi cfg clientkdcetype

[Function]int shishi_cfg_clientkdcetype (Shishi * handle , int32 t **
etypes)

handle: Shishi library handle create by shishi_init().

etypes: output array with encryption types.

Set the etypes variable to the array of preferred client etypes.

Return value: Return the number of encryption types in the array, 0 means none.

shishi cfg clientkdcetype fast

[Function]int32_t shishi_cfg_clientkdcetype_fast (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Extract the default etype from the list of preferred client etypes.

Return value: Return the default encryption types.

shishi cfg clientkdcetype set

[Function]int shishi_cfg_clientkdcetype_set (Shishi * handle , char *
value)

handle: Shishi library handle create by shishi_init().

value: string with encryption types.

Set the "client-kdc-etypes" configuration option from given string. The string con-
tains encryption types (integer or names) separated by comma or whitespace, e.g.
"aes256-cts-hmac-sha1-96 des3-cbc-sha1-kd des-cbc-md5".

Return value: Return SHISHI OK iff successful.

Chapter 5: Programming Manual 65

shishi cfg authorizationtype set

[Function]int shishi_cfg_authorizationtype_set (Shishi * handle , char *
value)

handle: Shishi library handle create by shishi_init().
value: string with authorization types.
Set the "authorization-types" configuration option from given string. The string
contains authorization types (integer or names) separated by comma or whitespace,
e.g. "basic k5login".
Return value: Return SHISHI OK iff successful.

5.3 Ticket Set Functions

A “ticket set” is, as the name implies, a collection of tickets. Functions are provided to read
tickets from file into a ticket set, to query number of tickets in the set, to extract a given
ticket from the set, to search the ticket set for tickets matching certain criterium, to write
the ticket set to a file, etc. High level functions for performing a initial authentication (see
Section 5.7 [AS Functions], page 114) or subsequent authentication (see Section 5.8 [TGS
Functions], page 119) and storing the new ticket in the ticket set are also provided.

To manipulate each individual ticket, See Section 5.6 [Ticket Functions], page 103. For
low-level ASN.1 manipulation see See Section 5.9 [Ticket (ASN.1) Functions], page 125.

shishi tkts default file guess

[Function]char * shishi_tkts_default_file_guess (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Guesses the default ticket filename; it is $SHISHI TICKETS, $SHISHI HOME/tickets,
or $HOME/.shishi/tickets.
Return value: Returns default tkts filename as a string that has to be deallocated
with free() by the caller.

shishi tkts default file

[Function]const char * shishi_tkts_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Get filename of default ticket set.
Return value: Returns the default ticket set filename used in the library. The string
is not a copy, so don’t modify or deallocate it.

shishi tkts default file set

[Function]void shishi_tkts_default_file_set (Shishi * handle , const char *
tktsfile)

handle: Shishi library handle create by shishi_init().
tktsfile: string with new default tkts file name, or NULL to reset to default.
Set the default ticket set filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

Chapter 5: Programming Manual 66

shishi tkts default

[Function]Shishi_tkts * shishi_tkts_default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Get the default ticket set for library handle.
Return value: Return the handle global ticket set.

shishi tkts

[Function]int shishi_tkts (Shishi * handle , Shishi tkts ** tkts)
handle: shishi handle as allocated by shishi_init().
tkts: output pointer to newly allocated tkts handle.
Get a new ticket set handle.
Return value: Returns SHISHI_OK iff successful.

shishi tkts done

[Function]void shishi_tkts_done (Shishi tkts ** tkts)
tkts: ticket set handle as allocated by shishi_tkts().
Deallocates all resources associated with ticket set. The ticket set handle must not
be used in calls to other shishi tkts *() functions after this.

shishi tkts size

[Function]int shishi_tkts_size (Shishi tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().
Get size of ticket set.
Return value: Returns number of tickets stored in ticket set.

shishi tkts nth

[Function]Shishi_tkt * shishi_tkts_nth (Shishi tkts * tkts , int ticketno)
tkts: ticket set handle as allocated by shishi_tkts().
ticketno: integer indicating requested ticket in ticket set.
Get the n: th ticket in ticket set.
Return value: Returns a ticket handle to the ticketno:th ticket in the ticket set, or
NULL if ticket set is invalid or ticketno is out of bounds. The first ticket is ticketno
0, the second ticketno 1, and so on.

shishi tkts remove

[Function]int shishi_tkts_remove (Shishi tkts * tkts , int ticketno)
tkts: ticket set handle as allocated by shishi_tkts().
ticketno: ticket number of ticket in the set to remove. The first ticket is ticket number
0.
Remove a ticket, indexed by ticketno, in ticket set.
Return value: Returns SHISHI OK if succesful or if ticketno larger than size of ticket
set.

Chapter 5: Programming Manual 67

shishi tkts add

[Function]int shishi_tkts_add (Shishi tkts * tkts , Shishi tkt * tkt)
tkts: ticket set handle as allocated by shishi_tkts().
tkt: ticket to be added to ticket set.
Add a ticket to the ticket set. Only the pointer is stored, so if you modify tkt, the
ticket in the ticket set will also be modified.
Return value: Returns SHISHI OK iff succesful.

shishi tkts new

[Function]int shishi_tkts_new (Shishi tkts * tkts , Shishi asn1 ticket ,
Shishi asn1 enckdcreppart , Shishi asn1 kdcrep)

tkts: ticket set handle as allocated by shishi_tkts().
ticket: input ticket variable.
enckdcreppart: input ticket detail variable.
kdcrep: input KDC-REP variable.
Allocate a new ticket and add it to the ticket set.
Note that ticket, enckdcreppart and kdcrep are stored by reference, so you must
not de-allocate them before the ticket is removed from the ticket set and de-allocated.
Return value: Returns SHISHI OK iff succesful.

shishi tkts read

[Function]int shishi_tkts_read (Shishi tkts * tkts , FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().
fh: file descriptor to read from.
Read tickets from file descriptor and add them to the ticket set.
Return value: Returns SHISHI OK iff succesful.

shishi tkts from file

[Function]int shishi_tkts_from_file (Shishi tkts * tkts , const char *
filename)

tkts: ticket set handle as allocated by shishi_tkts().
filename: filename to read tickets from.
Read tickets from file and add them to the ticket set.
Return value: Returns SHISHI OK iff succesful.

shishi tkts write

[Function]int shishi_tkts_write (Shishi tkts * tkts , FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().
fh: file descriptor to write tickets to.
Write tickets in set to file descriptor.
Return value: Returns SHISHI OK iff succesful.

Chapter 5: Programming Manual 68

shishi tkts expire

[Function]int shishi_tkts_expire (Shishi tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().

Remove expired tickets from ticket set.

Return value: Returns SHISHI OK iff succesful.

shishi tkts to file

[Function]int shishi_tkts_to_file (Shishi tkts * tkts , const char *
filename)

tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to write tickets to.

Write tickets in set to file.

Return value: Returns SHISHI OK iff succesful.

shishi tkts print for service

[Function]int shishi_tkts_print_for_service (Shishi tkts * tkts , FILE *
fh , const char * service)

tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to print to.

service: service to limit tickets printed to, or NULL.

Print description of tickets for specified service to file descriptor. If service is NULL,
all tickets are printed.

Return value: Returns SHISHI OK iff succesful.

shishi tkts print

[Function]int shishi_tkts_print (Shishi tkts * tkts , FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to print to.

Print description of all tickets to file descriptor.

Return value: Returns SHISHI OK iff succesful.

shishi tkt match p

[Function]int shishi_tkt_match_p (Shishi tkt * tkt , Shishi tkts hint * hint)
tkt: ticket to test hints on.

hint: structure with characteristics of ticket to be found.

Test if a ticket matches specified hints.

Return value: Returns 0 iff ticket fails to match given criteria.

Chapter 5: Programming Manual 69

shishi tkts find

[Function]Shishi_tkt * shishi_tkts_find (Shishi tkts * tkts , Shishi tkts hint
* hint)

tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to be found.
Search the ticketset sequentially (from ticket number 0 through all tickets in the
set) for a ticket that fits the given characteristics. If a ticket is found, the hint-
>startpos field is updated to point to the next ticket in the set, so this function can
be called repeatedly with the same hint argument in order to find all tickets matching
a certain criterium. Note that if tickets are added to, or removed from, the ticketset
during a query with the same hint argument, the hint->startpos field must be updated
appropriately.
Here is how you would typically use this function: Shishi tkts hint hint;
Shishi tkt tkt;
memset(&hint, 0, sizeof(hint));
hint.server = "imap/mail.example.org";
tkt = shishi tkts find (shishi tkts default(handle), &hint);
if (!tkt)
printf("No ticket found...\n");
else
do something with ticket (tkt);
Return value: Returns a ticket if found, or NULL if no further matching tickets could
be found.

shishi tkts find for clientserver

[Function]Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi tkts *
tkts , const char * client , const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
client: client name to find ticket for.
server: server name to find ticket for.
Short-hand function for searching the ticket set for a ticket for the given client and
server. See shishi_tkts_find().
Return value: Returns a ticket if found, or NULL.

shishi tkts find for server

[Function]Shishi_tkt * shishi_tkts_find_for_server (Shishi tkts * tkts ,
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
server: server name to find ticket for.
Short-hand function for searching the ticket set for a ticket for the given server us-
ing the default client principal. See shishi_tkts_find_for_clientserver() and
shishi_tkts_find().

Chapter 5: Programming Manual 70

Return value: Returns a ticket if found, or NULL.

shishi tkts get tgt

[Function]Shishi_tkt * shishi_tkts_get_tgt (Shishi tkts * tkts ,
Shishi tkts hint * hint)

tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.

Get a ticket granting ticket (TGT) suitable for acquiring ticket matching the hint.
I.e., get a TGT for the server realm in the hint structure (hint->serverrealm), or the
default realm if the serverrealm field is NULL. Can result in AS exchange.

Currently this function do not implement cross realm logic.

This function is used by shishi_tkts_get(), which is probably what you really want
to use unless you have special needs.

Return value: Returns a ticket granting ticket if successful, or NULL if this function
is unable to acquire on.

shishi tkts get tgs

[Function]Shishi_tkt * shishi_tkts_get_tgs (Shishi tkts * tkts ,
Shishi tkts hint * hint , Shishi tkt * tgt)

tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.

tgt: ticket granting ticket to use.

Get a ticket via TGS exchange using specified ticket granting ticket.

This function is used by shishi_tkts_get(), which is probably what you really want
to use unless you have special needs.

Return value: Returns a ticket if successful, or NULL if this function is unable to
acquire on.

shishi tkts get

[Function]Shishi_tkt * shishi_tkts_get (Shishi tkts * tkts , Shishi tkts hint
* hint)

tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.

Get a ticket matching given characteristics. This function first looks in the ticket
set for the ticket, then tries to find a suitable TGT, possibly via an AS exchange,
using shishi_tkts_get_tgt(), and then use that TGT in a TGS exchange to get
the ticket.

Currently this function do not implement cross realm logic.

Return value: Returns a ticket if found, or NULL if this function is unable to get the
ticket.

Chapter 5: Programming Manual 71

shishi tkts get for clientserver

[Function]Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi tkts *
tkts , const char * client , const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
client: client name to get ticket for.
server: server name to get ticket for.
Short-hand function for getting a ticket for the given client and server. See shishi_
tkts_get().
Return value: Returns a ticket if found, or NULL.

shishi tkts get for server

[Function]Shishi_tkt * shishi_tkts_get_for_server (Shishi tkts * tkts ,
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
server: server name to get ticket for.
Short-hand function for getting a ticket for the given server and the default principal
client. See shishi_tkts_get().
Return value: Returns a ticket if found, or NULL.

5.4 AP-REQ and AP-REP Functions

The “AP-REQ” and “AP-REP” are ASN.1 structures used by application client and servers
to prove to each other who they are. The structures contain auxilliary information, together
with an authenticator (see Section 5.11 [Authenticator Functions], page 153) which is the
real cryptographic proof. The following illustrates the AP-REQ and AP-REP ASN.1 struc-
tures.
AP-REQ ::= [APPLICATION 14] SEQUENCE {

pvno [0] INTEGER (5),
msg-type [1] INTEGER (14),
ap-options [2] APOptions,
ticket [3] Ticket,
authenticator [4] EncryptedData {Authenticator,

{ keyuse-pa-TGSReq-authenticator
| keyuse-APReq-authenticator }}

}

AP-REP ::= [APPLICATION 15] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (15),
enc-part [2] EncryptedData {EncAPRepPart,

{ keyuse-EncAPRepPart }}
}

EncAPRepPart ::= [APPLICATION 27] SEQUENCE {

Chapter 5: Programming Manual 72

ctime [0] KerberosTime,
cusec [1] Microseconds,
subkey [2] EncryptionKey OPTIONAL,
seq-number [3] UInt32 OPTIONAL

}

shishi ap

[Function]int shishi_ap (Shishi * handle , Shishi ap ** ap)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange with a random subkey of the default encryption type from
configuration. Note that there is no guarantee that the receiver will understand that
key type, you should probably use shishi_ap_etype() or shishi_ap_nosubkey()
instead. In the future, this function will likely behave as shishi_ap_nosubkey() and
shishi_ap_nosubkey() will be removed.

Return value: Returns SHISHI OK iff successful.

shishi ap etype

[Function]int shishi_ap_etype (Shishi * handle , Shishi ap ** ap , int etype)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

etype: encryption type of newly generated random subkey.

Create a new AP exchange with a random subkey of indicated encryption type.

Return value: Returns SHISHI OK iff successful.

shishi ap nosubkey

[Function]int shishi_ap_nosubkey (Shishi * handle , Shishi ap ** ap)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange without subkey in authenticator.

Return value: Returns SHISHI OK iff successful.

shishi ap done

[Function]void shishi_ap_done (Shishi ap * ap)
ap: structure that holds information about AP exchange

Deallocate resources associated with AP exchange. This should be called by the
application when it no longer need to utilize the AP exchange handle.

Chapter 5: Programming Manual 73

shishi ap set tktoptions

[Function]int shishi_ap_set_tktoptions (Shishi ap * ap , Shishi tkt * tkt , int
options)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()).
Return value: Returns SHISHI OK iff successful.

shishi ap set tktoptionsdata

[Function]int shishi_ap_set_tktoptionsdata (Shishi ap * ap , Shishi tkt *
tkt , int options , const char * data , size t len)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
data: input array with data to checksum in Authenticator.
len: length of input array with data to checksum in Authenticator.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the Authenticator checksum data.
Return value: Returns SHISHI OK iff successful.

shishi ap set tktoptionsraw

[Function]int shishi_ap_set_tktoptionsraw (Shishi ap * ap , Shishi tkt * tkt ,
int options , int32 t cksumtype , const char * data , size t len)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
cksumtype: authenticator checksum type to set in AP.
data: input array with data to store in checksum field in Authenticator.
len: length of input array with data to store in checksum field in Authenticator.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the raw Authenticator checksum data.
Return value: Returns SHISHI OK iff successful.

shishi ap set tktoptionsasn1usage

[Function]int shishi_ap_set_tktoptionsasn1usage (Shishi ap * ap ,
Shishi tkt * tkt , int options , Shishi asn1 node , const char * field , int
authenticatorcksumkeyusage , int authenticatorkeyusage)

ap: structure that holds information about AP exchange

Chapter 5: Programming Manual 74

tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

node: input ASN.1 structure to store as authenticator checksum data.

field: field in ASN.1 structure to use.

authenticatorcksumkeyusage: key usage for checksum in authenticator.

authenticatorkeyusage: key usage for authenticator.

Set ticket, options and authenticator checksum data using shishi_ap_set_
tktoptionsdata(). The authenticator checksum data is the DER encoding of the
ASN.1 field provided.

Return value: Returns SHISHI OK iff successful.

shishi ap tktoptions

[Function]int shishi_ap_tktoptions (Shishi * handle , Shishi ap ** ap ,
Shishi tkt * tkt , int options)

handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ
apoptions using shishi_ap_set_tktoption(). A random session key is added to the
authenticator, using the same keytype as the ticket.

Return value: Returns SHISHI OK iff successful.

shishi ap tktoptionsdata

[Function]int shishi_ap_tktoptionsdata (Shishi * handle , Shishi ap ** ap ,
Shishi tkt * tkt , int options , const char * data , size t len)

handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata(). A
random session key is added to the authenticator, using the same keytype as the
ticket.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 75

shishi ap tktoptionsraw

[Function]int shishi_ap_tktoptionsraw (Shishi * handle , Shishi ap ** ap ,
Shishi tkt * tkt , int options , int32 t cksumtype , const char * data , size t
len)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
cksumtype: authenticator checksum type to set in AP.
data: input array with data to store in checksum field in Authenticator.
len: length of input array with data to store in checksum field in Authenticator.
Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ
apoptions and the raw Authenticator checksum data field using shishi_ap_set_
tktoptionsraw(). A random session key is added to the authenticator, using the
same keytype as the ticket.
Return value: Returns SHISHI OK iff successful.

shishi ap etype tktoptionsdata

[Function]int shishi_ap_etype_tktoptionsdata (Shishi * handle , Shishi ap
** ap , int32 t etype , Shishi tkt * tkt , int options , const char * data ,
size t len)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
etype: encryption type of newly generated random subkey.
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
data: input array with data to checksum in Authenticator.
len: length of input array with data to checksum in Authenticator.
Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata(). A
random session key is added to the authenticator, using the same keytype as the
ticket.
Return value: Returns SHISHI OK iff successful.

shishi ap tktoptionsasn1usage

[Function]int shishi_ap_tktoptionsasn1usage (Shishi * handle , Shishi ap **
ap , Shishi tkt * tkt , int options , Shishi asn1 node , const char * field , int
authenticatorcksumkeyusage , int authenticatorkeyusage)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.

Chapter 5: Programming Manual 76

options: AP-REQ options to set in newly created AP.
node: input ASN.1 structure to store as authenticator checksum data.
field: field in ASN.1 structure to use.
authenticatorcksumkeyusage: key usage for checksum in authenticator.
authenticatorkeyusage: key usage for authenticator.
Create a new AP exchange using shishi_ap(), and set ticket, options and authen-
ticator checksum data from the DER encoding of the ASN.1 field using shishi_ap_
set_tktoptionsasn1usage(). A random session key is added to the authenticator,
using the same keytype as the ticket.
Return value: Returns SHISHI OK iff successful.

shishi ap tkt

[Function]Shishi_tkt * shishi_ap_tkt (Shishi ap * ap)
ap: structure that holds information about AP exchange
Get Ticket from AP exchange.
Return value: Returns the ticket from the AP exchange, or NULL if not yet set or
an error occured.

shishi ap tkt set

[Function]void shishi_ap_tkt_set (Shishi ap * ap , Shishi tkt * tkt)
ap: structure that holds information about AP exchange
tkt: ticket to store in AP.
Set the Ticket in the AP exchange.

shishi ap authenticator cksumdata

[Function]int shishi_ap_authenticator_cksumdata (Shishi ap * ap , char *
out , size t * len)

ap: structure that holds information about AP exchange
out: output array that holds authenticator checksum data.
len: on input, maximum length of output array that holds authenticator checksum
data, on output actual length of output array that holds authenticator checksum data.
Get checksum data from Authenticator.
Return value: Returns SHISHI OK if successful, or SHISHI TOO SMALL BUFFER
if buffer provided was too small.

shishi ap authenticator cksumdata set

[Function]void shishi_ap_authenticator_cksumdata_set (Shishi ap * ap ,
const char * authenticatorcksumdata , size t
authenticatorcksumdatalen)

ap: structure that holds information about AP exchange
authenticatorcksumdata: input array with data to compute checksum on and store
in Authenticator in AP-REQ.

Chapter 5: Programming Manual 77

authenticatorcksumdatalen: length of input array with data to compute checksum on
and store in Authenticator in AP-REQ.

Set the Authenticator Checksum Data in the AP exchange. This is the data that will
be checksumed, and the checksum placed in the checksum field. It is not the actual
checksum field. See also shishi ap authenticator cksumraw set.

shishi ap authenticator cksumraw set

[Function]void shishi_ap_authenticator_cksumraw_set (Shishi ap * ap ,
int32 t authenticatorcksumtype , const char * authenticatorcksumraw ,
size t authenticatorcksumrawlen)

ap: structure that holds information about AP exchange

authenticatorcksumtype: authenticator checksum type to set in AP.

authenticatorcksumraw : input array with authenticator checksum field value to set
in Authenticator in AP-REQ.

authenticatorcksumrawlen: length of input array with authenticator checksum field
value to set in Authenticator in AP-REQ.

Set the Authenticator Checksum Data in the AP exchange. This is the actual check-
sum field, not data to compute checksum on and then store in the checksum field.
See also shishi ap authenticator cksumdata set.

shishi ap authenticator cksumtype

[Function]int32_t shishi_ap_authenticator_cksumtype (Shishi ap * ap)
ap: structure that holds information about AP exchange

Get the Authenticator Checksum Type in the AP exchange.

Return value: Return the authenticator checksum type.

shishi ap authenticator cksumtype set

[Function]void shishi_ap_authenticator_cksumtype_set (Shishi ap * ap ,
int32 t cksumtype)

ap: structure that holds information about AP exchange

cksumtype: authenticator checksum type to set in AP.

Set the Authenticator Checksum Type in the AP exchange.

shishi ap authenticator

[Function]Shishi_asn1 shishi_ap_authenticator (Shishi ap * ap)
ap: structure that holds information about AP exchange

Get ASN.1 Authenticator structure from AP exchange.

Return value: Returns the Authenticator from the AP exchange, or NULL if not yet
set or an error occured.

Chapter 5: Programming Manual 78

shishi ap authenticator set

[Function]void shishi_ap_authenticator_set (Shishi ap * ap , Shishi asn1
authenticator)

ap: structure that holds information about AP exchange

authenticator: authenticator to store in AP.

Set the Authenticator in the AP exchange.

shishi ap req

[Function]Shishi_asn1 shishi_ap_req (Shishi ap * ap)
ap: structure that holds information about AP exchange

Get ASN.1 AP-REQ structure from AP exchange.

Return value: Returns the AP-REQ from the AP exchange, or NULL if not yet set
or an error occured.

shishi ap req set

[Function]void shishi_ap_req_set (Shishi ap * ap , Shishi asn1 apreq)
ap: structure that holds information about AP exchange

apreq: apreq to store in AP.

Set the AP-REQ in the AP exchange.

shishi ap req der

[Function]int shishi_ap_req_der (Shishi ap * ap , char ** out , size t * outlen)
ap: structure that holds information about AP exchange

out: pointer to output array with der encoding of AP-REQ.

outlen: pointer to length of output array with der encoding of AP-REQ.

Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi ap req der set

[Function]int shishi_ap_req_der_set (Shishi ap * ap , char * der , size t
derlen)

ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REQ.

derlen: length of input array with DER encoded AP-REQ.

DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the
AP exchange is lost.

Return value: Returns SHISHI OK.

Chapter 5: Programming Manual 79

shishi ap req build

[Function]int shishi_ap_req_build (Shishi ap * ap)
ap: structure that holds information about AP exchange
Checksum data in authenticator and add ticket and authenticator to AP-REQ.
Return value: Returns SHISHI OK iff successful.

shishi ap req decode

[Function]int shishi_ap_req_decode (Shishi ap * ap)
ap: structure that holds information about AP exchange
Decode ticket in AP-REQ and set the Ticket fields in the AP exchange.
Return value: Returns SHISHI OK iff successful.

shishi ap req process keyusage

[Function]int shishi_ap_req_process_keyusage (Shishi ap * ap , Shishi key *
key , int32 t keyusage)

ap: structure that holds information about AP exchange
key : cryptographic key used to decrypt ticket in AP-REQ.
keyusage: key usage to use during decryption, for normal AP-REQ’s this is normally
SHISHI KEYUSAGE APREQ AUTHENTICATOR, for AP-REQ’s part of TGS-
REQ’s, this is normally SHISHI KEYUSAGE TGSREQ APREQ AUTHENTICATOR.
Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.
Return value: Returns SHISHI OK iff successful.

shishi ap req process

[Function]int shishi_ap_req_process (Shishi ap * ap , Shishi key * key)
ap: structure that holds information about AP exchange
key : cryptographic key used to decrypt ticket in AP-REQ.
Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.
Return value: Returns SHISHI OK iff successful.

shishi ap req asn1

[Function]int shishi_ap_req_asn1 (Shishi ap * ap , Shishi asn1 * apreq)
ap: structure that holds information about AP exchange
apreq: output AP-REQ variable.
Build AP-REQ using shishi_ap_req_build() and return it.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 80

shishi ap key

[Function]Shishi_key * shishi_ap_key (Shishi ap * ap)
ap: structure that holds information about AP exchange

Extract the application key from AP. If subkeys are used, it is taken from the Au-
thenticator, otherwise the session key is used.

Return value: Return application key from AP.

shishi ap rep

[Function]Shishi_asn1 shishi_ap_rep (Shishi ap * ap)
ap: structure that holds information about AP exchange

Get ASN.1 AP-REP structure from AP exchange.

Return value: Returns the AP-REP from the AP exchange, or NULL if not yet set
or an error occured.

shishi ap rep set

[Function]void shishi_ap_rep_set (Shishi ap * ap , Shishi asn1 aprep)
ap: structure that holds information about AP exchange

aprep: aprep to store in AP.

Set the AP-REP in the AP exchange.

shishi ap rep der

[Function]int shishi_ap_rep_der (Shishi ap * ap , char ** out , size t * outlen)
ap: structure that holds information about AP exchange

out: output array with newly allocated DER encoding of AP-REP.

outlen: length of output array with DER encoding of AP-REP.

Build AP-REP using shishi_ap_rep_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi ap rep der set

[Function]int shishi_ap_rep_der_set (Shishi ap * ap , char * der , size t
derlen)

ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.

derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the
AP exchange remains.

Return value: Returns SHISHI OK.

Chapter 5: Programming Manual 81

shishi ap rep build

[Function]int shishi_ap_rep_build (Shishi ap * ap)
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REP.

Return value: Returns SHISHI OK iff successful.

shishi ap rep asn1

[Function]int shishi_ap_rep_asn1 (Shishi ap * ap , Shishi asn1 * aprep)
ap: structure that holds information about AP exchange

aprep: output AP-REP variable.

Build AP-REP using shishi_ap_rep_build() and return it.

Return value: Returns SHISHI OK iff successful.

shishi ap rep verify

[Function]int shishi_ap_rep_verify (Shishi ap * ap)
ap: structure that holds information about AP exchange

Verify AP-REP compared to Authenticator.

Return value: Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

shishi ap rep verify der

[Function]int shishi_ap_rep_verify_der (Shishi ap * ap , char * der , size t
derlen)

ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.

derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set()
and verify it using shishi_ap_rep_verify().

Return value: Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

shishi ap rep verify asn1

[Function]int shishi_ap_rep_verify_asn1 (Shishi ap * ap , Shishi asn1 aprep)
ap: structure that holds information about AP exchange

aprep: input AP-REP.

Set the AP-REP in the AP exchange using shishi_ap_rep_set() and verify it using
shishi_ap_rep_verify().

Return value: Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

Chapter 5: Programming Manual 82

shishi ap encapreppart

[Function]Shishi_asn1 shishi_ap_encapreppart (Shishi ap * ap)
ap: structure that holds information about AP exchange
Get ASN.1 EncAPRepPart structure from AP exchange.
Return value: Returns the EncAPREPPart from the AP exchange, or NULL if not
yet set or an error occured.

shishi ap encapreppart set

[Function]void shishi_ap_encapreppart_set (Shishi ap * ap , Shishi asn1
encapreppart)

ap: structure that holds information about AP exchange
encapreppart: EncAPRepPart to store in AP.
Set the EncAPRepPart in the AP exchange.

shishi ap option2string

[Function]const char * shishi_ap_option2string (Shishi apoptions option)
option: enumerated AP-Option type, see Shishi apoptions.
Convert AP-Option type to AP-Option name string. Note that option must be
just one of the AP-Option types, it cannot be an binary ORed indicating several
AP-Options.
Return value: Returns static string with name of AP-Option that must not be deal-
located, or "unknown" if AP-Option was not understood.

shishi ap string2option

[Function]Shishi_apoptions shishi_ap_string2option (const char * str)
str: zero terminated character array with name of AP-Option, e.g. "use-session-key".
Convert AP-Option name to AP-Option type.
Return value: Returns enumerated type member corresponding to AP-Option, or 0
if string was not understood.

shishi apreq

[Function]Shishi_asn1 shishi_apreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AP-REQ, populated with some default values.
Return value: Returns the AP-REQ or NULL on failure.

shishi apreq print

[Function]int shishi_apreq_print (Shishi * handle , FILE * fh , Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.

Chapter 5: Programming Manual 83

apreq: AP-REQ to print.
Print ASCII armored DER encoding of AP-REQ to file.
Return value: Returns SHISHI OK iff successful.

shishi apreq save

[Function]int shishi_apreq_save (Shishi * handle , FILE * fh , Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
apreq: AP-REQ to save.
Save DER encoding of AP-REQ to file.
Return value: Returns SHISHI OK iff successful.

shishi apreq to file

[Function]int shishi_apreq_to_file (Shishi * handle , Shishi asn1 apreq , int
filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

shishi apreq parse

[Function]int shishi_apreq_parse (Shishi * handle , FILE * fh , Shishi asn1 *
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
apreq: output variable with newly allocated AP-REQ.
Read ASCII armored DER encoded AP-REQ from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

shishi apreq read

[Function]int shishi_apreq_read (Shishi * handle , FILE * fh , Shishi asn1 *
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
apreq: output variable with newly allocated AP-REQ.
Read DER encoded AP-REQ from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 84

shishi apreq from file

[Function]int shishi_apreq_from_file (Shishi * handle , Shishi asn1 * apreq ,
int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

apreq: output variable with newly allocated AP-REQ.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read AP-REQ from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi apreq set authenticator

[Function]int shishi_apreq_set_authenticator (Shishi * handle , Shishi asn1
apreq , int32 t etype , uint32 t kvno , const char * buf , size t buflen)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to add authenticator field to.

etype: encryption type used to encrypt authenticator.

kvno: version of the key used to encrypt authenticator.

buf : input array with encrypted authenticator.

buflen: size of input array with encrypted authenticator.

Set the encrypted authenticator field in the AP-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded authenticator. To save
time, you may want to use shishi_apreq_add_authenticator() instead, which cal-
culates the encrypted data and calls this function in one step.

Return value: Returns SHISHI OK on success.

shishi apreq add authenticator

[Function]int shishi_apreq_add_authenticator (Shishi * handle , Shishi asn1
apreq , Shishi key * key , int keyusage , Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to add authenticator field to.

key : key to to use for encryption.

keyusage: cryptographic key usage value to use in encryption.

authenticator: authenticator as allocated by shishi_authenticator().

Encrypts DER encoded authenticator using key and store it in the AP-REQ.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 85

shishi apreq set ticket

[Function]int shishi_apreq_set_ticket (Shishi * handle , Shishi asn1 apreq ,
Shishi asn1 ticket)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add ticket field to.
ticket: input ticket to copy into AP-REQ ticket field.
Copy ticket into AP-REQ.
Return value: Returns SHISHI OK iff successful.

shishi apreq options

[Function]int shishi_apreq_options (Shishi * handle , Shishi asn1 apreq ,
uint32 t * flags)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to get options from.
flags: Output integer containing options from AP-REQ.
Extract the AP-Options from AP-REQ into output integer.
Return value: Returns SHISHI OK iff successful.

shishi apreq use session key p

[Function]int shishi_apreq_use_session_key_p (Shishi * handle , Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Use session key" option is set in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

shishi apreq mutual required p

[Function]int shishi_apreq_mutual_required_p (Shishi * handle , Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Mutual required" option is set in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

shishi apreq options set

[Function]int shishi_apreq_options_set (Shishi * handle , Shishi asn1 apreq ,
uint32 t options)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
options: Options to set in AP-REQ.
Set the AP-Options in AP-REQ to indicate integer.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 86

shishi apreq options add

[Function]int shishi_apreq_options_add (Shishi * handle , Shishi asn1 apreq ,
uint32 t option)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().

option: Options to add in AP-REQ.

Add the AP-Options in AP-REQ. Options not set in input parameter option are
preserved in the AP-REQ.

Return value: Returns SHISHI OK iff successful.

shishi apreq options remove

[Function]int shishi_apreq_options_remove (Shishi * handle , Shishi asn1
apreq , uint32 t option)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().

option: Options to remove from AP-REQ.

Remove the AP-Options from AP-REQ. Options not set in input parameter option
are preserved in the AP-REQ.

Return value: Returns SHISHI OK iff successful.

shishi apreq get authenticator etype

[Function]int shishi_apreq_get_authenticator_etype (Shishi * handle ,
Shishi asn1 apreq , int32 t * etype)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ variable to get value from.

etype: output variable that holds the value.

Extract AP-REQ.authenticator.etype.

Return value: Returns SHISHI OK iff successful.

shishi apreq get ticket

[Function]int shishi_apreq_get_ticket (Shishi * handle , Shishi asn1 apreq ,
Shishi asn1 * ticket)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ variable to get ticket from.

ticket: output variable to hold extracted ticket.

Extract ticket from AP-REQ.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 87

shishi aprep

[Function]Shishi_asn1 shishi_aprep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AP-REP, populated with some default values.
Return value: Returns the authenticator or NULL on failure.

shishi aprep print

[Function]int shishi_aprep_print (Shishi * handle , FILE * fh , Shishi asn1
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
aprep: AP-REP to print.
Print ASCII armored DER encoding of AP-REP to file.
Return value: Returns SHISHI OK iff successful.

shishi aprep save

[Function]int shishi_aprep_save (Shishi * handle , FILE * fh , Shishi asn1
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
aprep: AP-REP to save.
Save DER encoding of AP-REP to file.
Return value: Returns SHISHI OK iff successful.

shishi aprep to file

[Function]int shishi_aprep_to_file (Shishi * handle , Shishi asn1 aprep , int
filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
aprep: AP-REP to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write AP-REP to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

shishi aprep parse

[Function]int shishi_aprep_parse (Shishi * handle , FILE * fh , Shishi asn1 *
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
aprep: output variable with newly allocated AP-REP.
Read ASCII armored DER encoded AP-REP from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 88

shishi aprep read

[Function]int shishi_aprep_read (Shishi * handle , FILE * fh , Shishi asn1 *
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
aprep: output variable with newly allocated AP-REP.
Read DER encoded AP-REP from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

shishi aprep from file

[Function]int shishi_aprep_from_file (Shishi * handle , Shishi asn1 * aprep ,
int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
aprep: output variable with newly allocated AP-REP.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read AP-REP from file in specified TYPE.
Return value: Returns SHISHI OK iff successful.

shishi aprep get enc part etype

[Function]int shishi_aprep_get_enc_part_etype (Shishi * handle ,
Shishi asn1 aprep , int32 t * etype)

handle: shishi handle as allocated by shishi_init().
aprep: AP-REP variable to get value from.
etype: output variable that holds the value.
Extract AP-REP.enc-part.etype.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart

[Function]Shishi_asn1 shishi_encapreppart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new EncAPRepPart, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.
Return value: Returns the encapreppart or NULL on failure.

shishi encapreppart print

[Function]int shishi_encapreppart_print (Shishi * handle , FILE * fh ,
Shishi asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.

Chapter 5: Programming Manual 89

encapreppart: EncAPRepPart to print.
Print ASCII armored DER encoding of EncAPRepPart to file.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart save

[Function]int shishi_encapreppart_save (Shishi * handle , FILE * fh ,
Shishi asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
encapreppart: EncAPRepPart to save.
Save DER encoding of EncAPRepPart to file.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart to file

[Function]int shishi_encapreppart_to_file (Shishi * handle , Shishi asn1
encapreppart , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write EncAPRepPart to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart parse

[Function]int shishi_encapreppart_parse (Shishi * handle , FILE * fh ,
Shishi asn1 * encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
encapreppart: output variable with newly allocated EncAPRepPart.
Read ASCII armored DER encoded EncAPRepPart from file and populate given
variable.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart read

[Function]int shishi_encapreppart_read (Shishi * handle , FILE * fh ,
Shishi asn1 * encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
encapreppart: output variable with newly allocated EncAPRepPart.
Read DER encoded EncAPRepPart from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 90

shishi encapreppart from file

[Function]int shishi_encapreppart_from_file (Shishi * handle , Shishi asn1
* encapreppart , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

encapreppart: output variable with newly allocated EncAPRepPart.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read EncAPRepPart from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi encapreppart get key

[Function]int shishi_encapreppart_get_key (Shishi * handle , Shishi asn1
encapreppart , Shishi key ** key)

handle: shishi handle as allocated by shishi_init().

encapreppart: input EncAPRepPart variable.

key : newly allocated key.

Extract the subkey from the encrypted AP-REP part.

Return value: Returns SHISHI OK iff succesful.

shishi encapreppart ctime

[Function]int shishi_encapreppart_ctime (Shishi * handle , Shishi asn1
encapreppart , char ** t)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart().

t: newly allocated zero-terminated character array with client time.

Extract client time from EncAPRepPart.

Return value: Returns SHISHI OK iff successful.

shishi encapreppart ctime set

[Function]int shishi_encapreppart_ctime_set (Shishi * handle , Shishi asn1
encapreppart , const char * t)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart().

t: string with generalized time value to store in EncAPRepPart.

Store client time in EncAPRepPart.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 91

shishi encapreppart cusec get

[Function]int shishi_encapreppart_cusec_get (Shishi * handle , Shishi asn1
encapreppart , uint32 t * cusec)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
cusec: output integer with client microseconds field.
Extract client microseconds field from EncAPRepPart.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart cusec set

[Function]int shishi_encapreppart_cusec_set (Shishi * handle , Shishi asn1
encapreppart , uint32 t cusec)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
cusec: client microseconds to set in authenticator, 0-999999.
Set the cusec field in the Authenticator.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart seqnumber get

[Function]int shishi_encapreppart_seqnumber_get (Shishi * handle ,
Shishi asn1 encapreppart , uint32 t * seqnumber)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
seqnumber: output integer with sequence number field.
Extract sequence number field from EncAPRepPart.
Return value: Returns SHISHI OK iff successful.

shishi encapreppart seqnumber remove

[Function]int shishi_encapreppart_seqnumber_remove (Shishi * handle ,
Shishi asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().
encapreppart: encapreppart as allocated by shishi_encapreppart().
Remove sequence number field in EncAPRepPart.
Return value: Returns SHISHI_OK iff successful.

shishi encapreppart seqnumber set

[Function]int shishi_encapreppart_seqnumber_set (Shishi * handle ,
Shishi asn1 encapreppart , uint32 t seqnumber)

handle: shishi handle as allocated by shishi_init().
encapreppart: encapreppart as allocated by shishi_encapreppart().

Chapter 5: Programming Manual 92

seqnumber: integer with sequence number field to store in encapreppart.

Store sequence number field in EncAPRepPart.

Return value: Returns SHISHI_OK iff successful.

shishi encapreppart time copy

[Function]int shishi_encapreppart_time_copy (Shishi * handle , Shishi asn1
encapreppart , Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart().

authenticator: Authenticator to copy time fields from.

Copy time fields from Authenticator into EncAPRepPart.

Return value: Returns SHISHI OK iff successful.

5.5 SAFE and PRIV Functions

The “KRB-SAFE” is an ASN.1 structure used by application client and servers to exchange
integrity protected data. The integrity protection is keyed, usually with a key agreed on
via the AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions], page 71). The
following illustrates the KRB-SAFE ASN.1 structure.

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (20),
safe-body [2] KRB-SAFE-BODY,
cksum [3] Checksum

}

KRB-SAFE-BODY ::= SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress,
r-address [5] HostAddress OPTIONAL

}

shishi safe

[Function]int shishi_safe (Shishi * handle , Shishi safe ** safe)
handle: shishi handle as allocated by shishi_init().

safe: pointer to new structure that holds information about SAFE exchange

Create a new SAFE exchange.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 93

shishi safe done

[Function]void shishi_safe_done (Shishi safe * safe)
safe: structure that holds information about SAFE exchange

Deallocate resources associated with SAFE exchange. This should be called by the
application when it no longer need to utilize the SAFE exchange handle.

shishi safe key

[Function]Shishi_key * shishi_safe_key (Shishi safe * safe)
safe: structure that holds information about SAFE exchange

Get key structured from SAFE exchange.

Return value: Returns the key used in the SAFE exchange, or NULL if not yet set
or an error occured.

shishi safe key set

[Function]void shishi_safe_key_set (Shishi safe * safe , Shishi key * key)
safe: structure that holds information about SAFE exchange

key : key to store in SAFE.

Set the Key in the SAFE exchange.

shishi safe safe

[Function]Shishi_asn1 shishi_safe_safe (Shishi safe * safe)
safe: structure that holds information about SAFE exchange

Get ASN.1 SAFE structured from SAFE exchange.

Return value: Returns the ASN.1 safe in the SAFE exchange, or NULL if not yet set
or an error occured.

shishi safe safe set

[Function]void shishi_safe_safe_set (Shishi safe * safe , Shishi asn1
asn1safe)

safe: structure that holds information about SAFE exchange

asn1safe: KRB-SAFE to store in SAFE exchange.

Set the KRB-SAFE in the SAFE exchange.

shishi safe safe der

[Function]int shishi_safe_safe_der (Shishi safe * safe , char ** out , size t *
outlen)

safe: safe as allocated by shishi_safe().

out: output array with newly allocated DER encoding of SAFE.

outlen: length of output array with DER encoding of SAFE.

Chapter 5: Programming Manual 94

DER encode SAFE structure. Typically shishi_safe_build() is used to build the
SAFE structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

shishi safe safe der set

[Function]int shishi_safe_safe_der_set (Shishi safe * safe , char * der ,
size t derlen)

safe: safe as allocated by shishi_safe().
der: input array with DER encoded KRB-SAFE.
derlen: length of input array with DER encoded KRB-SAFE.
DER decode KRB-SAFE and set it SAFE exchange. If decoding fails, the KRB-SAFE
in the SAFE exchange remains.
Return value: Returns SHISHI OK.

shishi safe print

[Function]int shishi_safe_print (Shishi * handle , FILE * fh , Shishi asn1
safe)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
safe: SAFE to print.
Print ASCII armored DER encoding of SAFE to file.
Return value: Returns SHISHI OK iff successful.

shishi safe save

[Function]int shishi_safe_save (Shishi * handle , FILE * fh , Shishi asn1
safe)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
safe: SAFE to save.
Save DER encoding of SAFE to file.
Return value: Returns SHISHI OK iff successful.

shishi safe to file

[Function]int shishi_safe_to_file (Shishi * handle , Shishi asn1 safe , int
filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
safe: SAFE to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write SAFE to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 95

shishi safe parse

[Function]int shishi_safe_parse (Shishi * handle , FILE * fh , Shishi asn1 *
safe)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read ASCII armored DER encoded SAFE from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi safe read

[Function]int shishi_safe_read (Shishi * handle , FILE * fh , Shishi asn1 *
safe)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read DER encoded SAFE from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi safe from file

[Function]int shishi_safe_from_file (Shishi * handle , Shishi asn1 * safe , int
filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

safe: output variable with newly allocated SAFE.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read SAFE from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi safe cksum

[Function]int shishi_safe_cksum (Shishi * handle , Shishi asn1 safe , int32 t *
cksumtype , char ** cksum , size t * cksumlen)

handle: shishi handle as allocated by shishi_init().

safe: safe as allocated by shishi_safe().

cksumtype: output checksum type.

cksum: output array with newly allocated checksum data from SAFE.

cksumlen: output size of output checksum data buffer.

Read checksum value from KRB-SAFE. cksum is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 96

shishi safe set cksum

[Function]int shishi_safe_set_cksum (Shishi * handle , Shishi asn1 safe ,
int32 t cksumtype , const char * cksum , size t cksumlen)

handle: shishi handle as allocated by shishi_init().

safe: safe as allocated by shishi_safe().

cksumtype: input checksum type to store in SAFE.

cksum: input checksum data to store in SAFE.

cksumlen: size of input checksum data to store in SAFE.

Store checksum value in SAFE. A checksum is usually created by calling shishi_
checksum() on some application specific data using the key from the ticket that is
being used. To save time, you may want to use shishi_safe_build() instead, which
calculates the checksum and calls this function in one step.

Return value: Returns SHISHI OK iff successful.

shishi safe user data

[Function]int shishi_safe_user_data (Shishi * handle , Shishi asn1 safe , char
** userdata , size t * userdatalen)

handle: shishi handle as allocated by shishi_init().

safe: safe as allocated by shishi_safe().

userdata: output array with newly allocated user data from KRB-SAFE.

userdatalen: output size of output user data buffer.

Read user data value from KRB-SAFE. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi safe set user data

[Function]int shishi_safe_set_user_data (Shishi * handle , Shishi asn1 safe ,
const char * userdata , size t userdatalen)

handle: shishi handle as allocated by shishi_init().

safe: safe as allocated by shishi_safe().

userdata: input user application to store in SAFE.

userdatalen: size of input user application to store in SAFE.

Set the application data in SAFE.

Return value: Returns SHISHI OK iff successful.

shishi safe build

[Function]int shishi_safe_build (Shishi safe * safe , Shishi key * key)
safe: safe as allocated by shishi_safe().

key : key for session, used to compute checksum.

Chapter 5: Programming Manual 97

Build checksum and set it in KRB-SAFE. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.

Return value: Returns SHISHI OK iff successful.

shishi safe verify

[Function]int shishi_safe_verify (Shishi safe * safe , Shishi key * key)
safe: safe as allocated by shishi_safe().

key : key for session, used to verify checksum.

Verify checksum in KRB-SAFE. Note that this follows RFC 1510bis and is incom-
patible with RFC 1510, although presumably few implementations use the RFC1510
algorithm.

Return value: Returns SHISHI OK iff successful, SHISHI SAFE BAD KEYTYPE
if an incompatible key type is used, or SHISHI SAFE VERIFY FAILED if the actual
verification failed.

The “KRB-PRIV” is an ASN.1 structure used by application client and servers to ex-
change confidential data. The confidentiality is keyed, usually with a key agreed on via the
AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions], page 71). The following
illustrates the KRB-PRIV ASN.1 structure.

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (21),

-- NOTE: there is no [2] tag
enc-part [3] EncryptedData -- EncKrbPrivPart

}

EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress -- sender’s addr --,
r-address [5] HostAddress OPTIONAL -- recip’s addr

}

shishi priv

[Function]int shishi_priv (Shishi * handle , Shishi priv ** priv)
handle: shishi handle as allocated by shishi_init().

priv : pointer to new structure that holds information about PRIV exchange

Create a new PRIV exchange.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 98

shishi priv done

[Function]void shishi_priv_done (Shishi priv * priv)
priv : structure that holds information about PRIV exchange

Deallocate resources associated with PRIV exchange. This should be called by the
application when it no longer need to utilize the PRIV exchange handle.

shishi priv key

[Function]Shishi_key * shishi_priv_key (Shishi priv * priv)
priv : structure that holds information about PRIV exchange

Get key from PRIV exchange.

Return value: Returns the key used in the PRIV exchange, or NULL if not yet set
or an error occured.

shishi priv key set

[Function]void shishi_priv_key_set (Shishi priv * priv , Shishi key * key)
priv : structure that holds information about PRIV exchange

key : key to store in PRIV.

Set the Key in the PRIV exchange.

shishi priv priv

[Function]Shishi_asn1 shishi_priv_priv (Shishi priv * priv)
priv : structure that holds information about PRIV exchange

Get ASN.1 PRIV structure in PRIV exchange.

Return value: Returns the ASN.1 priv in the PRIV exchange, or NULL if not yet set
or an error occured.

shishi priv priv set

[Function]void shishi_priv_priv_set (Shishi priv * priv , Shishi asn1
asn1priv)

priv : structure that holds information about PRIV exchange

asn1priv : KRB-PRIV to store in PRIV exchange.

Set the KRB-PRIV in the PRIV exchange.

shishi priv priv der

[Function]int shishi_priv_priv_der (Shishi priv * priv , char ** out , size t *
outlen)

priv : priv as allocated by shishi_priv().

out: output array with newly allocated DER encoding of PRIV.

outlen: length of output array with DER encoding of PRIV.

Chapter 5: Programming Manual 99

DER encode PRIV structure. Typically shishi_priv_build() is used to build the
PRIV structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi priv priv der set

[Function]int shishi_priv_priv_der_set (Shishi priv * priv , char * der ,
size t derlen)

priv : priv as allocated by shishi_priv().

der: input array with DER encoded KRB-PRIV.

derlen: length of input array with DER encoded KRB-PRIV.

DER decode KRB-PRIV and set it PRIV exchange. If decoding fails, the KRB-PRIV
in the PRIV exchange remains.

Return value: Returns SHISHI OK.

shishi priv encprivpart

[Function]Shishi_asn1 shishi_priv_encprivpart (Shishi priv * priv)
priv : structure that holds information about PRIV exchange

Get ASN.1 EncPrivPart structure from PRIV exchange.

Return value: Returns the ASN.1 encprivpart in the PRIV exchange, or NULL if not
yet set or an error occured.

shishi priv encprivpart set

[Function]void shishi_priv_encprivpart_set (Shishi priv * priv , Shishi asn1
asn1encprivpart)

priv : structure that holds information about PRIV exchange

asn1encprivpart: ENCPRIVPART to store in PRIV exchange.

Set the ENCPRIVPART in the PRIV exchange.

shishi priv encprivpart der

[Function]int shishi_priv_encprivpart_der (Shishi priv * priv , char ** out ,
size t * outlen)

priv : priv as allocated by shishi_priv().

out: output array with newly allocated DER encoding of ENCPRIVPART.

outlen: length of output array with DER encoding of ENCPRIVPART.

DER encode ENCPRIVPART structure. Typically shishi_encprivpart_build() is
used to build the ENCPRIVPART structure first. out is allocated by this function,
and it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 100

shishi priv encprivpart der set

[Function]int shishi_priv_encprivpart_der_set (Shishi priv * priv , char *
der , size t derlen)

priv : priv as allocated by shishi_priv().

der: input array with DER encoded ENCPRIVPART.

derlen: length of input array with DER encoded ENCPRIVPART.

DER decode ENCPRIVPART and set it PRIV exchange. If decoding fails, the
ENCPRIVPART in the PRIV exchange remains.

Return value: Returns SHISHI OK.

shishi priv print

[Function]int shishi_priv_print (Shishi * handle , FILE * fh , Shishi asn1
priv)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

priv : PRIV to print.

Print ASCII armored DER encoding of PRIV to file.

Return value: Returns SHISHI OK iff successful.

shishi priv save

[Function]int shishi_priv_save (Shishi * handle , FILE * fh , Shishi asn1
priv)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

priv : PRIV to save.

Save DER encoding of PRIV to file.

Return value: Returns SHISHI OK iff successful.

shishi priv to file

[Function]int shishi_priv_to_file (Shishi * handle , Shishi asn1 priv , int
filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

priv : PRIV to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write PRIV to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 101

shishi priv parse

[Function]int shishi_priv_parse (Shishi * handle , FILE * fh , Shishi asn1 *
priv)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

priv : output variable with newly allocated PRIV.

Read ASCII armored DER encoded PRIV from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi priv read

[Function]int shishi_priv_read (Shishi * handle , FILE * fh , Shishi asn1 *
priv)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

priv : output variable with newly allocated PRIV.

Read DER encoded PRIV from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi priv from file

[Function]int shishi_priv_from_file (Shishi * handle , Shishi asn1 * priv , int
filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

priv : output variable with newly allocated PRIV.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read PRIV from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi priv enc part etype

[Function]int shishi_priv_enc_part_etype (Shishi * handle , Shishi asn1
priv , int32 t * etype)

handle: shishi handle as allocated by shishi_init().

priv : PRIV variable to get value from.

etype: output variable that holds the value.

Extract PRIV.enc-part.etype.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 102

shishi priv set enc part

[Function]int shishi_priv_set_enc_part (Shishi * handle , Shishi asn1 priv ,
int32 t etype , const char * encpart , size t encpartlen)

handle: shishi handle as allocated by shishi_init().

priv : priv as allocated by shishi_priv().

etype: input encryption type to store in PRIV.

encpart: input encrypted data to store in PRIV.

encpartlen: size of input encrypted data to store in PRIV.

Store encrypted data in PRIV. The encrypted data is usually created by calling
shishi_encrypt() on some application specific data using the key from the ticket
that is being used. To save time, you may want to use shishi_priv_build() instead,
which encryptes the data and calls this function in one step.

Return value: Returns SHISHI OK iff successful.

shishi encprivpart user data

[Function]int shishi_encprivpart_user_data (Shishi * handle , Shishi asn1
encprivpart , char ** userdata , size t * userdatalen)

handle: shishi handle as allocated by shishi_init().

encprivpart: encprivpart as allocated by shishi_priv().

userdata: output array with newly allocated user data from KRB-PRIV.

userdatalen: output size of output user data buffer.

Read user data value from KRB-PRIV. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi encprivpart set user data

[Function]int shishi_encprivpart_set_user_data (Shishi * handle ,
Shishi asn1 encprivpart , const char * userdata , size t userdatalen)

handle: shishi handle as allocated by shishi_init().

encprivpart: encprivpart as allocated by shishi_priv().

userdata: input user application to store in PRIV.

userdatalen: size of input user application to store in PRIV.

Set the application data in PRIV.

Return value: Returns SHISHI OK iff successful.

shishi priv build

[Function]int shishi_priv_build (Shishi priv * priv , Shishi key * key)
priv : priv as allocated by shishi_priv().

key : key for session, used to encrypt data.

Chapter 5: Programming Manual 103

Build checksum and set it in KRB-PRIV. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.

Return value: Returns SHISHI OK iff successful.

shishi priv process

[Function]int shishi_priv_process (Shishi priv * priv , Shishi key * key)
priv : priv as allocated by shishi_priv().

key : key to use to decrypt EncPrivPart.

Decrypt encrypted data in KRB-PRIV and set the EncPrivPart in the PRIV ex-
change.

Return value: Returns SHISHI OK iff successful, SHISHI PRIV BAD KEYTYPE
if an incompatible key type is used, or SHISHI CRYPTO ERROR if the actual de-
cryption failed.

5.6 Ticket Functions

A Ticket is an ASN.1 structured that can be used to authenticate the holder to services. It
contain an encrypted part, which the ticket holder cannot see, but can be encrypted by the
service, and various information about the user and service, including an encryption key
to use for the connection. See Section 5.9 [Ticket (ASN.1) Functions], page 125, for more
details on the ASN.1 structure of a ticket.

shishi tkt

[Function]int shishi_tkt (Shishi * handle , Shishi tkt ** tkt)
handle: shishi handle as allocated by shishi_init().

tkt: output variable with newly allocated ticket.

Create a new ticket handle.

Return value: Returns SHISHI OK iff successful.

shishi tkt2

[Function]Shishi_tkt * shishi_tkt2 (Shishi * handle , Shishi asn1 ticket ,
Shishi asn1 enckdcreppart , Shishi asn1 kdcrep)

handle: shishi handle as allocated by shishi_init().

ticket: input variable with ticket.

enckdcreppart: input variable with auxilliary ticket information.

kdcrep: input variable with KDC-REP ticket information.

Create a new ticket handle.

Return value: Returns new ticket handle, or NULL on error.

Chapter 5: Programming Manual 104

shishi tkt done

[Function]void shishi_tkt_done (Shishi tkt * tkt)
tkt: input variable with ticket info.
Deallocate resources associated with ticket. The ticket must not be used again after
this call.

shishi tkt ticket

[Function]Shishi_asn1 shishi_tkt_ticket (Shishi tkt * tkt)
tkt: input variable with ticket info.
Get ASN.1 Ticket structure from ticket.
Return value: Returns actual ticket.

shishi tkt ticket set

[Function]void shishi_tkt_ticket_set (Shishi tkt * tkt , Shishi asn1 ticket)
tkt: input variable with ticket info.
ticket: ASN.1 Ticket to store in ticket.
Set the ASN.1 Ticket in the Ticket.

shishi tkt enckdcreppart

[Function]Shishi_asn1 shishi_tkt_enckdcreppart (Shishi tkt * tkt)
tkt: input variable with ticket info.
Get ASN.1 EncKDCRepPart structure from ticket.
Return value: Returns auxilliary ticket information.

shishi tkt enckdcreppart set

[Function]void shishi_tkt_enckdcreppart_set (Shishi tkt * tkt , Shishi asn1
enckdcreppart)

tkt: structure that holds information about Ticket exchange
enckdcreppart: EncKDCRepPart to store in Ticket.
Set the EncKDCRepPart in the Ticket.

shishi tkt kdcrep

[Function]Shishi_asn1 shishi_tkt_kdcrep (Shishi tkt * tkt)
tkt: input variable with ticket info.
Get ASN.1 KDCRep structure from ticket.
Return value: Returns KDC-REP information.

shishi tkt encticketpart

[Function]Shishi_asn1 shishi_tkt_encticketpart (Shishi tkt * tkt)
tkt: input variable with ticket info.
Get ASN.1 EncTicketPart structure from ticket.
Return value: Returns EncTicketPart information.

Chapter 5: Programming Manual 105

shishi tkt encticketpart set

[Function]void shishi_tkt_encticketpart_set (Shishi tkt * tkt , Shishi asn1
encticketpart)

tkt: input variable with ticket info.
encticketpart: encticketpart to store in ticket.
Set the EncTicketPart in the Ticket.

shishi tkt key

[Function]Shishi_key * shishi_tkt_key (Shishi tkt * tkt)
tkt: input variable with ticket info.
Get key used in ticket, by looking first in EncKDCRepPart and then in EncTicketPart.
If key is already populated, it is not extracted again.
Return value: Returns key extracted from EncKDCRepPart or EncTicketPart.

shishi tkt key set

[Function]int shishi_tkt_key_set (Shishi tkt * tkt , Shishi key * key)
tkt: input variable with ticket info.
key : key to store in ticket.
Set the key in the EncTicketPart.
Return value: Returns SHISHI OK iff successful.

shishi tkt client

[Function]int shishi_tkt_client (Shishi tkt * tkt , char ** client , size t *
clientlen)

tkt: input variable with ticket info.
client: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Represent client principal name in Ticket KDC-REP as zero-terminated string. The
string is allocate by this function, and it is the responsibility of the caller to deallocate
it. Note that the output length clientlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

shishi tkt client p

[Function]int shishi_tkt_client_p (Shishi tkt * tkt , const char * client)
tkt: input variable with ticket info.
client: client name of ticket.
Determine if ticket is for specified client.
Return value: Returns non-0 iff ticket is for specified client.

Chapter 5: Programming Manual 106

shishi tkt clientrealm

[Function]int shishi_tkt_clientrealm (Shishi tkt * tkt , char ** client ,
size t * clientlen)

tkt: input variable with ticket info.
client: pointer to newly allocated zero terminated string containing principal name
and realm. May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Convert cname and realm fields from AS-REQ to printable principal name format.
The string is allocate by this function, and it is the responsibility of the caller to
deallocate it. Note that the output length clientlen does not include the terminating
zero.
Return value: Returns SHISHI OK iff successful.

shishi tkt clientrealm p

[Function]int shishi_tkt_clientrealm_p (Shishi tkt * tkt , const char *
client)

tkt: input variable with ticket info.
client: principal name (client name and realm) of ticket.
Determine if ticket is for specified client principal.
Return value: Returns non-0 iff ticket is for specified client principal.

shishi tkt realm

[Function]int shishi_tkt_realm (Shishi tkt * tkt , char ** realm , size t *
realmlen)

tkt: input variable with ticket info.
realm: pointer to newly allocated character array with realm name.
realmlen: length of newly allocated character array with realm name.
Extract realm of server in ticket.
Return value: Returns SHISHI OK iff successful.

shishi tkt server

[Function]int shishi_tkt_server (Shishi tkt * tkt , char ** server , size t *
serverlen)

tkt: input variable with ticket info.
server: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate serverlen).
serverlen: pointer to length of server on output, excluding terminating zero. May
be NULL (to only populate server).
Represent server principal name in Ticket as zero-terminated string. The string is
allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length serverlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 107

shishi tkt server p

[Function]int shishi_tkt_server_p (Shishi tkt * tkt , const char * server)
tkt: input variable with ticket info.
server: server name of ticket.
Determine if ticket is for specified server.
Return value: Returns non-0 iff ticket is for specified server.

shishi tkt flags

[Function]int shishi_tkt_flags (Shishi tkt * tkt , uint32 t * flags)
tkt: input variable with ticket info.
flags: pointer to output integer with flags.
Extract flags in ticket (i.e., EncKDCRepPart).
Return value: Returns SHISHI OK iff successful.

shishi tkt flags set

[Function]int shishi_tkt_flags_set (Shishi tkt * tkt , uint32 t flags)
tkt: input variable with ticket info.
flags: integer with flags to store in ticket.
Set flags in ticket, i.e., both EncTicketPart and EncKDCRepPart. Note that this
reset any already existing flags.
Return value: Returns SHISHI OK iff successful.

shishi tkt flags add

[Function]int shishi_tkt_flags_add (Shishi tkt * tkt , uint32 t flag)
tkt: input variable with ticket info.
flag : integer with flags to store in ticket.
Add ticket flags to Ticket and EncKDCRepPart. This preserves all existing options.
Return value: Returns SHISHI OK iff successful.

shishi tkt forwardable p

[Function]int shishi_tkt_forwardable_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is forwardable.
The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-
granting service. It can be ignored by application servers. The FORWARDABLE flag
has an interpretation similar to that of the PROXIABLE flag, except ticket-granting
tickets may also be issued with different network addresses. This flag is reset by
default, but users MAY request that it be set by setting the FORWARDABLE option
in the AS request when they request their initial ticket-granting ticket.
Return value: Returns non-0 iff forwardable flag is set in ticket.

Chapter 5: Programming Manual 108

shishi tkt forwarded p

[Function]int shishi_tkt_forwarded_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is forwarded.
The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FOR-
WARDED KDC option and supplying a set of addresses for the new ticket. It is
also set in all tickets issued based on tickets with the FORWARDED flag set. Ap-
plication servers may choose to process FORWARDED tickets differently than non-
FORWARDED tickets.
Return value: Returns non-0 iff forwarded flag is set in ticket.

shishi tkt proxiable p

[Function]int shishi_tkt_proxiable_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is proxiable.
The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket)
with a different network address based on this ticket. This flag is set if requested by
the client on initial authentication. By default, the client will request that it be set
when requesting a ticket-granting ticket, and reset when requesting any other ticket.
Return value: Returns non-0 iff proxiable flag is set in ticket.

shishi tkt proxy p

[Function]int shishi_tkt_proxy_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is proxy ticket.
The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Appli-
cation servers MAY check this flag and at their option they MAY require additional
authentication from the agent presenting the proxy in order to provide an audit trail.
Return value: Returns non-0 iff proxy flag is set in ticket.

shishi tkt may postdate p

[Function]int shishi_tkt_may_postdate_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket may be used to grant postdated tickets.
The MAY-POSTDATE flag in a ticket is normally only interpreted by the ticket-
granting service. It can be ignored by application servers. This flag MUST be set
in a ticket-granting ticket in order to issue a postdated ticket based on the presented
ticket. It is reset by default; it MAY be requested by a client by setting the ALLOW-
POSTDATE option in the KRB AS REQ message. This flag does not allow a client

Chapter 5: Programming Manual 109

to obtain a postdated ticket-granting ticket; postdated ticket-granting tickets can
only by obtained by requesting the postdating in the KRB AS REQ message. The
life (endtime-starttime) of a postdated ticket will be the remaining life of the ticket-
granting ticket at the time of the request, unless the RENEWABLE option is also set,
in which case it can be the full life (endtime-starttime) of the ticket-granting ticket.
The KDC MAY limit how far in the future a ticket may be postdated.

Return value: Returns non-0 iff may-postdate flag is set in ticket.

shishi tkt postdated p

[Function]int shishi_tkt_postdated_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is postdated.

The POSTDATED flag indicates that a ticket has been postdated. The application
server can check the authtime field in the ticket to see when the original authentication
occurred. Some services MAY choose to reject postdated tickets, or they may only
accept them within a certain period after the original authentication. When the
KDC issues a POSTDATED ticket, it will also be marked as INVALID, so that the
application client MUST present the ticket to the KDC to be validated before use.

Return value: Returns non-0 iff postdated flag is set in ticket.

shishi tkt invalid p

[Function]int shishi_tkt_invalid_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is invalid.

The INVALID flag indicates that a ticket is invalid. Application servers MUST reject
tickets which have this flag set. A postdated ticket will be issued in this form. Invalid
tickets MUST be validated by the KDC before use, by presenting them to the KDC
in a TGS request with the VALIDATE option specified. The KDC will only validate
tickets after their starttime has passed. The validation is required so that postdated
tickets which have been stolen before their starttime can be rendered permanently
invalid (through a hot-list mechanism).

Return value: Returns non-0 iff invalid flag is set in ticket.

shishi tkt renewable p

[Function]int shishi_tkt_renewable_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is renewable.

The RENEWABLE flag in a ticket is normally only interpreted by the ticket-granting
service (discussed below in section 3.3). It can usually be ignored by application
servers. However, some particularly careful application servers MAY disallow renew-
able tickets.

Return value: Returns non-0 iff renewable flag is set in ticket.

Chapter 5: Programming Manual 110

shishi tkt initial p

[Function]int shishi_tkt_initial_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket was issued using AS exchange.
The INITIAL flag indicates that a ticket was issued using the AS protocol, rather than
issued based on a ticket-granting ticket. Application servers that want to require the
demonstrated knowledge of a client’s secret key (e.g. a password-changing program)
can insist that this flag be set in any tickets they accept, and thus be assured that
the client’s key was recently presented to the application client.
Return value: Returns non-0 iff initial flag is set in ticket.

shishi tkt pre authent p

[Function]int shishi_tkt_pre_authent_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket was pre-authenticated.
The PRE-AUTHENT and HW-AUTHENT flags provide additional information
about the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).
Return value: Returns non-0 iff pre-authent flag is set in ticket.

shishi tkt hw authent p

[Function]int shishi_tkt_hw_authent_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is authenticated using a hardware token.
The PRE-AUTHENT and HW-AUTHENT flags provide additional information
about the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).
Return value: Returns non-0 iff hw-authent flag is set in ticket.

shishi tkt transited policy checked p

[Function]int shishi_tkt_transited_policy_checked_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket has been policy checked for transit.
The application server is ultimately responsible for accepting or rejecting authen-
tication and SHOULD check that only suitably trusted KDCs are relied upon to
authenticate a principal. The transited field in the ticket identifies which realms (and

Chapter 5: Programming Manual 111

thus which KDCs) were involved in the authentication process and an application
server would normally check this field. If any of these are untrusted to authenticate
the indicated client principal (probably determined by a realm-based policy), the au-
thentication attempt MUST be rejected. The presence of trusted KDCs in this list
does not provide any guarantee; an untrusted KDC may have fabricated the list.
While the end server ultimately decides whether authentication is valid, the KDC for
the end server’s realm MAY apply a realm specific policy for validating the transited
field and accepting credentials for cross-realm authentication. When the KDC applies
such checks and accepts such cross-realm authentication it will set the TRANSITED-
POLICY-CHECKED flag in the service tickets it issues based on the cross-realm
TGT. A client MAY request that the KDCs not check the transited field by setting
the DISABLE-TRANSITED-CHECK flag. KDCs are encouraged but not required
to honor this flag.
Application servers MUST either do the transited-realm checks themselves, or reject
cross-realm tickets without TRANSITED-POLICY- CHECKED set.
Return value: Returns non-0 iff transited-policy-checked flag is set in ticket.

shishi tkt ok as delegate p

[Function]int shishi_tkt_ok_as_delegate_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is ok as delegated ticket.
The copy of the ticket flags in the encrypted part of the KDC reply may have the
OK-AS-DELEGATE flag set to indicates to the client that the server specified in
the ticket has been determined by policy of the realm to be a suitable recipient of
delegation. A client can use the presence of this flag to help it make a decision whether
to delegate credentials (either grant a proxy or a forwarded ticket- granting ticket)
to this server. It is acceptable to ignore the value of this flag. When setting this
flag, an administrator should consider the security and placement of the server on
which the service will run, as well as whether the service requires the use of delegated
credentials.
Return value: Returns non-0 iff ok-as-delegate flag is set in ticket.

shishi tkt keytype

[Function]int shishi_tkt_keytype (Shishi tkt * tkt , int32 t * etype)
tkt: input variable with ticket info.
etype: pointer to encryption type that is set, see Shishi etype.
Extract encryption type of key in ticket (really EncKDCRepPart).
Return value: Returns SHISHI OK iff successful.

shishi tkt keytype fast

[Function]int32_t shishi_tkt_keytype_fast (Shishi tkt * tkt)
tkt: input variable with ticket info.
Extract encryption type of key in ticket (really EncKDCRepPart).

Chapter 5: Programming Manual 112

Return value: Returns encryption type of session key in ticket (really EncKDCRep-
Part), or -1 on error.

shishi tkt keytype p

[Function]int shishi_tkt_keytype_p (Shishi tkt * tkt , int32 t etype)
tkt: input variable with ticket info.

etype: encryption type, see Shishi etype.

Determine if key in ticket (really EncKDCRepPart) is of specified key type (really
encryption type).

Return value: Returns non-0 iff key in ticket is of specified encryption type.

shishi tkt lastreqc

[Function]time_t shishi_tkt_lastreqc (Shishi tkt * tkt , Shishi lrtype
lrtype)

tkt: input variable with ticket info.

lrtype: lastreq type to extract, see Shishi lrtype. E.g., SHISHI LRTYPE LAST REQUEST.

Extract C time corresponding to given lastreq type field in the ticket.

Return value: Returns C time interpretation of the specified lastreq field, or (time t)
-1.

shishi tkt authctime

[Function]time_t shishi_tkt_authctime (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract C time corresponding to the authtime field. The field holds the time when
the original authentication took place that later resulted in this ticket.

Return value: Returns C time interpretation of the endtime in ticket.

shishi tkt startctime

[Function]time_t shishi_tkt_startctime (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract C time corresponding to the starttime field. The field holds the time where
the ticket start to be valid (typically in the past).

Return value: Returns C time interpretation of the endtime in ticket.

shishi tkt endctime

[Function]time_t shishi_tkt_endctime (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract C time corresponding to the endtime field. The field holds the time where
the ticket stop being valid.

Return value: Returns C time interpretation of the endtime in ticket.

Chapter 5: Programming Manual 113

shishi tkt renew tillc

[Function]time_t shishi_tkt_renew_tillc (Shishi tkt * tkt)
tkt: input variable with ticket info.
Extract C time corresponding to the renew-till field. The field holds the time where
the ticket stop being valid for renewal.
Return value: Returns C time interpretation of the renew-till in ticket.

shishi tkt valid at time p

[Function]int shishi_tkt_valid_at_time_p (Shishi tkt * tkt , time t now)
tkt: input variable with ticket info.
now : time to check for.
Determine if ticket is valid at a specific point in time.
Return value: Returns non-0 iff ticket is valid (not expired and after starttime) at
specified time.

shishi tkt valid now p

[Function]int shishi_tkt_valid_now_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is valid now.
Return value: Returns 0 iff ticket is invalid (expired or not yet valid).

shishi tkt expired p

[Function]int shishi_tkt_expired_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket has expired (i.e., endtime is in the past).
Return value: Returns 0 iff ticket has expired.

shishi tkt lastreq pretty print

[Function]void shishi_tkt_lastreq_pretty_print (Shishi tkt * tkt , FILE *
fh)

tkt: input variable with ticket info.
fh: file handle open for writing.
Print a human readable representation of the various lastreq fields in the ticket (really
EncKDCRepPart).

shishi tkt pretty print

[Function]void shishi_tkt_pretty_print (Shishi tkt * tkt , FILE * fh)
tkt: input variable with ticket info.
fh: file handle open for writing.
Print a human readable representation of a ticket to file handle.

Chapter 5: Programming Manual 114

5.7 AS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The following illustrates the AS-REQ and AS-REP ASN.1 structures.

-- Request --

AS-REQ ::= KDC-REQ {10}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey
| keyuse-TGSReqAuthData-subkey }

} OPTIONAL,
additional-tickets [11] SEQUENCE OF Ticket OPTIONAL

}

-- Reply --

AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),

Chapter 5: Programming Manual 115

padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncASRepPart ::= [APPLICATION 25] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

shishi as

[Function]int shishi_as (Shishi * handle , Shishi as ** as)
handle: shishi handle as allocated by shishi_init().

as: holds pointer to newly allocate Shishi as structure.

Allocate a new AS exchange variable.

Return value: Returns SHISHI OK iff successful.

shishi as done

[Function]void shishi_as_done (Shishi as * as)
as: structure that holds information about AS exchange

Deallocate resources associated with AS exchange. This should be called by the
application when it no longer need to utilize the AS exchange handle.

shishi as req

[Function]Shishi_asn1 shishi_as_req (Shishi as * as)
as: structure that holds information about AS exchange

Get ASN.1 AS-REQ structure from AS exchange.

Return value: Returns the generated AS-REQ packet from the AS exchange, or NULL
if not yet set or an error occured.

Chapter 5: Programming Manual 116

shishi as req build

[Function]int shishi_as_req_build (Shishi as * as)
as: structure that holds information about AS exchange

Possibly remove unset fields (e.g., rtime).

Return value: Returns SHISHI OK iff successful.

shishi as req set

[Function]void shishi_as_req_set (Shishi as * as , Shishi asn1 asreq)
as: structure that holds information about AS exchange

asreq: asreq to store in AS.

Set the AS-REQ in the AS exchange.

shishi as req der

[Function]int shishi_as_req_der (Shishi as * as , char ** out , size t * outlen)
as: structure that holds information about AS exchange

out: output array with newly allocated DER encoding of AS-REQ.

outlen: length of output array with DER encoding of AS-REQ.

DER encode AS-REQ. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi as req der set

[Function]int shishi_as_req_der_set (Shishi as * as , char * der , size t
derlen)

as: structure that holds information about AS exchange

der: input array with DER encoded AP-REQ.

derlen: length of input array with DER encoded AP-REQ.

DER decode AS-REQ and set it AS exchange. If decoding fails, the AS-REQ in the
AS exchange remains.

Return value: Returns SHISHI OK.

shishi as rep

[Function]Shishi_asn1 shishi_as_rep (Shishi as * as)
as: structure that holds information about AS exchange

Get ASN.1 AS-REP structure from AS exchange.

Return value: Returns the received AS-REP packet from the AS exchange, or NULL
if not yet set or an error occured.

Chapter 5: Programming Manual 117

shishi as rep process

[Function]int shishi_as_rep_process (Shishi as * as , Shishi key * key , const
char * password)

as: structure that holds information about AS exchange
key : user’s key, used to encrypt the encrypted part of the AS-REP.
password: user’s password, used if key is NULL.
Process new AS-REP and set ticket. The key is used to decrypt the AP-REP. If both
key and password is NULL, the user is queried for it.
Return value: Returns SHISHI OK iff successful.

shishi as rep build

[Function]int shishi_as_rep_build (Shishi as * as , Shishi key * key)
as: structure that holds information about AS exchange
key : user’s key, used to encrypt the encrypted part of the AS-REP.
Build AS-REP.
Return value: Returns SHISHI OK iff successful.

shishi as rep der

[Function]int shishi_as_rep_der (Shishi as * as , char ** out , size t * outlen)
as: structure that holds information about AS exchange
out: output array with newly allocated DER encoding of AS-REP.
outlen: length of output array with DER encoding of AS-REP.
DER encode AS-REP. out is allocated by this function, and it is the responsibility of
caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

shishi as rep set

[Function]void shishi_as_rep_set (Shishi as * as , Shishi asn1 asrep)
as: structure that holds information about AS exchange
asrep: asrep to store in AS.
Set the AS-REP in the AS exchange.

shishi as rep der set

[Function]int shishi_as_rep_der_set (Shishi as * as , char * der , size t
derlen)

as: structure that holds information about AS exchange
der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.
DER decode AS-REP and set it AS exchange. If decoding fails, the AS-REP in the
AS exchange remains.
Return value: Returns SHISHI OK.

Chapter 5: Programming Manual 118

shishi as krberror

[Function]Shishi_asn1 shishi_as_krberror (Shishi as * as)
as: structure that holds information about AS exchange

Get ASN.1 KRB-ERROR structure from AS exchange.

Return value: Returns the received KRB-ERROR packet from the AS exchange, or
NULL if not yet set or an error occured.

shishi as krberror der

[Function]int shishi_as_krberror_der (Shishi as * as , char ** out , size t *
outlen)

as: structure that holds information about AS exchange

out: output array with newly allocated DER encoding of KRB-ERROR.

outlen: length of output array with DER encoding of KRB-ERROR.

DER encode KRB-ERROR. out is allocated by this function, and it is the responsi-
bility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi as krberror set

[Function]void shishi_as_krberror_set (Shishi as * as , Shishi asn1
krberror)

as: structure that holds information about AS exchange

krberror: krberror to store in AS.

Set the KRB-ERROR in the AS exchange.

shishi as tkt

[Function]Shishi_tkt * shishi_as_tkt (Shishi as * as)
as: structure that holds information about AS exchange

Get Ticket in AS exchange.

Return value: Returns the newly aquired tkt from the AS exchange, or NULL if not
yet set or an error occured.

shishi as tkt set

[Function]void shishi_as_tkt_set (Shishi as * as , Shishi tkt * tkt)
as: structure that holds information about AS exchange

tkt: tkt to store in AS.

Set the Tkt in the AS exchange.

Chapter 5: Programming Manual 119

shishi as sendrecv hint

[Function]int shishi_as_sendrecv_hint (Shishi as * as , Shishi tkts hint *
hint)

as: structure that holds information about AS exchange
hint: additional parameters that modify connection behaviour, or NULL.
Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentica-
tion, usually used to acquire a Ticket Granting Ticket. The hint structure can be
used to set, e.g., parameters for TLS authentication.
Return value: Returns SHISHI OK iff successful.

shishi as sendrecv

[Function]int shishi_as_sendrecv (Shishi as * as)
as: structure that holds information about AS exchange
Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentica-
tion, usually used to acquire a Ticket Granting Ticket.
Return value: Returns SHISHI OK iff successful.

5.8 TGS Functions

The Ticket Granting Service (TGS) is used to get subsequent tickets, authenticated by
other tickets (so called ticket granting tickets). The following illustrates the TGS-REQ and
TGS-REP ASN.1 structures.
-- Request --

TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,

Chapter 5: Programming Manual 120

etype [8] SEQUENCE OF Int32 -- EncryptionType
-- in preference order --,

addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey
| keyuse-TGSReqAuthData-subkey }

} OPTIONAL,
additional-tickets [11] SEQUENCE OF Ticket OPTIONAL

}

-- Reply --

TGS-REP ::= KDC-REP {13, EncTGSRepPart,
{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

Chapter 5: Programming Manual 121

shishi tgs

[Function]int shishi_tgs (Shishi * handle , Shishi tgs ** tgs)
handle: shishi handle as allocated by shishi_init().

tgs: holds pointer to newly allocate Shishi tgs structure.

Allocate a new TGS exchange variable.

Return value: Returns SHISHI OK iff successful.

shishi tgs done

[Function]void shishi_tgs_done (Shishi tgs * tgs)
tgs: structure that holds information about AS exchange

Deallocate resources associated with TGS exchange. This should be called by the
application when it no longer need to utilize the TGS exchange handle.

shishi tgs tgtkt

[Function]Shishi_tkt * shishi_tgs_tgtkt (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Get Ticket-granting-ticket from TGS exchange.

Return value: Returns the ticket-granting-ticket used in the TGS exchange, or NULL
if not yet set or an error occured.

shishi tgs tgtkt set

[Function]void shishi_tgs_tgtkt_set (Shishi tgs * tgs , Shishi tkt * tgtkt)
tgs: structure that holds information about TGS exchange

tgtkt: ticket granting ticket to store in TGS.

Set the Ticket in the TGS exchange.

shishi tgs ap

[Function]Shishi_ap * shishi_tgs_ap (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Get the AP from TGS exchange.

Return value: Returns the AP exchange (part of TGS-REQ) from the TGS exchange,
or NULL if not yet set or an error occured.

shishi tgs req

[Function]Shishi_asn1 shishi_tgs_req (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Get the TGS-REQ from TGS exchange.

Return value: Returns the generated TGS-REQ from the TGS exchange, or NULL
if not yet set or an error occured.

Chapter 5: Programming Manual 122

shishi tgs req set

[Function]void shishi_tgs_req_set (Shishi tgs * tgs , Shishi asn1 tgsreq)
tgs: structure that holds information about TGS exchange

tgsreq: tgsreq to store in TGS.

Set the TGS-REQ in the TGS exchange.

shishi tgs req der

[Function]int shishi_tgs_req_der (Shishi tgs * tgs , char ** out , size t *
outlen)

tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of TGS-REQ.

outlen: length of output array with DER encoding of TGS-REQ.

DER encode TGS-REQ. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi tgs req der set

[Function]int shishi_tgs_req_der_set (Shishi tgs * tgs , char * der , size t
derlen)

tgs: structure that holds information about TGS exchange

der: input array with DER encoded AP-REQ.

derlen: length of input array with DER encoded AP-REQ.

DER decode TGS-REQ and set it TGS exchange. If decoding fails, the TGS-REQ in
the TGS exchange remains.

Return value: Returns SHISHI OK.

shishi tgs req process

[Function]int shishi_tgs_req_process (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Process new TGS-REQ and set ticket. The key to decrypt the TGS-REQ is taken
from the EncKDCReqPart of the TGS tgticket.

Return value: Returns SHISHI OK iff successful.

shishi tgs req build

[Function]int shishi_tgs_req_build (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Checksum data in authenticator and add ticket and authenticator to TGS-REQ.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 123

shishi tgs rep

[Function]Shishi_asn1 shishi_tgs_rep (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Get TGS-REP from TGS exchange.

Return value: Returns the received TGS-REP from the TGS exchange, or NULL if
not yet set or an error occured.

shishi tgs rep der

[Function]int shishi_tgs_rep_der (Shishi tgs * tgs , char ** out , size t *
outlen)

tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of TGS-REP.

outlen: length of output array with DER encoding of TGS-REP.

DER encode TGS-REP. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi tgs rep process

[Function]int shishi_tgs_rep_process (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Process new TGS-REP and set ticket. The key to decrypt the TGS-REP is taken
from the EncKDCRepPart of the TGS tgticket.

Return value: Returns SHISHI OK iff successful.

shishi tgs rep build

[Function]int shishi_tgs_rep_build (Shishi tgs * tgs , int keyusage ,
Shishi key * key)

tgs: structure that holds information about TGS exchange

keyusage: keyusage integer.

key : user’s key, used to encrypt the encrypted part of the TGS-REP.

Build TGS-REP.

Return value: Returns SHISHI OK iff successful.

shishi tgs krberror

[Function]Shishi_asn1 shishi_tgs_krberror (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Get KRB-ERROR from TGS exchange.

Return value: Returns the received TGS-REP from the TGS exchange, or NULL if
not yet set or an error occured.

Chapter 5: Programming Manual 124

shishi tgs krberror der

[Function]int shishi_tgs_krberror_der (Shishi tgs * tgs , char ** out , size t *
outlen)

tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of KRB-ERROR.

outlen: length of output array with DER encoding of KRB-ERROR.

DER encode KRB-ERROR. out is allocated by this function, and it is the responsi-
bility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

shishi tgs krberror set

[Function]void shishi_tgs_krberror_set (Shishi tgs * tgs , Shishi asn1
krberror)

tgs: structure that holds information about TGS exchange

krberror: krberror to store in TGS.

Set the KRB-ERROR in the TGS exchange.

shishi tgs tkt

[Function]Shishi_tkt * shishi_tgs_tkt (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Get Ticket from TGS exchange.

Return value: Returns the newly aquired ticket from the TGS exchange, or NULL if
not yet set or an error occured.

shishi tgs tkt set

[Function]void shishi_tgs_tkt_set (Shishi tgs * tgs , Shishi tkt * tkt)
tgs: structure that holds information about TGS exchange

tkt: ticket to store in TGS.

Set the Ticket in the TGS exchange.

shishi tgs sendrecv hint

[Function]int shishi_tgs_sendrecv_hint (Shishi tgs * tgs , Shishi tkts hint *
hint)

tgs: structure that holds information about TGS exchange

hint: additional parameters that modify connection behaviour, or NULL.

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent au-
thentication, usually used to acquire server tickets. The hint structure can be used
to set, e.g., parameters for TLS authentication.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 125

shishi tgs sendrecv

[Function]int shishi_tgs_sendrecv (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange
Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent au-
thentication, usually used to acquire server tickets.
Return value: Returns SHISHI OK iff successful.

shishi tgs set server

[Function]int shishi_tgs_set_server (Shishi tgs * tgs , const char * server)
tgs: structure that holds information about TGS exchange
server: indicates the server to acquire ticket for.
Set the server in the TGS-REQ.
Return value: Returns SHISHI OK iff successful.

shishi tgs set realm

[Function]int shishi_tgs_set_realm (Shishi tgs * tgs , const char * realm)
tgs: structure that holds information about TGS exchange
realm: indicates the realm to acquire ticket for.
Set the server in the TGS-REQ.
Return value: Returns SHISHI OK iff successful.

shishi tgs set realmserver

[Function]int shishi_tgs_set_realmserver (Shishi tgs * tgs , const char *
realm , const char * server)

tgs: structure that holds information about TGS exchange
realm: indicates the realm to acquire ticket for.
server: indicates the server to acquire ticket for.
Set the realm and server in the TGS-REQ.
Return value: Returns SHISHI OK iff successful.

5.9 Ticket (ASN.1) Functions

See Section 5.6 [Ticket Functions], page 103, for an high-level overview of tickets. The
following illustrates the Ticket and EncTicketPart ASN.1 structures.
Ticket ::= [APPLICATION 1] SEQUENCE {

tkt-vno [0] INTEGER (5),
realm [1] Realm,
sname [2] PrincipalName,
enc-part [3] EncryptedData -- EncTicketPart

}

-- Encrypted part of ticket

Chapter 5: Programming Manual 126

EncTicketPart ::= [APPLICATION 3] SEQUENCE {
flags [0] TicketFlags,
key [1] EncryptionKey,
crealm [2] Realm,
cname [3] PrincipalName,
transited [4] TransitedEncoding,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
caddr [9] HostAddresses OPTIONAL,
authorization-data [10] AuthorizationData OPTIONAL

}

shishi ticket

[Function]Shishi_asn1 shishi_ticket (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new ASN.1 Ticket, populated with some default values.
Return value: Returns the ticket or NULL on failure.

shishi ticket realm get

[Function]int shishi_ticket_realm_get (Shishi * handle , Shishi asn1 ticket ,
char ** realm , size t * realmlen)

handle: shishi handle as allocated by shishi_init().
ticket: input variable with ticket info.
realm: output array with newly allocated name of realm in ticket.
realmlen: size of output array.
Extract realm from ticket.
Return value: Returns SHISHI OK iff successful.

shishi ticket realm set

[Function]int shishi_ticket_realm_set (Shishi * handle , Shishi asn1 ticket ,
const char * realm)

handle: shishi handle as allocated by shishi_init().
ticket: input variable with ticket info.
realm: input array with name of realm.
Set the realm field in the Ticket.
Return value: Returns SHISHI OK iff successful.

shishi ticket server

[Function]int shishi_ticket_server (Shishi * handle , Shishi asn1 ticket ,
char ** server , size t * serverlen)

handle: Shishi library handle create by shishi_init().

Chapter 5: Programming Manual 127

ticket: ASN.1 Ticket variable to get server name from.
server: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate serverlen).
serverlen: pointer to length of server on output, excluding terminating zero. May
be NULL (to only populate server).
Represent server principal name in Ticket as zero-terminated string. The string is
allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length serverlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

shishi ticket sname set

[Function]int shishi_ticket_sname_set (Shishi * handle , Shishi asn1 ticket ,
Shishi name type name_type , char * [] sname)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket variable to set server name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
sname: input array with principal name.
Set the server name field in the Ticket.
Return value: Returns SHISHI OK iff successful.

shishi ticket get enc part etype

[Function]int shishi_ticket_get_enc_part_etype (Shishi * handle ,
Shishi asn1 ticket , int32 t * etype)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket variable to get value from.
etype: output variable that holds the value.
Extract Ticket.enc-part.etype.
Return value: Returns SHISHI OK iff successful.

shishi ticket set enc part

[Function]int shishi_ticket_set_enc_part (Shishi * handle , Shishi asn1
ticket , int32 t etype , uint32 t kvno , const char * buf , size t buflen)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket to add enc-part field to.
etype: encryption type used to encrypt enc-part.
kvno: key version number.
buf : input array with encrypted enc-part.
buflen: size of input array with encrypted enc-part.
Set the encrypted enc-part field in the Ticket. The encrypted data is usually created
by calling shishi_encrypt() on the DER encoded enc-part. To save time, you may
want to use shishi_ticket_add_enc_part() instead, which calculates the encrypted
data and calls this function in one step.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 128

shishi ticket add enc part

[Function]int shishi_ticket_add_enc_part (Shishi * handle , Shishi asn1
ticket , Shishi key * key , Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().

ticket: Ticket to add enc-part field to.

key : key used to encrypt enc-part.

encticketpart: EncTicketPart to add.

Encrypts DER encoded EncTicketPart using key and stores it in the Ticket.

Return value: Returns SHISHI OK iff successful.

shishi encticketpart get key

[Function]int shishi_encticketpart_get_key (Shishi * handle , Shishi asn1
encticketpart , Shishi key ** key)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

key : newly allocated key.

Extract the session key in the Ticket.

Return value: Returns SHISHI OK iff succesful.

shishi encticketpart key set

[Function]int shishi_encticketpart_key_set (Shishi * handle , Shishi asn1
encticketpart , Shishi key * key)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

key : key handle with information to store in encticketpart.

Set the EncTicketPart.key field to key type and value of supplied key.

Return value: Returns SHISHI OK iff succesful.

shishi encticketpart flags set

[Function]int shishi_encticketpart_flags_set (Shishi * handle , Shishi asn1
encticketpart , int flags)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

flags: flags to set in encticketpart.

Set the EncTicketPart.flags to supplied value.

Return value: Returns SHISHI OK iff succesful.

Chapter 5: Programming Manual 129

shishi encticketpart crealm set

[Function]int shishi_encticketpart_crealm_set (Shishi * handle ,
Shishi asn1 encticketpart , const char * realm)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

realm: input array with name of realm.

Set the realm field in the KDC-REQ.

Return value: Returns SHISHI OK iff successful.

shishi encticketpart cname set

[Function]int shishi_encticketpart_cname_set (Shishi * handle , Shishi asn1
encticketpart , Shishi name type name_type , const char * principal)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

principal: input array with principal name.

Set the client name field in the EncTicketPart.

Return value: Returns SHISHI OK iff successful.

shishi encticketpart transited set

[Function]int shishi_encticketpart_transited_set (Shishi * handle ,
Shishi asn1 encticketpart , int32 t trtype , const char * trdata , size t
trdatalen)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

trtype: transitedencoding type, e.g. SHISHI TR DOMAIN X500 COMPRESS.

trdata: actual transited realm data.

trdatalen: length of actual transited realm data.

Set the EncTicketPart.transited field to supplied value.

Return value: Returns SHISHI OK iff succesful.

shishi encticketpart authtime set

[Function]int shishi_encticketpart_authtime_set (Shishi * handle ,
Shishi asn1 encticketpart , const char * authtime)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

authtime: character buffer containing a generalized time string.

Set the EncTicketPart.authtime to supplied value.

Return value: Returns SHISHI OK iff succesful.

Chapter 5: Programming Manual 130

shishi encticketpart endtime set

[Function]int shishi_encticketpart_endtime_set (Shishi * handle ,
Shishi asn1 encticketpart , const char * endtime)

handle: shishi handle as allocated by shishi_init().

encticketpart: input EncTicketPart variable.

endtime: character buffer containing a generalized time string.

Set the EncTicketPart.endtime to supplied value.

Return value: Returns SHISHI OK iff succesful.

shishi encticketpart client

[Function]int shishi_encticketpart_client (Shishi * handle , Shishi asn1
encticketpart , char ** client , size t * clientlen)

handle: Shishi library handle create by shishi_init().

encticketpart: EncTicketPart variable to get client name from.

client: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate clientlen).

clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).

Represent client principal name in EncTicketPart as zero-terminated string. The
string is allocate by this function, and it is the responsibility of the caller to deallocate
it. Note that the output length clientlen does not include the terminating zero.

Return value: Returns SHISHI OK iff successful.

shishi encticketpart clientrealm

[Function]int shishi_encticketpart_clientrealm (Shishi * handle ,
Shishi asn1 encticketpart , char ** client , size t * clientlen)

handle: Shishi library handle create by shishi_init().

encticketpart: EncTicketPart variable to get client name and realm from.

client: pointer to newly allocated zero terminated string containing principal name
and realm. May be NULL (to only populate clientlen).

clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).

Convert cname and realm fields from EncTicketPart to printable principal name for-
mat. The string is allocate by this function, and it is the responsibility of the caller to
deallocate it. Note that the output length clientlen does not include the terminating
zero.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 131

5.10 AS/TGS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The Ticket Granting Service (TGS) is used to get subsequent tickets using other tickets.
Protocol wise the procedures are very similar, which is the reason they are described to-
gether. The following illustrates the AS-REQ, TGS-REQ and AS-REP, TGS-REP ASN.1
structures. Most of the functions use the mnemonic “KDC” instead of either AS or TGS,
which means the function operates on both AS and TGS types. Only where the distinction
between AS and TGS is important are the AS and TGS names used. Remember, these
are low-level functions, and normal applications will likely be satisfied with the AS (see
Section 5.7 [AS Functions], page 114) and TGS (see Section 5.8 [TGS Functions], page 119)
interfaces, or the even more high-level Ticket Set (see Section 5.3 [Ticket Set Functions],
page 65) interface.

-- Request --

AS-REQ ::= KDC-REQ {10}
TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey
| keyuse-TGSReqAuthData-subkey }

} OPTIONAL,
additional-tickets [11] SEQUENCE OF Ticket OPTIONAL

}

Chapter 5: Programming Manual 132

-- Reply --

AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}
TGS-REP ::= KDC-REP {13, EncTGSRepPart,

{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncASRepPart ::= [APPLICATION 25] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

shishi as derive salt

[Function]int shishi_as_derive_salt (Shishi * handle , Shishi asn1 asreq ,
Shishi asn1 asrep , char ** salt , size t * saltlen)

handle: shishi handle as allocated by shishi_init().
asreq: input AS-REQ variable.
asrep: input AS-REP variable.
salt: newly allocated output array with salt.
saltlen: holds actual size of output array with salt.

Chapter 5: Programming Manual 133

Derive the salt that should be used when deriving a key via shishi_string_
to_key() for an AS exchange. Currently this searches for PA-DATA of type
SHISHI PA PW SALT in the AS-REP and returns it if found, otherwise the salt is
derived from the client name and realm in AS-REQ.
Return value: Returns SHISHI OK iff successful.

shishi kdc copy crealm

[Function]int shishi_kdc_copy_crealm (Shishi * handle , Shishi asn1 kdcrep ,
Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to read crealm from.
encticketpart: EncTicketPart to set crealm in.
Set crealm in KDC-REP to value in EncTicketPart.
Return value: Returns SHISHI OK if successful.

shishi as check crealm

[Function]int shishi_as_check_crealm (Shishi * handle , Shishi asn1 asreq ,
Shishi asn1 asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare realm field in.
asrep: AS-REP to compare realm field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().
Return value: Returns SHISHI OK if successful, SHISHI REALM MISMATCH if
the values differ, or an error code.

shishi kdc copy cname

[Function]int shishi_kdc_copy_cname (Shishi * handle , Shishi asn1 kdcrep ,
Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REQ to read cname from.
encticketpart: EncTicketPart to set cname in.
Set cname in KDC-REP to value in EncTicketPart.
Return value: Returns SHISHI OK if successful.

shishi as check cname

[Function]int shishi_as_check_cname (Shishi * handle , Shishi asn1 asreq ,
Shishi asn1 asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare client name field in.

Chapter 5: Programming Manual 134

asrep: AS-REP to compare client name field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().
Return value: Returns SHISHI OK if successful, SHISHI CNAME MISMATCH if
the values differ, or an error code.

shishi kdc copy nonce

[Function]int shishi_kdc_copy_nonce (Shishi * handle , Shishi asn1 kdcreq ,
Shishi asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to read nonce from.
enckdcreppart: EncKDCRepPart to set nonce in.
Set nonce in EncKDCRepPart to value in KDC-REQ.
Return value: Returns SHISHI OK if successful.

shishi kdc check nonce

[Function]int shishi_kdc_check_nonce (Shishi * handle , Shishi asn1 kdcreq ,
Shishi asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to compare nonce field in.
enckdcreppart: Encrypted KDC-REP part to compare nonce field in.
Verify that KDC-REQ.req-body.nonce and EncKDCRepPart.nonce fields matches.
This is one of the steps that has to be performed when processing a KDC-REQ and
KDC-REP exchange.
Return value: Returns SHISHI OK if successful, SHISHI NONCE LENGTH MISMATCH
if the nonces have different lengths (usually indicates that buggy server truncated
nonce to 4 bytes), SHISHI NONCE MISMATCH if the values differ, or an error
code.

shishi tgs process

[Function]int shishi_tgs_process (Shishi * handle , Shishi asn1 tgsreq ,
Shishi asn1 tgsrep , Shishi asn1 authenticator , Shishi asn1
oldenckdcreppart , Shishi asn1 * enckdcreppart)

handle: shishi handle as allocated by shishi_init().
tgsreq: input variable that holds the sent KDC-REQ.
tgsrep: input variable that holds the received KDC-REP.
authenticator: input variable with Authenticator from AP-REQ in KDC-REQ.
oldenckdcreppart: input variable with EncKDCRepPart used in request.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process a TGS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key

Chapter 5: Programming Manual 135

from the ticket used to construct the TGS request and calls shishi_kdc_process(),
which see.
Return value: Returns SHISHI OK iff the TGS client exchange was successful.

shishi as process

[Function]int shishi_as_process (Shishi * handle , Shishi asn1 asreq ,
Shishi asn1 asrep , const char * string , Shishi asn1 * enckdcreppart)

handle: shishi handle as allocated by shishi_init().
asreq: input variable that holds the sent KDC-REQ.
asrep: input variable that holds the received KDC-REP.
string : input variable with zero terminated password.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process an AS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the password and calls shishi_kdc_process(), which see.
Return value: Returns SHISHI OK iff the AS client exchange was successful.

shishi kdc process

[Function]int shishi_kdc_process (Shishi * handle , Shishi asn1 kdcreq ,
Shishi asn1 kdcrep , Shishi key * key , int keyusage , Shishi asn1 *
enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: input variable that holds the sent KDC-REQ.
kdcrep: input variable that holds the received KDC-REP.
key : input array with key to decrypt encrypted part of KDC-REP with.
keyusage: kereros key usage value.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process a KDC client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. Use shishi_kdcrep_get_ticket() to extract the
ticket. This function verifies the various conditions that must hold if the response
is to be considered valid, specifically it compares nonces (shishi_check_nonces())
and if the exchange was a AS exchange, it also compares cname and crealm (shishi_
check_cname() and shishi_check_crealm()).
Usually the shishi_as_process() and shishi_tgs_process() functions should be
used instead, since they simplify the decryption key computation.
Return value: Returns SHISHI OK iff the KDC client exchange was successful.

shishi asreq

[Function]Shishi_asn1 shishi_asreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AS-REQ, populated with some default values.
Return value: Returns the AS-REQ or NULL on failure.

Chapter 5: Programming Manual 136

shishi tgsreq

[Function]Shishi_asn1 shishi_tgsreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new TGS-REQ, populated with some default values.
Return value: Returns the TGS-REQ or NULL on failure.

shishi kdcreq print

[Function]int shishi_kdcreq_print (Shishi * handle , FILE * fh , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcreq: KDC-REQ to print.
Print ASCII armored DER encoding of KDC-REQ to file.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq save

[Function]int shishi_kdcreq_save (Shishi * handle , FILE * fh , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcreq: KDC-REQ to save.
Print DER encoding of KDC-REQ to file.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq to file

[Function]int shishi_kdcreq_to_file (Shishi * handle , Shishi asn1 kdcreq ,
int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write KDC-REQ to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq parse

[Function]int shishi_kdcreq_parse (Shishi * handle , FILE * fh , Shishi asn1 *
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcreq: output variable with newly allocated KDC-REQ.
Read ASCII armored DER encoded KDC-REQ from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 137

shishi kdcreq read

[Function]int shishi_kdcreq_read (Shishi * handle , FILE * fh , Shishi asn1 *
kdcreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

kdcreq: output variable with newly allocated KDC-REQ.

Read DER encoded KDC-REQ from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi kdcreq from file

[Function]int shishi_kdcreq_from_file (Shishi * handle , Shishi asn1 *
kdcreq , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

kdcreq: output variable with newly allocated KDC-REQ.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read KDC-REQ from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi kdcreq nonce set

[Function]int shishi_kdcreq_nonce_set (Shishi * handle , Shishi asn1 kdcreq ,
uint32 t nonce)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set client name field in.

nonce: integer nonce to store in KDC-REQ.

Store nonce number field in KDC-REQ.

Return value: Returns SHISHI_OK iff successful.

shishi kdcreq set cname

[Function]int shishi_kdcreq_set_cname (Shishi * handle , Shishi asn1 kdcreq ,
Shishi name type name_type , const char * principal)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set client name field in.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

principal: input array with principal name.

Set the client name field in the KDC-REQ.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 138

shishi kdcreq client

[Function]int shishi_kdcreq_client (Shishi * handle , Shishi asn1 kdcreq ,
char ** client , size t * clientlen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get client name from.
client: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Represent client principal name in KDC-REQ as zero-terminated string. The string
is allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length clientlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

shishi asreq clientrealm

[Function]int shishi_asreq_clientrealm (Shishi * handle , Shishi asn1 asreq ,
char ** client , size t * clientlen)

handle: Shishi library handle create by shishi_init().
asreq: AS-REQ variable to get client name and realm from.
client: pointer to newly allocated zero terminated string containing principal name
and realm. May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Convert cname and realm fields from AS-REQ to printable principal name format.
The string is allocate by this function, and it is the responsibility of the caller to
deallocate it. Note that the output length clientlen does not include the terminating
zero.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq realm

[Function]int shishi_kdcreq_realm (Shishi * handle , Shishi asn1 kdcreq , char
** realm , size t * realmlen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get client name from.
realm: pointer to newly allocated zero terminated string containing realm. May be
NULL (to only populate realmlen).
realmlen: pointer to length of realm on output, excluding terminating zero. May be
NULL (to only populate realmlen).
Get realm field in KDC-REQ as zero-terminated string. The string is allocate by
this function, and it is the responsibility of the caller to deallocate it. Note that the
output length realmlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 139

shishi kdcreq set realm

[Function]int shishi_kdcreq_set_realm (Shishi * handle , Shishi asn1 kdcreq ,
const char * realm)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set realm field in.
realm: input array with name of realm.
Set the realm field in the KDC-REQ.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq server

[Function]int shishi_kdcreq_server (Shishi * handle , Shishi asn1 kdcreq ,
char ** server , size t * serverlen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get server name from.
server: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate serverlen).
serverlen: pointer to length of server on output, excluding terminating zero. May
be NULL (to only populate server).
Represent server principal name in KDC-REQ as zero-terminated string. The string
is allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length serverlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq set sname

[Function]int shishi_kdcreq_set_sname (Shishi * handle , Shishi asn1 kdcreq ,
Shishi name type name_type , const char * [] sname)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set server name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
sname: input array with principal name.
Set the server name field in the KDC-REQ.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq till

[Function]int shishi_kdcreq_till (Shishi * handle , Shishi asn1 kdcreq , char
** till , size t * tilllen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get client name from.
till: pointer to newly allocated zero terminated string containing "till" field with
generalized time. May be NULL (to only populate realmlen).

Chapter 5: Programming Manual 140

tilllen: pointer to length of till on output, excluding terminating zero. May be NULL
(to only populate tilllen).
Get "till" field (i.e. "endtime") in KDC-REQ, as zero-terminated string. The string
is typically 15 characters long. The string is allocated by this function, and it is the
responsibility of the caller to deallocate it. Note that the output length realmlen
does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq tillc

[Function]time_t shishi_kdcreq_tillc (Shishi * handle , Shishi asn1 kdcreq)
handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get till field from.
Extract C time corresponding to the "till" field.
Return value: Returns C time interpretation of the "till" field in KDC-REQ.

shishi kdcreq etype

[Function]int shishi_kdcreq_etype (Shishi * handle , Shishi asn1 kdcreq ,
int32 t * etype , int netype)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get etype field from.
etype: output encryption type.
netype: element number to return.
Return the netype: th encryption type from KDC-REQ. The first etype is number 1.
Return value: Returns SHISHI OK iff etype successful set.

shishi kdcreq set etype

[Function]int shishi_kdcreq_set_etype (Shishi * handle , Shishi asn1 kdcreq ,
int32 t * etype , int netype)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set etype field in.
etype: input array with encryption types.
netype: number of elements in input array with encryption types.
Set the list of supported or wanted encryption types in the request. The list should
be sorted in priority order.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq options

[Function]int shishi_kdcreq_options (Shishi * handle , Shishi asn1 kdcreq ,
uint32 t * flags)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.

Chapter 5: Programming Manual 141

flags: pointer to output integer with flags.

Extract KDC-Options from KDC-REQ.

Return value: Returns SHISHI OK iff successful.

shishi kdcreq forwardable p

[Function]int shishi_kdcreq_forwardable_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to get kdc-options field from.

Determine if KDC-Option forwardable flag is set.

The FORWARDABLE option indicates that the ticket to be issued is to have its
forwardable flag set. It may only be set on the initial request, or in a subsequent
request if the ticket-granting ticket on which it is based is also forwardable.

Return value: Returns non-0 iff forwardable flag is set in KDC-REQ.

shishi kdcreq forwarded p

[Function]int shishi_kdcreq_forwarded_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to get kdc-options field from.

Determine if KDC-Option forwarded flag is set.

The FORWARDED option is only specified in a request to the ticket-granting server
and will only be honored if the ticket-granting ticket in the request has its FOR-
WARDABLE bit set. This option indicates that this is a request for forwarding. The
address(es) of the host from which the resulting ticket is to be valid are included in
the addresses field of the request.

Return value: Returns non-0 iff forwarded flag is set in KDC-REQ.

shishi kdcreq proxiable p

[Function]int shishi_kdcreq_proxiable_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to get kdc-options field from.

Determine if KDC-Option proxiable flag is set.

The PROXIABLE option indicates that the ticket to be issued is to have its proxiable
flag set. It may only be set on the initial request, or in a subsequent request if the
ticket-granting ticket on which it is based is also proxiable.

Return value: Returns non-0 iff proxiable flag is set in KDC-REQ.

Chapter 5: Programming Manual 142

shishi kdcreq proxy p

[Function]int shishi_kdcreq_proxy_p (Shishi * handle , Shishi asn1 kdcreq)
handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.
Determine if KDC-Option proxy flag is set.
The PROXY option indicates that this is a request for a proxy. This option will only
be honored if the ticket-granting ticket in the request has its PROXIABLE bit set.
The address(es) of the host from which the resulting ticket is to be valid are included
in the addresses field of the request.
Return value: Returns non-0 iff proxy flag is set in KDC-REQ.

shishi kdcreq allow postdate p

[Function]int shishi_kdcreq_allow_postdate_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.
Determine if KDC-Option allow-postdate flag is set.
The ALLOW-POSTDATE option indicates that the ticket to be issued is to have
its MAY-POSTDATE flag set. It may only be set on the initial request, or in a
subsequent request if the ticket-granting ticket on which it is based also has its MAY-
POSTDATE flag set.
Return value: Returns non-0 iff allow-postdate flag is set in KDC-REQ.

shishi kdcreq postdated p

[Function]int shishi_kdcreq_postdated_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.
Determine if KDC-Option postdated flag is set.
The POSTDATED option indicates that this is a request for a postdated ticket. This
option will only be honored if the ticket-granting ticket on which it is based has its
MAY-POSTDATE flag set. The resulting ticket will also have its INVALID flag set,
and that flag may be reset by a subsequent request to the KDC after the starttime
in the ticket has been reached.
Return value: Returns non-0 iff postdated flag is set in KDC-REQ.

shishi kdcreq renewable p

[Function]int shishi_kdcreq_renewable_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.

Chapter 5: Programming Manual 143

Determine if KDC-Option renewable flag is set.
The RENEWABLE option indicates that the ticket to be issued is to have its RENEW-
ABLE flag set. It may only be set on the initial request, or when the ticket-granting
ticket on which the request is based is also renewable. If this option is requested,
then the rtime field in the request contains the desired absolute expiration time for
the ticket.
Return value: Returns non-0 iff renewable flag is set in KDC-REQ.

shishi kdcreq disable transited check p

[Function]int shishi_kdcreq_disable_transited_check_p (Shishi * handle ,
Shishi asn1 kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.
Determine if KDC-Option disable-transited-check flag is set.
By default the KDC will check the transited field of a ticket-granting-ticket against
the policy of the local realm before it will issue derivative tickets based on the ticket-
granting ticket. If this flag is set in the request, checking of the transited field is
disabled. Tickets issued without the performance of this check will be noted by the
reset (0) value of the TRANSITED-POLICY-CHECKED flag, indicating to the ap-
plication server that the tranisted field must be checked locally. KDCs are encouraged
but not required to honor the DISABLE-TRANSITED-CHECK option.
This flag is new since RFC 1510
Return value: Returns non-0 iff disable-transited-check flag is set in KDC-REQ.

shishi kdcreq renewable ok p

[Function]int shishi_kdcreq_renewable_ok_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.
Determine if KDC-Option renewable-ok flag is set.
The RENEWABLE-OK option indicates that a renewable ticket will be acceptable
if a ticket with the requested life cannot otherwise be provided. If a ticket with
the requested life cannot be provided, then a renewable ticket may be issued with a
renew-till equal to the requested endtime. The value of the renew-till field may still
be limited by local limits, or limits selected by the individual principal or server.
Return value: Returns non-0 iff renewable-ok flag is set in KDC-REQ.

shishi kdcreq enc tkt in skey p

[Function]int shishi_kdcreq_enc_tkt_in_skey_p (Shishi * handle ,
Shishi asn1 kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get kdc-options field from.

Chapter 5: Programming Manual 144

Determine if KDC-Option enc-tkt-in-skey flag is set.

This option is used only by the ticket-granting service. The ENC-TKT-IN-SKEY
option indicates that the ticket for the end server is to be encrypted in the session
key from the additional ticket-granting ticket provided.

Return value: Returns non-0 iff enc-tkt-in-skey flag is set in KDC-REQ.

shishi kdcreq renew p

[Function]int shishi_kdcreq_renew_p (Shishi * handle , Shishi asn1 kdcreq)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to get kdc-options field from.

Determine if KDC-Option renew flag is set.

This option is used only by the ticket-granting service. The RENEW option indicates
that the present request is for a renewal. The ticket provided is encrypted in the
secret key for the server on which it is valid. This option will only be honored if the
ticket to be renewed has its RENEWABLE flag set and if the time in its renew-till
field has not passed. The ticket to be renewed is passed in the padata field as part of
the authentication header.

Return value: Returns non-0 iff renew flag is set in KDC-REQ.

shishi kdcreq validate p

[Function]int shishi_kdcreq_validate_p (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to get kdc-options field from.

Determine if KDC-Option validate flag is set.

This option is used only by the ticket-granting service. The VALIDATE option in-
dicates that the request is to validate a postdated ticket. It will only be honored if
the ticket presented is postdated, presently has its INVALID flag set, and would be
otherwise usable at this time. A ticket cannot be validated before its starttime. The
ticket presented for validation is encrypted in the key of the server for which it is
valid and is passed in the padata field as part of the authentication header.

Return value: Returns non-0 iff validate flag is set in KDC-REQ.

shishi kdcreq options set

[Function]int shishi_kdcreq_options_set (Shishi * handle , Shishi asn1
kdcreq , uint32 t options)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.

options: integer with flags to store in KDC-REQ.

Set options in KDC-REQ. Note that this reset any already existing flags.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 145

shishi kdcreq options add

[Function]int shishi_kdcreq_options_add (Shishi * handle , Shishi asn1
kdcreq , uint32 t option)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set etype field in.
option: integer with options to add in KDC-REQ.
Add KDC-Option to KDC-REQ. This preserves all existing options.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq clear padata

[Function]int shishi_kdcreq_clear_padata (Shishi * handle , Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to remove PA-DATA from.
Remove the padata field from KDC-REQ.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq get padata

[Function]int shishi_kdcreq_get_padata (Shishi * handle , Shishi asn1
kdcreq , Shishi padata type padatatype , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to get PA-DATA from.
padatatype: type of PA-DATA, see Shishi padata type.
out: output array with newly allocated PA-DATA value.
outlen: size of output array with PA-DATA value.
Get pre authentication data (PA-DATA) from KDC-REQ. Pre authentication data is
used to pass various information to KDC, such as in case of a SHISHI PA TGS REQ
padatatype the AP-REQ that authenticates the user to get the ticket.
Return value: Returns SHISHI OK iff successful.

shishi kdcreq get padata tgs

[Function]int shishi_kdcreq_get_padata_tgs (Shishi * handle , Shishi asn1
kdcreq , Shishi asn1 * apreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to get PA-TGS-REQ from.
apreq: Output variable with newly allocated AP-REQ.
Extract TGS pre-authentication data from KDC-REQ. The data is an AP-REQ that
authenticates the request. This function call shishi_kdcreq_get_padata() with a
SHISHI PA TGS REQ padatatype and DER decode the result (if any).
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 146

shishi kdcreq add padata

[Function]int shishi_kdcreq_add_padata (Shishi * handle , Shishi asn1
kdcreq , int padatatype , const char * data , size t datalen)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add PA-DATA to.

padatatype: type of PA-DATA, see Shishi padata type.

data: input array with PA-DATA value.

datalen: size of input array with PA-DATA value.

Add new pre authentication data (PA-DATA) to KDC-REQ. This is used to pass
various information to KDC, such as in case of a SHISHI PA TGS REQ padatatype
the AP-REQ that authenticates the user to get the ticket. (But also see shishi_
kdcreq_add_padata_tgs() which takes an AP-REQ directly.)

Return value: Returns SHISHI OK iff successful.

shishi kdcreq add padata tgs

[Function]int shishi_kdcreq_add_padata_tgs (Shishi * handle , Shishi asn1
kdcreq , Shishi asn1 apreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add PA-DATA to.

apreq: AP-REQ to add as PA-DATA.

Add TGS pre-authentication data to KDC-REQ. The data is an AP-REQ that au-
thenticates the request. This functions simply DER encodes the AP-REQ and calls
shishi_kdcreq_add_padata() with a SHISHI PA TGS REQ padatatype.

Return value: Returns SHISHI OK iff successful.

shishi kdcreq add padata preauth

[Function]int shishi_kdcreq_add_padata_preauth (Shishi * handle ,
Shishi asn1 kdcreq , Shishi key * key)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add pre-authentication data to.

key : Key used to encrypt pre-auth data.

Add pre-authentication data to KDC-REQ.

Return value: Returns SHISHI OK iff successful.

shishi asrep

[Function]Shishi_asn1 shishi_asrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new AS-REP, populated with some default values.

Return value: Returns the AS-REP or NULL on failure.

Chapter 5: Programming Manual 147

shishi tgsrep

[Function]Shishi_asn1 shishi_tgsrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new TGS-REP, populated with some default values.
Return value: Returns the TGS-REP or NULL on failure.

shishi kdcrep print

[Function]int shishi_kdcrep_print (Shishi * handle , FILE * fh , Shishi asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcrep: KDC-REP to print.
Print ASCII armored DER encoding of KDC-REP to file.
Return value: Returns SHISHI OK iff successful.

shishi kdcrep save

[Function]int shishi_kdcrep_save (Shishi * handle , FILE * fh , Shishi asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcrep: KDC-REP to save.
Print DER encoding of KDC-REP to file.
Return value: Returns SHISHI OK iff successful.

shishi kdcrep to file

[Function]int shishi_kdcrep_to_file (Shishi * handle , Shishi asn1 kdcrep ,
int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write KDC-REP to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

shishi kdcrep parse

[Function]int shishi_kdcrep_parse (Shishi * handle , FILE * fh , Shishi asn1 *
kdcrep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcrep: output variable with newly allocated KDC-REP.
Read ASCII armored DER encoded KDC-REP from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 148

shishi kdcrep read

[Function]int shishi_kdcrep_read (Shishi * handle , FILE * fh , Shishi asn1 *
kdcrep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

kdcrep: output variable with newly allocated KDC-REP.

Read DER encoded KDC-REP from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi kdcrep from file

[Function]int shishi_kdcrep_from_file (Shishi * handle , Shishi asn1 *
kdcrep , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

kdcrep: output variable with newly allocated KDC-REP.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read KDC-REP from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi kdcrep crealm set

[Function]int shishi_kdcrep_crealm_set (Shishi * handle , Shishi asn1
kdcrep , const char * crealm)

handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set realm field in.

crealm: input array with name of realm.

Set the client realm field in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

shishi kdcrep cname set

[Function]int shishi_kdcrep_cname_set (Shishi * handle , Shishi asn1 kdcrep ,
Shishi name type name_type , const char * [] cname)

handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set server name field in.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

cname: input array with principal name.

Set the server name field in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 149

shishi kdcrep client set

[Function]int shishi_kdcrep_client_set (Shishi * handle , Shishi asn1
kdcrep , const char * client)

handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set server name field in.

client: zero-terminated string with principal name on RFC 1964 form.

Set the client name field in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

shishi kdcrep get enc part etype

[Function]int shishi_kdcrep_get_enc_part_etype (Shishi * handle ,
Shishi asn1 kdcrep , int32 t * etype)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP variable to get value from.

etype: output variable that holds the value.

Extract KDC-REP.enc-part.etype.

Return value: Returns SHISHI OK iff successful.

shishi kdcrep get ticket

[Function]int shishi_kdcrep_get_ticket (Shishi * handle , Shishi asn1
kdcrep , Shishi asn1 * ticket)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP variable to get ticket from.

ticket: output variable to hold extracted ticket.

Extract ticket from KDC-REP.

Return value: Returns SHISHI OK iff successful.

shishi kdcrep set ticket

[Function]int shishi_kdcrep_set_ticket (Shishi * handle , Shishi asn1
kdcrep , Shishi asn1 ticket)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add ticket field to.

ticket: input ticket to copy into KDC-REP ticket field.

Copy ticket into KDC-REP.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 150

shishi kdcrep set enc part

[Function]int shishi_kdcrep_set_enc_part (Shishi * handle , Shishi asn1
kdcrep , int32 t etype , uint32 t kvno , const char * buf , size t buflen)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to add enc-part field to.
etype: encryption type used to encrypt enc-part.
kvno: key version number.
buf : input array with encrypted enc-part.
buflen: size of input array with encrypted enc-part.
Set the encrypted enc-part field in the KDC-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded enc-part. To save time,
you may want to use shishi_kdcrep_add_enc_part() instead, which calculates the
encrypted data and calls this function in one step.
Return value: Returns SHISHI OK iff successful.

shishi kdcrep add enc part

[Function]int shishi_kdcrep_add_enc_part (Shishi * handle , Shishi asn1
kdcrep , Shishi key * key , int keyusage , Shishi asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to add enc-part field to.
key : key used to encrypt enc-part.
keyusage: key usage to use, normally SHISHI KEYUSAGE ENCASREPPART,
SHISHI KEYUSAGE ENCTGSREPPART SESSION KEY or SHISHI KEYUSAGE ENCTGSREPPART AUTHENTICATOR KEY.
enckdcreppart: EncKDCRepPart to add.
Encrypts DER encoded EncKDCRepPart using key and stores it in the KDC-REP.
Return value: Returns SHISHI OK iff successful.

shishi kdcrep clear padata

[Function]int shishi_kdcrep_clear_padata (Shishi * handle , Shishi asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to remove PA-DATA from.
Remove the padata field from KDC-REP.
Return value: Returns SHISHI OK iff successful.

shishi enckdcreppart get key

[Function]int shishi_enckdcreppart_get_key (Shishi * handle , Shishi asn1
enckdcreppart , Shishi key ** key)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.

Chapter 5: Programming Manual 151

key : newly allocated encryption key handle.
Extract the key to use with the ticket sent in the KDC-REP associated with the
EncKDCRepPart input variable.
Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart key set

[Function]int shishi_enckdcreppart_key_set (Shishi * handle , Shishi asn1
enckdcreppart , Shishi key * key)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
key : key handle with information to store in enckdcreppart.
Set the EncKDCRepPart.key field to key type and value of supplied key.
Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart nonce set

[Function]int shishi_enckdcreppart_nonce_set (Shishi * handle , Shishi asn1
enckdcreppart , uint32 t nonce)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
nonce: nonce to set in EncKDCRepPart.
Set the EncKDCRepPart.nonce field.
Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart flags set

[Function]int shishi_enckdcreppart_flags_set (Shishi * handle , Shishi asn1
enckdcreppart , int flags)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
flags: flags to set in EncKDCRepPart.
Set the EncKDCRepPart.flags field.
Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart authtime set

[Function]int shishi_enckdcreppart_authtime_set (Shishi * handle ,
Shishi asn1 enckdcreppart , const char * authtime)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
authtime: character buffer containing a generalized time string.
Set the EncTicketPart.authtime to supplied value.
Return value: Returns SHISHI OK iff succesful.

Chapter 5: Programming Manual 152

shishi enckdcreppart starttime set

[Function]int shishi_enckdcreppart_starttime_set (Shishi * handle ,
Shishi asn1 enckdcreppart , const char * starttime)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

starttime: character buffer containing a generalized time string.

Set the EncTicketPart.starttime to supplied value. Use a NULL value for starttime
to remove the field.

Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart endtime set

[Function]int shishi_enckdcreppart_endtime_set (Shishi * handle ,
Shishi asn1 enckdcreppart , const char * endtime)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

endtime: character buffer containing a generalized time string.

Set the EncTicketPart.endtime to supplied value.

Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart renew till set

[Function]int shishi_enckdcreppart_renew_till_set (Shishi * handle ,
Shishi asn1 enckdcreppart , const char * renew_till)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

renew till: character buffer containing a generalized time string.

Set the EncTicketPart.renew-till to supplied value. Use a NULL value for renew_till
to remove the field.

Return value: Returns SHISHI OK iff succesful.

shishi enckdcreppart srealm set

[Function]int shishi_enckdcreppart_srealm_set (Shishi * handle ,
Shishi asn1 enckdcreppart , const char * srealm)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: EncKDCRepPart variable to set realm field in.

srealm: input array with name of realm.

Set the server realm field in the EncKDCRepPart.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 153

shishi enckdcreppart sname set

[Function]int shishi_enckdcreppart_sname_set (Shishi * handle , Shishi asn1
enckdcreppart , Shishi name type name_type , char * [] sname)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: EncKDCRepPart variable to set server name field in.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

sname: input array with principal name.

Set the server name field in the EncKDCRepPart.

Return value: Returns SHISHI OK iff successful.

shishi enckdcreppart populate encticketpart

[Function]int shishi_enckdcreppart_populate_encticketpart (Shishi *
handle , Shishi asn1 enckdcreppart , Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

encticketpart: input EncTicketPart variable.

Set the flags, authtime, starttime, endtime, renew-till and caddr fields of the EncK-
DCRepPart to the corresponding values in the EncTicketPart.

Return value: Returns SHISHI OK iff succesful.

5.11 Authenticator Functions

An “Authenticator” is an ASN.1 structure that work as a proof that an entity owns a
ticket. It is usually embedded in the AP-REQ structure (see Section 5.4 [AP-REQ and
AP-REP Functions], page 71), and you most likely want to use an AP-REQ instead of a
Authenticator in normal applications. The following illustrates the Authenticator ASN.1
structure.

Authenticator ::= [APPLICATION 2] SEQUENCE {
authenticator-vno [0] INTEGER (5),
crealm [1] Realm,
cname [2] PrincipalName,
cksum [3] Checksum OPTIONAL,
cusec [4] Microseconds,
ctime [5] KerberosTime,
subkey [6] EncryptionKey OPTIONAL,
seq-number [7] UInt32 OPTIONAL,
authorization-data [8] AuthorizationData OPTIONAL

}

shishi authenticator

[Function]Shishi_asn1 shishi_authenticator (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 154

This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.

Return value: Returns the authenticator or NULL on failure.

shishi authenticator subkey

[Function]Shishi_asn1 shishi_authenticator_subkey (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields. It
adds a random subkey.

Return value: Returns the authenticator or NULL on failure.

shishi authenticator print

[Function]int shishi_authenticator_print (Shishi * handle , FILE * fh ,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

authenticator: authenticator as allocated by shishi_authenticator().

Print ASCII armored DER encoding of authenticator to file.

Return value: Returns SHISHI OK iff successful.

shishi authenticator save

[Function]int shishi_authenticator_save (Shishi * handle , FILE * fh ,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

authenticator: authenticator as allocated by shishi_authenticator().

Save DER encoding of authenticator to file.

Return value: Returns SHISHI OK iff successful.

shishi authenticator to file

[Function]int shishi_authenticator_to_file (Shishi * handle , Shishi asn1
authenticator , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write Authenticator to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 155

shishi authenticator parse

[Function]int shishi_authenticator_parse (Shishi * handle , FILE * fh ,
Shishi asn1 * authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

authenticator: output variable with newly allocated authenticator.

Read ASCII armored DER encoded authenticator from file and populate given au-
thenticator variable.

Return value: Returns SHISHI OK iff successful.

shishi authenticator read

[Function]int shishi_authenticator_read (Shishi * handle , FILE * fh ,
Shishi asn1 * authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

authenticator: output variable with newly allocated authenticator.

Read DER encoded authenticator from file and populate given authenticator variable.

Return value: Returns SHISHI OK iff successful.

shishi authenticator from file

[Function]int shishi_authenticator_from_file (Shishi * handle , Shishi asn1
* authenticator , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

authenticator: output variable with newly allocated Authenticator.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read Authenticator from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi authenticator set crealm

[Function]int shishi_authenticator_set_crealm (Shishi * handle ,
Shishi asn1 authenticator , const char * crealm)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

crealm: input array with realm.

Set realm field in authenticator to specified value.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 156

shishi authenticator set cname

[Function]int shishi_authenticator_set_cname (Shishi * handle , Shishi asn1
authenticator , Shishi name type name_type , const char * [] cname)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

cname: input array with principal name.

Set principal field in authenticator to specified value.

Return value: Returns SHISHI OK iff successful.

shishi authenticator client set

[Function]int shishi_authenticator_client_set (Shishi * handle ,
Shishi asn1 authenticator , const char * client)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator to set client name field in.

client: zero-terminated string with principal name on RFC 1964 form.

Set the client name field in the Authenticator.

Return value: Returns SHISHI OK iff successful.

shishi authenticator ctime

[Function]int shishi_authenticator_ctime (Shishi * handle , Shishi asn1
authenticator , char ** t)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

t: newly allocated zero-terminated character array with client time.

Extract client time from Authenticator.

Return value: Returns SHISHI OK iff successful.

shishi authenticator ctime set

[Function]int shishi_authenticator_ctime_set (Shishi * handle , Shishi asn1
authenticator , const char * t)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

t: string with generalized time value to store in Authenticator.

Store client time in Authenticator.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 157

shishi authenticator cusec get

[Function]int shishi_authenticator_cusec_get (Shishi * handle , Shishi asn1
authenticator , uint32 t * cusec)

handle: shishi handle as allocated by shishi_init().
authenticator: Authenticator as allocated by shishi_authenticator().
cusec: output integer with client microseconds field.
Extract client microseconds field from Authenticator.
Return value: Returns SHISHI OK iff successful.

shishi authenticator cusec set

[Function]int shishi_authenticator_cusec_set (Shishi * handle , Shishi asn1
authenticator , uint32 t cusec)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
cusec: client microseconds to set in authenticator, 0-999999.
Set the cusec field in the Authenticator.
Return value: Returns SHISHI OK iff successful.

shishi authenticator seqnumber get

[Function]int shishi_authenticator_seqnumber_get (Shishi * handle ,
Shishi asn1 authenticator , uint32 t * seqnumber)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
seqnumber: output integer with sequence number field.
Extract sequence number field from Authenticator.
Return value: Returns SHISHI_OK iff successful.

shishi authenticator seqnumber remove

[Function]int shishi_authenticator_seqnumber_remove (Shishi * handle ,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
Remove sequence number field in Authenticator.
Return value: Returns SHISHI_OK iff successful.

shishi authenticator seqnumber set

[Function]int shishi_authenticator_seqnumber_set (Shishi * handle ,
Shishi asn1 authenticator , uint32 t seqnumber)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().

Chapter 5: Programming Manual 158

seqnumber: integer with sequence number field to store in Authenticator.
Store sequence number field in Authenticator.
Return value: Returns SHISHI_OK iff successful.

shishi authenticator client

[Function]int shishi_authenticator_client (Shishi * handle , Shishi asn1
authenticator , char ** client , size t * clientlen)

handle: Shishi library handle create by shishi_init().
authenticator: Authenticator variable to get client name from.
client: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Represent client principal name in Authenticator as zero-terminated string. The
string is allocate by this function, and it is the responsibility of the caller to deallocate
it. Note that the output length clientlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

shishi authenticator clientrealm

[Function]int shishi_authenticator_clientrealm (Shishi * handle ,
Shishi asn1 authenticator , char ** client , size t * clientlen)

handle: Shishi library handle create by shishi_init().
authenticator: Authenticator variable to get client name and realm from.
client: pointer to newly allocated zero terminated string containing principal name
and realm. May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Convert cname and realm fields from Authenticator to printable principal name for-
mat. The string is allocate by this function, and it is the responsibility of the caller to
deallocate it. Note that the output length clientlen does not include the terminating
zero.
Return value: Returns SHISHI OK iff successful.

shishi authenticator cksum

[Function]int shishi_authenticator_cksum (Shishi * handle , Shishi asn1
authenticator , int32 t * cksumtype , char ** cksum , size t * cksumlen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
cksumtype: output checksum type.
cksum: newly allocated output checksum data from authenticator.
cksumlen: on output, actual size of allocated output checksum data buffer.

Chapter 5: Programming Manual 159

Read checksum value from authenticator. cksum is allocated by this function, and it
is the responsibility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

shishi authenticator set cksum

[Function]int shishi_authenticator_set_cksum (Shishi * handle , Shishi asn1
authenticator , int32 t cksumtype , char * cksum , size t cksumlen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
cksumtype: input checksum type to store in authenticator.
cksum: input checksum data to store in authenticator.
cksumlen: size of input checksum data to store in authenticator.
Store checksum value in authenticator. A checksum is usually created by calling
shishi_checksum() on some application specific data using the key from the ticket
that is being used. To save time, you may want to use shishi_authenticator_
add_cksum() instead, which calculates the checksum and calls this function in one
step.
Return value: Returns SHISHI OK iff successful.

shishi authenticator add cksum

[Function]int shishi_authenticator_add_cksum (Shishi * handle , Shishi asn1
authenticator , Shishi key * key , int keyusage , char * data , size t
datalen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
key : key to to use for encryption.
keyusage: cryptographic key usage value to use in encryption.
data: input array with data to calculate checksum on.
datalen: size of input array with data to calculate checksum on.
Calculate checksum for data and store it in the authenticator.
Return value: Returns SHISHI OK iff successful.

shishi authenticator add cksum type

[Function]int shishi_authenticator_add_cksum_type (Shishi * handle ,
Shishi asn1 authenticator , Shishi key * key , int keyusage , int
cksumtype , char * data , size t datalen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
key : key to to use for encryption.
keyusage: cryptographic key usage value to use in encryption.
cksumtype: checksum to type to calculate checksum.

Chapter 5: Programming Manual 160

data: input array with data to calculate checksum on.

datalen: size of input array with data to calculate checksum on.

Calculate checksum for data and store it in the authenticator.

Return value: Returns SHISHI OK iff successful.

shishi authenticator clear authorizationdata

[Function]int shishi_authenticator_clear_authorizationdata (Shishi *
handle , Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

Remove the authorization-data field from Authenticator.

Return value: Returns SHISHI OK iff successful.

shishi authenticator add authorizationdata

[Function]int shishi_authenticator_add_authorizationdata (Shishi *
handle , Shishi asn1 authenticator , int32 t adtype , const char * addata ,
size t addatalen)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

adtype: input authorization data type to add.

addata: input authorization data to add.

addatalen: size of input authorization data to add.

Add authorization data to authenticator.

Return value: Returns SHISHI OK iff successful.

shishi authenticator authorizationdata

[Function]int shishi_authenticator_authorizationdata (Shishi * handle ,
Shishi asn1 authenticator , int32 t * adtype , char ** addata , size t *
addatalen , size t nth)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

adtype: output authorization data type.

addata: newly allocated output authorization data.

addatalen: on output, actual size of newly allocated authorization data.

nth: element number of authorization-data to extract.

Extract n: th authorization data from authenticator. The first field is 1.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 161

shishi authenticator remove subkey

[Function]int shishi_authenticator_remove_subkey (Shishi * handle ,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
Remove subkey from the authenticator.
Return value: Returns SHISHI OK iff successful.

shishi authenticator get subkey

[Function]int shishi_authenticator_get_subkey (Shishi * handle ,
Shishi asn1 authenticator , Shishi key ** subkey)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
subkey : output newly allocated subkey from authenticator.
Read subkey value from authenticator.
Return value: Returns SHISHI OK if successful or SHISHI ASN1 NO ELEMENT
if subkey is not present.

shishi authenticator set subkey

[Function]int shishi_authenticator_set_subkey (Shishi * handle ,
Shishi asn1 authenticator , int32 t subkeytype , const char * subkey ,
size t subkeylen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
subkeytype: input subkey type to store in authenticator.
subkey : input subkey data to store in authenticator.
subkeylen: size of input subkey data to store in authenticator.
Store subkey value in authenticator. A subkey is usually created by calling shishi_
key_random() using the default encryption type of the key from the ticket that is be-
ing used. To save time, you may want to use shishi_authenticator_add_subkey()
instead, which calculates the subkey and calls this function in one step.
Return value: Returns SHISHI OK iff successful.

shishi authenticator add random subkey

[Function]int shishi_authenticator_add_random_subkey (Shishi * handle ,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
Generate random subkey, of the default encryption type from configuration, and store
it in the authenticator.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 162

shishi authenticator add random subkey etype

[Function]int shishi_authenticator_add_random_subkey_etype (Shishi *
handle , Shishi asn1 authenticator , int etype)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
etype: encryption type of random key to generate.
Generate random subkey of indicated encryption type, and store it in the authenti-
cator.
Return value: Returns SHISHI OK iff successful.

shishi authenticator add subkey

[Function]int shishi_authenticator_add_subkey (Shishi * handle ,
Shishi asn1 authenticator , Shishi key * subkey)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
subkey : subkey to add to authenticator.
Store subkey in the authenticator.
Return value: Returns SHISHI OK iff successful.

5.12 KRB-ERROR Functions

The “KRB-ERROR” is an ASN.1 structure that can be returned, instead of, e.g., KDC-REP
or AP-REP, to indicate various error conditions. Unfortunately, the semantics of several of
the fields are ill specified, so the typically procedure is to extract “e-text” and/or “e-data”
and show it to the user. The following illustrates the KRB-ERROR ASN.1 structure.
KRB-ERROR ::= [APPLICATION 30] SEQUENCE {

pvno [0] INTEGER (5),
msg-type [1] INTEGER (30),
ctime [2] KerberosTime OPTIONAL,
cusec [3] Microseconds OPTIONAL,
stime [4] KerberosTime,
susec [5] Microseconds,
error-code [6] Int32,
crealm [7] Realm OPTIONAL,
cname [8] PrincipalName OPTIONAL,
realm [9] Realm -- service realm --,
sname [10] PrincipalName -- service name --,
e-text [11] KerberosString OPTIONAL,
e-data [12] OCTET STRING OPTIONAL

}

shishi krberror

[Function]Shishi_asn1 shishi_krberror (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 163

This function creates a new KRB-ERROR, populated with some default values.
Return value: Returns the KRB-ERROR or NULL on failure.

shishi krberror print

[Function]int shishi_krberror_print (Shishi * handle , FILE * fh , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
krberror: KRB-ERROR to print.
Print ASCII armored DER encoding of KRB-ERROR to file.
Return value: Returns SHISHI OK iff successful.

shishi krberror save

[Function]int shishi_krberror_save (Shishi * handle , FILE * fh , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
krberror: KRB-ERROR to save.
Save DER encoding of KRB-ERROR to file.
Return value: Returns SHISHI OK iff successful.

shishi krberror to file

[Function]int shishi_krberror_to_file (Shishi * handle , Shishi asn1
krberror , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().
krberror: KRB-ERROR to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write KRB-ERROR to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

shishi krberror parse

[Function]int shishi_krberror_parse (Shishi * handle , FILE * fh , Shishi asn1
* krberror)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
krberror: output variable with newly allocated KRB-ERROR.
Read ASCII armored DER encoded KRB-ERROR from file and populate given vari-
able.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 164

shishi krberror read

[Function]int shishi_krberror_read (Shishi * handle , FILE * fh , Shishi asn1
* krberror)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

krberror: output variable with newly allocated KRB-ERROR.

Read DER encoded KRB-ERROR from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

shishi krberror from file

[Function]int shishi_krberror_from_file (Shishi * handle , Shishi asn1 *
krberror , int filetype , const char * filename)

handle: shishi handle as allocated by shishi_init().

krberror: output variable with newly allocated KRB-ERROR.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read KRB-ERROR from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

shishi krberror build

[Function]int shishi_krberror_build (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

Finish KRB-ERROR, called before e.g. shishi krberror der. This function removes
empty but OPTIONAL fields (such as cname), and

Return value: Returns SHISHI OK iff successful.

shishi krberror der

[Function]int shishi_krberror_der (Shishi * handle , Shishi asn1 krberror ,
char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

out: output array with newly allocated DER encoding of KRB-ERROR.

outlen: length of output array with DER encoding of KRB-ERROR.

DER encode KRB-ERROR. The caller must deallocate the OUT buffer.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 165

shishi krberror crealm

[Function]int shishi_krberror_crealm (Shishi * handle , Shishi asn1
krberror , char ** realm , size t * realmlen)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

realm: output array with newly allocated name of realm in KRB-ERROR.

realmlen: size of output array.

Extract client realm from KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

shishi krberror remove crealm

[Function]int shishi_krberror_remove_crealm (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

Remove client realm field in KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

shishi krberror set crealm

[Function]int shishi_krberror_set_crealm (Shishi * handle , Shishi asn1
krberror , const char * crealm)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

crealm: input array with realm.

Set realm field in krberror to specified value.

Return value: Returns SHISHI OK iff successful.

shishi krberror client

[Function]int shishi_krberror_client (Shishi * handle , Shishi asn1
krberror , char ** client , size t * clientlen)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

client: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate clientlen).

clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).

Return client principal name in KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 166

shishi krberror set cname

[Function]int shishi_krberror_set_cname (Shishi * handle , Shishi asn1
krberror , Shishi name type name_type , const char * [] cname)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

cname: input array with principal name.

Set principal field in krberror to specified value.

Return value: Returns SHISHI OK iff successful.

shishi krberror remove cname

[Function]int shishi_krberror_remove_cname (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

Remove client realm field in KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

shishi krberror client set

[Function]int shishi_krberror_client_set (Shishi * handle , Shishi asn1
krberror , const char * client)

handle: shishi handle as allocated by shishi_init().

krberror: Krberror to set client name field in.

client: zero-terminated string with principal name on RFC 1964 form.

Set the client name field in the Krberror.

Return value: Returns SHISHI OK iff successful.

shishi krberror realm

[Function]int shishi_krberror_realm (Shishi * handle , Shishi asn1 krberror ,
char ** realm , size t * realmlen)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

realm: output array with newly allocated name of realm in KRB-ERROR.

realmlen: size of output array.

Extract (server) realm from KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 167

shishi krberror set realm

[Function]int shishi_krberror_set_realm (Shishi * handle , Shishi asn1
krberror , const char * realm)

handle: shishi handle as allocated by shishi_init().
krberror: krberror as allocated by shishi_krberror().
realm: input array with (server) realm.
Set (server) realm field in krberror to specified value.
Return value: Returns SHISHI OK iff successful.

shishi krberror server

[Function]int shishi_krberror_server (Shishi * handle , Shishi asn1
krberror , char ** server , size t * serverlen)

handle: shishi handle as allocated by shishi_init().
krberror: krberror as allocated by shishi_krberror().
server: pointer to newly allocated zero terminated string containing server name.
May be NULL (to only populate serverlen).
serverlen: pointer to length of server on output, excluding terminating zero. May
be NULL (to only populate server).
Return server principal name in KRB-ERROR.
Return value: Returns SHISHI OK iff successful.

shishi krberror remove sname

[Function]int shishi_krberror_remove_sname (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror to set server name field in.
Remove server name field in KRB-ERROR. (Since it is not marked OPTIONAL in
the ASN.1 profile, what is done is to set the name-type to UNKNOWN and make
sure the name-string sequence is empty.)
Return value: Returns SHISHI OK iff successful.

shishi krberror set sname

[Function]int shishi_krberror_set_sname (Shishi * handle , Shishi asn1
krberror , Shishi name type name_type , const char * [] sname)

handle: shishi handle as allocated by shishi_init().
krberror: krberror as allocated by shishi_krberror().
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
sname: input array with principal name.
Set principal field in krberror to specified value.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 168

shishi krberror server set

[Function]int shishi_krberror_server_set (Shishi * handle , Shishi asn1
krberror , const char * server)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror to set server name field in.
server: zero-terminated string with principal name on RFC 1964 form.
Set the server name field in the Krberror.
Return value: Returns SHISHI OK iff successful.

shishi krberror ctime

[Function]int shishi_krberror_ctime (Shishi * handle , Shishi asn1 krberror ,
char ** t)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror to set client name field in.
t: newly allocated zero-terminated output array with client time.
Extract client time from KRB-ERROR.
Return value: Returns SHISHI OK iff successful.

shishi krberror ctime set

[Function]int shishi_krberror_ctime_set (Shishi * handle , Shishi asn1
krberror , const char * t)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror as allocated by shishi_krberror().
t: string with generalized time value to store in Krberror.
Store client time in Krberror.
Return value: Returns SHISHI OK iff successful.

shishi krberror remove ctime

[Function]int shishi_krberror_remove_ctime (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror as allocated by shishi_krberror().
Remove client time field in Krberror.
Return value: Returns SHISHI OK iff successful.

shishi krberror cusec

[Function]int shishi_krberror_cusec (Shishi * handle , Shishi asn1 krberror ,
uint32 t * cusec)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror as allocated by shishi_krberror().

Chapter 5: Programming Manual 169

cusec: output integer with client microseconds field.

Extract client microseconds field from Krberror.

Return value: Returns SHISHI OK iff successful.

shishi krberror cusec set

[Function]int shishi_krberror_cusec_set (Shishi * handle , Shishi asn1
krberror , uint32 t cusec)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

cusec: client microseconds to set in krberror, 0-999999.

Set the cusec field in the Krberror.

Return value: Returns SHISHI OK iff successful.

shishi krberror remove cusec

[Function]int shishi_krberror_remove_cusec (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().

krberror: Krberror as allocated by shishi_krberror().

Remove client usec field in Krberror.

Return value: Returns SHISHI OK iff successful.

shishi krberror stime

[Function]int shishi_krberror_stime (Shishi * handle , Shishi asn1 krberror ,
char ** t)

handle: shishi handle as allocated by shishi_init().

krberror: Krberror to set client name field in.

t: newly allocated zero-terminated output array with server time.

Extract server time from KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

shishi krberror stime set

[Function]int shishi_krberror_stime_set (Shishi * handle , Shishi asn1
krberror , const char * t)

handle: shishi handle as allocated by shishi_init().

krberror: Krberror as allocated by shishi_krberror().

t: string with generalized time value to store in Krberror.

Store server time in Krberror.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 170

shishi krberror susec

[Function]int shishi_krberror_susec (Shishi * handle , Shishi asn1 krberror ,
uint32 t * susec)

handle: shishi handle as allocated by shishi_init().
krberror: Krberror as allocated by shishi_krberror().
susec: output integer with server microseconds field.
Extract server microseconds field from Krberror.
Return value: Returns SHISHI OK iff successful.

shishi krberror susec set

[Function]int shishi_krberror_susec_set (Shishi * handle , Shishi asn1
krberror , uint32 t susec)

handle: shishi handle as allocated by shishi_init().
krberror: krberror as allocated by shishi_krberror().
susec: server microseconds to set in krberror, 0-999999.
Set the susec field in the Krberror.
Return value: Returns SHISHI OK iff successful.

shishi krberror errorcode

[Function]int shishi_krberror_errorcode (Shishi * handle , Shishi asn1
krberror , int32 t * errorcode)

handle: shishi handle as allocated by shishi_init().
krberror: KRB-ERROR structure with error code.
errorcode: output integer KRB-ERROR error code.
Extract error code from KRB-ERROR.
Return value: Returns SHISHI OK iff successful.

shishi krberror errorcode fast

[Function]int shishi_krberror_errorcode_fast (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().
krberror: KRB-ERROR structure with error code.
Get error code from KRB-ERROR, without error checking.
Return value: Return error code (see shishi_krberror_errorcode()) directly, or
-1 on error.

shishi krberror errorcode set

[Function]int shishi_krberror_errorcode_set (Shishi * handle , Shishi asn1
krberror , int errorcode)

handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 171

krberror: KRB-ERROR structure with error code to set.
errorcode: new error code to set in krberror.
Set the error-code field to a new error code.
Return value: Returns SHISHI OK iff successful.

shishi krberror etext

[Function]int shishi_krberror_etext (Shishi * handle , Shishi asn1 krberror ,
char ** etext , size t * etextlen)

handle: shishi handle as allocated by shishi_init().
krberror: KRB-ERROR structure with error code.
etext: output array with newly allocated error text.
etextlen: output length of error text.
Extract additional error text from server (possibly empty).
Return value: Returns SHISHI OK iff successful.

shishi krberror set etext

[Function]int shishi_krberror_set_etext (Shishi * handle , Shishi asn1
krberror , const char * etext)

handle: shishi handle as allocated by shishi_init().
krberror: krberror as allocated by shishi_krberror().
etext: input array with error text to set.
Set error text (e-text) field in KRB-ERROR to specified value.
Return value: Returns SHISHI OK iff successful.

shishi krberror remove etext

[Function]int shishi_krberror_remove_etext (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().
krberror: krberror as allocated by shishi_krberror().
Remove error text (e-text) field in KRB-ERROR.
Return value: Returns SHISHI OK iff successful.

shishi krberror edata

[Function]int shishi_krberror_edata (Shishi * handle , Shishi asn1 krberror ,
char ** edata , size t * edatalen)

handle: shishi handle as allocated by shishi_init().
krberror: KRB-ERROR structure with error code.
edata: output array with newly allocated error data.
edatalen: output length of error data.
Extract additional error data from server (possibly empty).
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 172

shishi krberror methoddata

[Function]int shishi_krberror_methoddata (Shishi * handle , Shishi asn1
krberror , Shishi asn1 * methoddata)

handle: shishi handle as allocated by shishi_init().

krberror: KRB-ERROR structure with error code.

methoddata: output ASN.1 METHOD-DATA.

Extract METHOD-DATA ASN.1 object from the e-data field. The e-data field
will only contain a METHOD-DATA if the krberror error code is SHISHI_KDC_ERR_
PREAUTH_REQUIRED.

Return value: Returns SHISHI OK iff successful.

shishi krberror set edata

[Function]int shishi_krberror_set_edata (Shishi * handle , Shishi asn1
krberror , const char * edata)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

edata: input array with error text to set.

Set error text (e-data) field in KRB-ERROR to specified value.

Return value: Returns SHISHI OK iff successful.

shishi krberror remove edata

[Function]int shishi_krberror_remove_edata (Shishi * handle , Shishi asn1
krberror)

handle: shishi handle as allocated by shishi_init().

krberror: krberror as allocated by shishi_krberror().

Remove error text (e-data) field in KRB-ERROR.

Return value: Returns SHISHI OK iff successful.

shishi krberror pretty print

[Function]int shishi_krberror_pretty_print (Shishi * handle , FILE * fh ,
Shishi asn1 krberror)

handle: shishi handle as allocated by shishi_init().

fh: file handle opened for writing.

krberror: KRB-ERROR structure with error code.

Print KRB-ERROR error condition and some explanatory text to file descriptor.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 173

shishi krberror errorcode message

[Function]const char * shishi_krberror_errorcode_message (Shishi *
handle , int errorcode)

handle: shishi handle as allocated by shishi_init().

errorcode: integer KRB-ERROR error code.

Get human readable string describing KRB-ERROR code.

Return value: Return a string describing error code. This function will always return
a string even if the error code isn’t known.

shishi krberror message

[Function]const char * shishi_krberror_message (Shishi * handle ,
Shishi asn1 krberror)

handle: shishi handle as allocated by shishi_init().

krberror: KRB-ERROR structure with error code.

Extract error code (see shishi_krberror_errorcode_fast()) and return error mes-
sage (see shishi_krberror_errorcode_message()).

Return value: Return a string describing error code. This function will always return
a string even if the error code isn’t known.

5.13 Cryptographic Functions

Underneath the high-level functions described earlier, cryptographic operations are happen-
ing. If you need to access these cryptographic primitives directly, this section describes the
functions available.

Most cryptographic operations need keying material, and cryptographic keys have been
isolated into it’s own data structure Shishi_key. The following illustrates it’s contents,
but note that you cannot access it’s elements directly but must use the accessor functions
described below.

struct Shishi_key
{
int type; /* RFC 1510 encryption integer type */
char *value; /* Cryptographic key data */
int version; /* RFC 1510 ‘‘kvno’’ */

};

All functions that operate on this data structure are described now.

shishi key principal

[Function]const char * shishi_key_principal (const Shishi key * key)
key : structure that holds key information

Get the principal part of the key owner principal name, i.e., except the realm.

Return value: Returns the principal owning the key. (Not a copy of it, so don’t
modify or deallocate it.)

Chapter 5: Programming Manual 174

shishi key principal set

[Function]void shishi_key_principal_set (Shishi key * key , const char *
principal)

key : structure that holds key information
principal: string with new principal name.
Set the principal owning the key. The string is copied into the key, so you can dispose
of the variable immediately after calling this function.

shishi key realm

[Function]const char * shishi_key_realm (const Shishi key * key)
key : structure that holds key information
Get the realm part of the key owner principal name.
Return value: Returns the realm for the principal owning the key. (Not a copy of it,
so don’t modify or deallocate it.)

shishi key realm set

[Function]void shishi_key_realm_set (Shishi key * key , const char * realm)
key : structure that holds key information
realm: string with new realm name.
Set the realm for the principal owning the key. The string is copied into the key, so
you can dispose of the variable immediately after calling this function.

shishi key type

[Function]int shishi_key_type (const Shishi key * key)
key : structure that holds key information
Get key type.
Return value: Returns the type of key as an integer as described in the standard.

shishi key type set

[Function]void shishi_key_type_set (Shishi key * key , int32 t type)
key : structure that holds key information
type: type to set in key.
Set the type of key in key structure.

shishi key value

[Function]const char * shishi_key_value (const Shishi key * key)
key : structure that holds key information
Get the raw key bytes.
Return value: Returns the key value as a pointer which is valid throughout the
lifetime of the key structure.

Chapter 5: Programming Manual 175

shishi key value set

[Function]void shishi_key_value_set (Shishi key * key , const char * value)
key : structure that holds key information
value: input array with key data.
Set the key value and length in key structure. The value is copied into the key
(in other words, you can deallocate value right after calling this function without
modifying the value inside the key).

shishi key version

[Function]uint32_t shishi_key_version (const Shishi key * key)
key : structure that holds key information
Get the "kvno" (key version) of key. It will be UINT32 MAX if the key is not
long-lived.
Return value: Returns the version of key ("kvno").

shishi key version set

[Function]void shishi_key_version_set (Shishi key * key , uint32 t kvno)
key : structure that holds key information
kvno: new version integer.
Set the version of key ("kvno") in key structure. Use UINT32 MAX for
non-ptermanent keys.

shishi key name

[Function]const char * shishi_key_name (Shishi key * key)
key : structure that holds key information
Calls shishi cipher name for key type.
Return value: Return name of key.

shishi key length

[Function]size_t shishi_key_length (const Shishi key * key)
key : structure that holds key information
Calls shishi cipher keylen for key type.
Return value: Returns the length of the key value.

shishi key

[Function]int shishi_key (Shishi * handle , Shishi key ** key)
handle: Shishi library handle create by shishi_init().
key : pointer to structure that will hold newly created key information
Create a new Key information structure.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 176

shishi key done

[Function]void shishi_key_done (Shishi key * key)
key : pointer to structure that holds key information.
Deallocates key information structure.

shishi key copy

[Function]void shishi_key_copy (Shishi key * dstkey , Shishi key * srckey)
dstkey : structure that holds destination key information
srckey : structure that holds source key information
Copies source key into existing allocated destination key.

shishi key from value

[Function]int shishi_key_from_value (Shishi * handle , int32 t type , const
char * value , Shishi key ** key)

handle: Shishi library handle create by shishi_init().
type: type of key.
value: input array with key value, or NULL.
key : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value. KEY
contains a newly allocated structure only if this function is successful.
Return value: Returns SHISHI OK iff successful.

shishi key from base64

[Function]int shishi_key_from_base64 (Shishi * handle , int32 t type , const
char * value , Shishi key ** key)

handle: Shishi library handle create by shishi_init().
type: type of key.
value: input string with base64 encoded key value, or NULL.
key : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value. KEY
contains a newly allocated structure only if this function is successful.
Return value: Returns SHISHI INVALID KEY if the base64 encoded key length
doesn’t match the key type, and SHISHI OK on success.

shishi key random

[Function]int shishi_key_random (Shishi * handle , int32 t type , Shishi key **
key)

handle: Shishi library handle create by shishi_init().
type: type of key.
key : pointer to structure that will hold newly created key information

Chapter 5: Programming Manual 177

Create a new Key information structure for the key type and some random data.
KEY contains a newly allocated structure only if this function is successful.
Return value: Returns SHISHI OK iff successful.

shishi key from random

[Function]int shishi_key_from_random (Shishi * handle , int32 t type , const
char * rnd , size t rndlen , Shishi key ** outkey)

handle: Shishi library handle create by shishi_init().
type: type of key.
rnd: random data.
rndlen: length of random data.
outkey : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value using
shishi_random_to_key(). KEY contains a newly allocated structure only if this
function is successful.
Return value: Returns SHISHI OK iff successful.

shishi key from string

[Function]int shishi_key_from_string (Shishi * handle , int32 t type , const
char * password , size t passwordlen , const char * salt , size t saltlen ,
const char * parameter , Shishi key ** outkey)

handle: Shishi library handle create by shishi_init().
type: type of key.
password: input array containing password.
passwordlen: length of input array containing password.
salt: input array containing salt.
saltlen: length of input array containing salt.
parameter: input array with opaque encryption type specific information.
outkey : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value using
shishi_string_to_key(). KEY contains a newly allocated structure only if this
function is successful.
Return value: Returns SHISHI OK iff successful.

shishi key from name

[Function]int shishi_key_from_name (Shishi * handle , int32 t type , const char
* name , const char * password , size t passwordlen , const char *
parameter , Shishi key ** outkey)

handle: Shishi library handle create by shishi_init().
type: type of key.
name: principal name of user.

Chapter 5: Programming Manual 178

password: input array containing password.
passwordlen: length of input array containing password.
parameter: input array with opaque encryption type specific information.
outkey : pointer to structure that will hold newly created key information
Create a new Key information structure, and derive the key from principal name and
password using shishi_key_from_name(). The salt is derived from the principal
name by concatenating the decoded realm and principal.
Return value: Returns SHISHI OK iff successful.

Applications that run uninteractively may need keying material. In these cases, the
keys are stored in a file, a file that is normally stored on the local host. The file should
be protected from unauthorized access. The file is in ASCII format and contains keys as
outputed by shishi_key_print. All functions that handle these keys sets are described
now.

shishi keys

[Function]int shishi_keys (Shishi * handle , Shishi keys ** keys)
handle: shishi handle as allocated by shishi_init().
keys: output pointer to newly allocated keys handle.
Get a new key set handle.
Return value: Returns SHISHI_OK iff successful.

shishi keys done

[Function]void shishi_keys_done (Shishi keys ** keys)
keys: key set handle as allocated by shishi_keys().
Deallocates all resources associated with key set. The key set handle must not be
used in calls to other shishi keys *() functions after this.

shishi keys size

[Function]int shishi_keys_size (Shishi keys * keys)
keys: key set handle as allocated by shishi_keys().
Get size of key set.
Return value: Returns number of keys stored in key set.

shishi keys nth

[Function]const Shishi_key * shishi_keys_nth (Shishi keys * keys , int
keyno)

keys: key set handle as allocated by shishi_keys().
keyno: integer indicating requested key in key set.
Get the n: th ticket in key set.
Return value: Returns a key handle to the keyno:th key in the key set, or NULL if
keys is invalid or keyno is out of bounds. The first key is keyno 0, the second key
keyno 1, and so on.

Chapter 5: Programming Manual 179

shishi keys remove

[Function]void shishi_keys_remove (Shishi keys * keys , int keyno)
keys: key set handle as allocated by shishi_keys().
keyno: key number of key in the set to remove. The first key is key number 0.
Remove a key, indexed by keyno, in given key set.

shishi keys add

[Function]int shishi_keys_add (Shishi keys * keys , Shishi key * key)
keys: key set handle as allocated by shishi_keys().
key : key to be added to key set.
Add a key to the key set. A deep copy of the key is stored, so changing key, or
deallocating it, will not modify the value stored in the key set.
Return value: Returns SHISHI OK iff succesful.

shishi keys print

[Function]int shishi_keys_print (Shishi keys * keys , FILE * fh)
keys: key set to print.
fh: file handle, open for writing, to print keys to.
Print all keys in set using shishi key print.
Returns: Returns SHISHI_OK on success.

shishi keys to file

[Function]int shishi_keys_to_file (Shishi * handle , const char * filename ,
Shishi keys * keys)

handle: shishi handle as allocated by shishi_init().
filename: filename to append key to.
keys: set of keys to print.
Print an ASCII representation of a key structure to a file, for each key in the key set.
The file is appended to if it exists. See shishi_key_print() for the format of the
output.
Return value: Returns SHISHI_OK iff successful.

shishi keys for serverrealm in file

[Function]Shishi_key * shishi_keys_for_serverrealm_in_file (Shishi *
handle , const char * filename , const char * server , const char * realm)

handle: Shishi library handle create by shishi_init().
filename: file to read keys from.
server: server name to get key for.
realm: realm of server to get key for.
Get keys that match specified server and realm from the key set file filename.
Return value: Returns the key for specific server and realm, read from the indicated
file, or NULL if no key could be found or an error encountered.

Chapter 5: Programming Manual 180

shishi keys for server in file

[Function]Shishi_key * shishi_keys_for_server_in_file (Shishi * handle ,
const char * filename , const char * server)

handle: Shishi library handle create by shishi_init().
filename: file to read keys from.
server: server name to get key for.
Get key for specified server from filename.
Return value: Returns the key for specific server, read from the indicated file, or
NULL if no key could be found or an error encountered.

shishi keys for localservicerealm in file

[Function]Shishi_key * shishi_keys_for_localservicerealm_in_file
(Shishi * handle , const char * filename , const char * service , const char *
realm)

handle: Shishi library handle create by shishi_init().
filename: file to read keys from.
service: service to get key for.
realm: realm of server to get key for, or NULL for default realm.
Get key for specified service and realm from filename.
Return value: Returns the key for the server "SERVICE/HOSTNAMEREALM" (where
HOSTNAME is the current system’s hostname), read from the default host keys file
(see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

The previous functions require that the filename is known. For some applications,
servers, it makes sense to provide a system default. These key sets used by server ap-
plications are known as “hostkeys”. Here are the functions that operate on hostkeys (they
are mostly wrappers around generic key sets).

shishi hostkeys default file

[Function]const char * shishi_hostkeys_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Get file name of default host key file.
Return value: Returns the default host key filename used in the library. (Not a copy
of it, so don’t modify or deallocate it.)

shishi hostkeys default file set

[Function]void shishi_hostkeys_default_file_set (Shishi * handle , const
char * hostkeysfile)

handle: Shishi library handle create by shishi_init().
hostkeysfile: string with new default hostkeys file name, or NULL to reset to default.
Set the default host key filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

Chapter 5: Programming Manual 181

shishi hostkeys for server

[Function]Shishi_key * shishi_hostkeys_for_server (Shishi * handle , const
char * server)

handle: Shishi library handle create by shishi_init().
server: server name to get key for
Get host key for server.
Return value: Returns the key for specific server, read from the default host keys file
(see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

shishi hostkeys for serverrealm

[Function]Shishi_key * shishi_hostkeys_for_serverrealm (Shishi *
handle , const char * server , const char * realm)

handle: Shishi library handle create by shishi_init().
server: server name to get key for
realm: realm of server to get key for.
Get host key for server in realm.
Return value: Returns the key for specific server and realm, read from the default
host keys file (see shishi_hostkeys_default_file()), or NULL if no key could be
found or an error encountered.

shishi hostkeys for localservicerealm

[Function]Shishi_key * shishi_hostkeys_for_localservicerealm (Shishi *
handle , const char * service , const char * realm)

handle: Shishi library handle create by shishi_init().
service: service to get key for.
realm: realm of server to get key for, or NULL for default realm.
Get host key for service on current host in realm.
Return value: Returns the key for the server "SERVICE/HOSTNAMEREALM" (where
HOSTNAME is the current system’s hostname), read from the default host keys file
(see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

shishi hostkeys for localservice

[Function]Shishi_key * shishi_hostkeys_for_localservice (Shishi *
handle , const char * service)

handle: Shishi library handle create by shishi_init().
service: service to get key for.
Get host key for service on current host in default realm.
Return value: Returns the key for the server "SERVICE/HOSTNAME" (where
HOSTNAME is the current system’s hostname), read from the default host keys
file (see shishi_hostkeys_default_file()), or NULL if no key could be found or
an error encountered.

Chapter 5: Programming Manual 182

After creating the key structure, it can be used to encrypt and decrypt data, calculate
checksum on data etc. All available functions are described now.

shishi cipher supported p

[Function]int shishi_cipher_supported_p (int32 t type)
type: encryption type, see Shishi etype.
Find out if cipher is supported.
Return value: Return 0 iff cipher is unsupported.

shishi cipher name

[Function]const char * shishi_cipher_name (int32 t type)
type: encryption type, see Shishi etype.
Read humanly readable string for cipher.
Return value: Return name of encryption type, e.g. "des3-cbc-sha1-kd", as defined
in the standards.

shishi cipher blocksize

[Function]int shishi_cipher_blocksize (int32 t type)
type: encryption type, see Shishi etype.
Get block size for cipher.
Return value: Return block size for encryption type, as defined in the standards.

shishi cipher confoundersize

[Function]int shishi_cipher_confoundersize (int32 t type)
type: encryption type, see Shishi etype.
Get length of confounder for cipher.
Return value: Returns the size of the confounder (random data) for encryption type,
as defined in the standards, or (size t)-1 on error (e.g., unsupported encryption type).

shishi cipher keylen

[Function]size_t shishi_cipher_keylen (int32 t type)
type: encryption type, see Shishi etype.
Get key length for cipher.
Return value: Return length of key used for the encryption type, as defined in the
standards.

shishi cipher randomlen

[Function]size_t shishi_cipher_randomlen (int32 t type)
type: encryption type, see Shishi etype.
Get length of random data for cipher.
Return value: Return length of random used for the encryption type, as defined in
the standards, or (size t)-1 on error (e.g., unsupported encryption type).

Chapter 5: Programming Manual 183

shishi cipher defaultcksumtype

[Function]int shishi_cipher_defaultcksumtype (int32 t type)
type: encryption type, see Shishi etype.

Get the default checksum associated with cipher.

Return value: Return associated checksum mechanism for the encryption type, as
defined in the standards.

shishi cipher parse

[Function]int shishi_cipher_parse (const char * cipher)
cipher: name of encryption type, e.g. "des3-cbc-sha1-kd".

Get cipher number by parsing string.

Return value: Return encryption type corresponding to a string.

shishi checksum supported p

[Function]int shishi_checksum_supported_p (int32 t type)
type: checksum type, see Shishi cksumtype.

Find out whether checksum is supported.

Return value: Return 0 iff checksum is unsupported.

shishi checksum name

[Function]const char * shishi_checksum_name (int32 t type)
type: checksum type, see Shishi cksumtype.

Get name of checksum.

Return value: Return name of checksum type, e.g. "hmac-sha1-96-aes256", as defined
in the standards.

shishi checksum cksumlen

[Function]size_t shishi_checksum_cksumlen (int32 t type)
type: checksum type, see Shishi cksumtype.

Get length of checksum output.

Return value: Return length of checksum used for the checksum type, as defined in
the standards.

shishi checksum parse

[Function]int shishi_checksum_parse (const char * checksum)
checksum: name of checksum type, e.g. "hmac-sha1-96-aes256".

Get checksum number by parsing a string.

Return value: Return checksum type, see Shishi cksumtype, corresponding to a
string.

Chapter 5: Programming Manual 184

shishi string to key

[Function]int shishi_string_to_key (Shishi * handle , int32 t keytype , const
char * password , size t passwordlen , const char * salt , size t saltlen ,
const char * parameter , Shishi key * outkey)

handle: shishi handle as allocated by shishi_init().
keytype: cryptographic encryption type, see Shishi etype.
password: input array with password.
passwordlen: length of input array with password.
salt: input array with salt.
saltlen: length of input array with salt.
parameter: input array with opaque encryption type specific information.
outkey : allocated key handle that will contain new key.
Derive key from a string (password) and salt (commonly concatenation of realm and
principal) for specified key type, and set the type and value in the given key to the
computed values. The parameter value is specific for each keytype, and can be set if
the parameter information is not available.
Return value: Returns SHISHI_OK iff successful.

shishi random to key

[Function]int shishi_random_to_key (Shishi * handle , int32 t keytype , const
char * rnd , size t rndlen , Shishi key * outkey)

handle: shishi handle as allocated by shishi_init().
keytype: cryptographic encryption type, see Shishi etype.
rnd: input array with random data.
rndlen: length of input array with random data.
outkey : allocated key handle that will contain new key.
Derive key from random data for specified key type, and set the type and value in
the given key to the computed values.
Return value: Returns SHISHI_OK iff successful.

shishi checksum

[Function]int shishi_checksum (Shishi * handle , Shishi key * key , int
keyusage , int cksumtype , const char * in , size t inlen , char ** out , size t
* outlen)

handle: shishi handle as allocated by shishi_init().
key : key to compute checksum with.
keyusage: integer specifying what this key is used for.
cksumtype: the checksum algorithm to use.
in: input array with data to integrity protect.
inlen: size of input array with data to integrity protect.

Chapter 5: Programming Manual 185

out: output array with newly allocated integrity protected data.
outlen: output variable with length of output array with checksum.
Integrity protect data using key, possibly altered by supplied key usage. If key usage
is 0, no key derivation is used. The OUT buffer must be deallocated by the caller.
Return value: Returns SHISHI_OK iff successful.

shishi verify

[Function]int shishi_verify (Shishi * handle , Shishi key * key , int keyusage ,
int cksumtype , const char * in , size t inlen , const char * cksum , size t
cksumlen)

handle: shishi handle as allocated by shishi_init().
key : key to verify checksum with.
keyusage: integer specifying what this key is used for.
cksumtype: the checksum algorithm to use.
in: input array with data that was integrity protected.
inlen: size of input array with data that was integrity protected.
cksum: input array with alleged checksum of data.
cksumlen: size of input array with alleged checksum of data.
Verify checksum of data using key, possibly altered by supplied key usage. If key
usage is 0, no key derivation is used.
Return value: Returns SHISHI_OK iff successful.

shishi encrypt ivupdate etype

[Function]int shishi_encrypt_ivupdate_etype (Shishi * handle , Shishi key *
key , int keyusage , int32 t etype , const char * iv , size t ivlen , char **
ivout , size t * ivoutlen , const char * in , size t inlen , char ** out , size t
* outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
ivout: output array with newly allocated updated initialization vector.
ivoutlen: size of output array with updated initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key

Chapter 5: Programming Manual 186

derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or
IVOUTLEN is NULL, the updated IV is not saved anywhere.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi encrypt iv etype

[Function]int shishi_encrypt_iv_etype (Shishi * handle , Shishi key * key ,
int keyusage , int32 t etype , const char * iv , size t ivlen , const char * in ,
size t inlen , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. The next IV
is lost, see shishi encrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi encrypt etype

[Function]int shishi_encrypt_etype (Shishi * handle , Shishi key * key , int
keyusage , int32 t etype , const char * in , size t inlen , char ** out , size t
* outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.

Chapter 5: Programming Manual 187

keyusage: integer specifying what this key is encrypting.
etype: integer specifying what cipher to use.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. The default
IV is used, see shishi encrypt iv etype if you need to alter it. The next IV is lost, see
shishi encrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi encrypt ivupdate

[Function]int shishi_encrypt_ivupdate (Shishi * handle , Shishi key * key ,
int keyusage , const char * iv , size t ivlen , char ** ivout , size t *
ivoutlen , const char * in , size t inlen , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
ivout: output array with newly allocated updated initialization vector.
ivoutlen: size of output array with updated initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data using specified initialization vector and key. The key actually used is
derived using the key usage. If key usage is 0, no key derivation is used. The OUT
buffer must be deallocated by the caller. If IVOUT or IVOUTLEN is NULL, the
updated IV is not saved anywhere.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means

Chapter 5: Programming Manual 188

that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi encrypt iv

[Function]int shishi_encrypt_iv (Shishi * handle , Shishi key * key , int
keyusage , const char * iv , size t ivlen , const char * in , size t inlen , char
** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data using specified initialization vector and key. The key actually
used is derived using the key usage. If key usage is 0, no key derivation is used.
The OUT buffer must be deallocated by the caller. The next IV is lost, see
shishi encrypt ivupdate if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi encrypt

[Function]int shishi_encrypt (Shishi * handle , Shishi key * key , int
keyusage , char * in , size t inlen , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data using specified key. The key actually used is derived using the key us-
age. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated

Chapter 5: Programming Manual 189

by the caller. The default IV is used, see shishi encrypt iv if you need to alter it.
The next IV is lost, see shishi encrypt ivupdate if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI_OK iff successful.

shishi decrypt ivupdate etype

[Function]int shishi_decrypt_ivupdate_etype (Shishi * handle , Shishi key *
key , int keyusage , int32 t etype , const char * iv , size t ivlen , char **
ivout , size t * ivoutlen , const char * in , size t inlen , char ** out , size t
* outlen)

handle: shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage: integer specifying what this key is decrypting.

etype: integer specifying what cipher to use.

iv : input array with initialization vector

ivlen: size of input array with initialization vector.

ivout: output array with newly allocated updated initialization vector.

ivoutlen: size of output array with updated initialization vector.

in: input array with data to decrypt.

inlen: size of input array with data to decrypt.

out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.

Decrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or
IVOUTLEN is NULL, the updated IV is not saved anywhere.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 190

shishi decrypt iv etype

[Function]int shishi_decrypt_iv_etype (Shishi * handle , Shishi key * key ,
int keyusage , int32 t etype , const char * iv , size t ivlen , const char * in ,
size t inlen , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.
outlen: output variable with size of newly allocated output array.
Decrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. The next IV
is lost, see shishi decrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi decrypt etype

[Function]int shishi_decrypt_etype (Shishi * handle , Shishi key * key , int
keyusage , int32 t etype , const char * in , size t inlen , char ** out , size t
* outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
etype: integer specifying what cipher to use.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.
outlen: output variable with size of newly allocated output array.
Decrypts data as per encryption method using specified key. The key actually
used is derived using the key usage. If key usage is 0, no key derivation is
used. The OUT buffer must be deallocated by the caller. The default IV is

Chapter 5: Programming Manual 191

used, see shishi decrypt iv etype if you need to alter it. The next IV is lost, see
shishi decrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi decrypt ivupdate

[Function]int shishi_decrypt_ivupdate (Shishi * handle , Shishi key * key ,
int keyusage , const char * iv , size t ivlen , char ** ivout , size t *
ivoutlen , const char * in , size t inlen , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
ivout: output array with newly allocated updated initialization vector.
ivoutlen: size of output array with updated initialization vector.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.
outlen: output variable with size of newly allocated output array.
Decrypts data using specified initialization vector and key. The key actually used is
derived using the key usage. If key usage is 0, no key derivation is used. The OUT
buffer must be deallocated by the caller. If IVOUT or IVOUTLEN is NULL, the
updated IV is not saved anywhere.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI_OK iff successful.

shishi decrypt iv

[Function]int shishi_decrypt_iv (Shishi * handle , Shishi key * key , int
keyusage , const char * iv , size t ivlen , const char * in , size t inlen , char
** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 192

key : key to decrypt with.

keyusage: integer specifying what this key is decrypting.

iv : input array with initialization vector

ivlen: size of input array with initialization vector.

in: input array with data to decrypt.

inlen: size of input array with data to decrypt.

out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.

Decrypts data using specified initialization vector and key. The key actually
used is derived using the key usage. If key usage is 0, no key derivation is used.
The OUT buffer must be deallocated by the caller. The next IV is lost, see
shishi decrypt ivupdate etype if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI_OK iff successful.

shishi decrypt

[Function]int shishi_decrypt (Shishi * handle , Shishi key * key , int
keyusage , const char * in , size t inlen , char ** out , size t * outlen)

handle: shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage: integer specifying what this key is decrypting.

in: input array with data to decrypt.

inlen: size of input array with data to decrypt.

out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.

Decrypts data specified key. The key actually used is derived using the key usage. If
key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the
caller. The default IV is used, see shishi decrypt iv if you need to alter it. The next
IV is lost, see shishi decrypt ivupdate if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly.
Some encryption types add pad to make the data fit into the block size of the en-
cryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 193

shishi n fold

[Function]int shishi_n_fold (Shishi * handle , const char * in , size t inlen ,
char * out , size t outlen)

handle: shishi handle as allocated by shishi_init().
in: input array with data to decrypt.
inlen: size of input array with data to decrypt ("M").
out: output array with decrypted data.
outlen: size of output array ("N").
Fold data into a fixed length output array, with the intent to give each input bit
approximately equal weight in determining the value of each output bit.
The algorithm is from "A Better Key Schedule For DES-like Ciphers" by Uri Blumen-
thal and Steven M. Bellovin, http://www.research.att.com/~smb/papers/ides.pdf, al-
though the sample vectors provided by the paper are incorrect.
Return value: Returns SHISHI_OK iff successful.

shishi dr

[Function]int shishi_dr (Shishi * handle , Shishi key * key , const char *
prfconstant , size t prfconstantlen , char * derivedrandom , size t
derivedrandomlen)

handle: shishi handle as allocated by shishi_init().
key : input array with cryptographic key to use.
prfconstant: input array with the constant string.
prfconstantlen: size of input array with the constant string.
derivedrandom: output array with derived random data.
derivedrandomlen: size of output array with derived random data.
Derive "random" data from a key and a constant thusly: DR(KEY, PRFCON-
STANT) = TRUNCATE(DERIVEDRANDOMLEN, SHISHI ENCRYPT(KEY,
PRFCONSTANT)).
Return value: Returns SHISHI_OK iff successful.

shishi dk

[Function]int shishi_dk (Shishi * handle , Shishi key * key , const char *
prfconstant , size t prfconstantlen , Shishi key * derivedkey)

handle: shishi handle as allocated by shishi_init().
key : input cryptographic key to use.
prfconstant: input array with the constant string.
prfconstantlen: size of input array with the constant string.
derivedkey : pointer to derived key (allocated by caller).
Derive a key from a key and a constant thusly: DK(KEY, PRFCONSTANT) =
SHISHI RANDOM-TO-KEY(SHISHI DR(KEY, PRFCONSTANT)).
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 194

An easier way to use encryption and decryption if your application repeatedly calls,
e.g., shishi_encrypt_ivupdate, is to use the following functions. They store the key,
initialization vector, etc, in a context, and the encryption and decryption operations update
the IV within the context automatically.

shishi crypto

[Function]Shishi_crypto * shishi_crypto (Shishi * handle , Shishi key * key ,
int keyusage , int32 t etype , const char * iv , size t ivlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key will encrypt/decrypt.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
Initialize a crypto context. This store a key, keyusage, encryption type and initializa-
tion vector in a "context", and the caller can then use this context to perform encryp-
tion via shishi_crypto_encrypt() and decryption via shishi_crypto_encrypt()
without supplying all those details again. The functions also takes care of propagating
the IV between calls.
When the application no longer need to use the context, it should deallocate resources
associated with it by calling shishi_crypto_done().
Return value: Return a newly allocated crypto context.

shishi crypto encrypt

[Function]int shishi_crypto_encrypt (Shishi crypto * ctx , const char * in ,
size t inlen , char ** out , size t * outlen)

ctx: crypto context as returned by shishi_crypto().
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypt data, using information (e.g., key and initialization vector) from context.
The IV is updated inside the context after this call.
When the application no longer need to use the context, it should deallocate resources
associated with it by calling shishi_crypto_done().
Return value: Returns SHISHI_OK iff successful.

shishi crypto decrypt

[Function]int shishi_crypto_decrypt (Shishi crypto * ctx , const char * in ,
size t inlen , char ** out , size t * outlen)

ctx: crypto context as returned by shishi_crypto().
in: input array with data to decrypt.

Chapter 5: Programming Manual 195

inlen: size of input array with data to decrypt.

out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.

Decrypt data, using information (e.g., key and initialization vector) from context.
The IV is updated inside the context after this call.

When the application no longer need to use the context, it should deallocate resources
associated with it by calling shishi_crypto_done().

Return value: Returns SHISHI_OK iff successful.

shishi crypto close

[Function]void shishi_crypto_close (Shishi crypto * ctx)
ctx: crypto context as returned by shishi_crypto().

Deallocate resources associated with the crypto context.

Also included in Shishi is an interface to the really low-level cryptographic primitives.
They map directly on the underlying cryptographic library used (i.e., Gnulib or Libgcrypt)
and is used internally by Shishi.

shishi randomize

[Function]int shishi_randomize (Shishi * handle , int strong , void * data ,
size t datalen)

handle: shishi handle as allocated by shishi_init().

strong : 0 iff operation should not block, non-0 for very strong randomness.

data: output array to be filled with random data.

datalen: size of output array.

Store cryptographically random data of given size in the provided buffer.

Return value: Returns SHISHI_OK iff successful.

shishi crc

[Function]int shishi_crc (Shishi * handle , const char * in , size t inlen , char *
out[4])

handle: shishi handle as allocated by shishi_init().

in: input character array of data to checksum.

inlen: length of input character array of data to checksum.

Compute checksum of data using CRC32 modified according to RFC 1510. The out
buffer must be deallocated by the caller.

The modifications compared to standard CRC32 is that no initial and final XOR is
performed, and that the output is returned in LSB-first order.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 196

shishi md4

[Function]int shishi_md4 (Shishi * handle , const char * in , size t inlen , char *
out[16])

handle: shishi handle as allocated by shishi_init().
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute hash of data using MD4. The out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

shishi md5

[Function]int shishi_md5 (Shishi * handle , const char * in , size t inlen , char *
out[16])

handle: shishi handle as allocated by shishi_init().
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute hash of data using MD5. The out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

shishi hmac md5

[Function]int shishi_hmac_md5 (Shishi * handle , const char * key , size t
keylen , const char * in , size t inlen , char * outhash[16])

handle: shishi handle as allocated by shishi_init().
key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute keyed checksum of data using HMAC-MD5. The outhash buffer must be
deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

shishi hmac sha1

[Function]int shishi_hmac_sha1 (Shishi * handle , const char * key , size t
keylen , const char * in , size t inlen , char * outhash[20])

handle: shishi handle as allocated by shishi_init().
key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute keyed checksum of data using HMAC-SHA1. The outhash buffer must be
deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 197

shishi des cbc mac

[Function]int shishi_des_cbc_mac (Shishi * handle , const char key[8], const
char iv[8], const char * in , size t inlen , char * out[8])

handle: shishi handle as allocated by shishi_init().

in: input character array of data to hash.

inlen: length of input character array of data to hash.

Computed keyed checksum of data using DES-CBC-MAC. The out buffer must be
deallocated by the caller.

Return value: Returns SHISHI OK iff successful.

shishi arcfour

[Function]int shishi_arcfour (Shishi * handle , int decryptp , const char *
key , size t keylen , const char iv[258], char * ivout[258], const char * in ,
size t inlen , char ** out)

handle: shishi handle as allocated by shishi_init().

decryptp: 0 to indicate encryption, non-0 to indicate decryption.

key : input character array with key to use.

keylen: length of input key array.

in: input character array of data to encrypt/decrypt.

inlen: length of input character array of data to encrypt/decrypt.

out: newly allocated character array with encrypted/decrypted data.

Encrypt or decrypt data (depending on decryptp) using ARCFOUR. The out buffer
must be deallocated by the caller.

The "initialization vector" used here is the concatenation of the sbox and i and j, and
is thus always of size 256 + 1 + 1. This is a slight abuse of terminology, and assumes
you know what you are doing. Don’t use it if you can avoid to.

Return value: Returns SHISHI OK iff successful.

shishi des

[Function]int shishi_des (Shishi * handle , int decryptp , const char key[8],
const char iv[8], char * ivout[8], const char * in , size t inlen , char ** out)

handle: shishi handle as allocated by shishi_init().

decryptp: 0 to indicate encryption, non-0 to indicate decryption.

in: input character array of data to encrypt/decrypt.

inlen: length of input character array of data to encrypt/decrypt.

out: newly allocated character array with encrypted/decrypted data.

Encrypt or decrypt data (depending on decryptp) using DES in CBC mode. The
out buffer must be deallocated by the caller.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 198

shishi 3des

[Function]int shishi_3des (Shishi * handle , int decryptp , const char key[8],
const char iv[8], char * ivout[8], const char * in , size t inlen , char ** out)

handle: shishi handle as allocated by shishi_init().
decryptp: 0 to indicate encryption, non-0 to indicate decryption.
in: input character array of data to encrypt/decrypt.
inlen: length of input character array of data to encrypt/decrypt.
out: newly allocated character array with encrypted/decrypted data.
Encrypt or decrypt data (depending on decryptp) using 3DES in CBC mode. The
out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

shishi aes cts

[Function]int shishi_aes_cts (Shishi * handle , int decryptp , const char *
key , size t keylen , const char iv[16], char * ivout[16], const char * in ,
size t inlen , char ** out)

handle: shishi handle as allocated by shishi_init().
decryptp: 0 to indicate encryption, non-0 to indicate decryption.
key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to encrypt/decrypt.
inlen: length of input character array of data to encrypt/decrypt.
out: newly allocated character array with encrypted/decrypted data.
Encrypt or decrypt data (depending on decryptp) using AES in CBC-CTS mode.
The length of the key, keylen, decide if AES 128 or AES 256 should be used. The
out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

shishi pbkdf2 sha1

[Function]int shishi_pbkdf2_sha1 (Shishi * handle , const char * P , size t
Plen , const char * S , size t Slen , unsigned int c , unsigned int dkLen , char *
DK)

handle: shishi handle as allocated by shishi_init().
P: input password, an octet string
Plen: length of password, an octet string
S: input salt, an octet string
Slen: length of salt, an octet string
c: iteration count, a positive integer
dkLen: intended length in octets of the derived key, a positive integer, at most (2^32
- 1) * hLen. The DK array must have room for this many characters.

Chapter 5: Programming Manual 199

DK : output derived key, a dkLen-octet string
Derive key using the PBKDF2 defined in PKCS5. PBKDF2 applies a pseudorandom
function to derive keys. The length of the derived key is essentially unbounded.
(However, the maximum effective search space for the derived key may be limited
by the structure of the underlying pseudorandom function, which is this function is
always SHA1.)
Return value: Returns SHISHI OK iff successful.

5.14 X.509 Functions

The functions described in this section are used by the STARTTLS functionality, see
Section 3.6 [Kerberos via TLS], page 27.

shishi x509ca default file guess

[Function]char * shishi_x509ca_default_file_guess (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Guesses the default X.509 CA certificate filename; it is $HOME/.shishi/client.ca.
Return value: Returns default X.509 client certificate filename as a string that has
to be deallocated with free() by the caller.

shishi x509ca default file set

[Function]void shishi_x509ca_default_file_set (Shishi * handle , const char
* x509cafile)

handle: Shishi library handle create by shishi_init().
x509cafile: string with new default x509 client certificate file name, or NULL to reset
to default.
Set the default X.509 CA certificate filename used in the library. The certificate is
used during TLS connections with the KDC to authenticate the KDC. The string is
copied into the library, so you can dispose of the variable immediately after calling
this function.

shishi x509ca default file

[Function]const char * shishi_x509ca_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Get filename for default X.509 CA certificate.
Return value: Returns the default X.509 CA certificate filename used in the library.
The certificate is used during TLS connections with the KDC to authenticate the
KDC. The string is not a copy, so don’t modify or deallocate it.

shishi x509cert default file guess

[Function]char * shishi_x509cert_default_file_guess (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Guesses the default X.509 client certificate filename; it is $HOME/.shishi/client.certs.

Chapter 5: Programming Manual 200

Return value: Returns default X.509 client certificate filename as a string that has
to be deallocated with free() by the caller.

shishi x509cert default file set

[Function]void shishi_x509cert_default_file_set (Shishi * handle , const
char * x509certfile)

handle: Shishi library handle create by shishi_init().
x509certfile: string with new default x509 client certificate file name, or NULL to
reset to default.
Set the default X.509 client certificate filename used in the library. The certificate is
used during TLS connections with the KDC to authenticate the client. The string is
copied into the library, so you can dispose of the variable immediately after calling
this function.

shishi x509cert default file

[Function]const char * shishi_x509cert_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Get filename for default X.509 certificate.
Return value: Returns the default X.509 client certificate filename used in the library.
The certificate is used during TLS connections with the KDC to authenticate the
client. The string is not a copy, so don’t modify or deallocate it.

shishi x509key default file guess

[Function]char * shishi_x509key_default_file_guess (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Guesses the default X.509 client key filename; it is $HOME/.shishi/client.key.
Return value: Returns default X.509 client key filename as a string that has to be
deallocated with free() by the caller.

shishi x509key default file set

[Function]void shishi_x509key_default_file_set (Shishi * handle , const
char * x509keyfile)

handle: Shishi library handle create by shishi_init().
x509keyfile: string with new default x509 client key file name, or NULL to reset to
default.
Set the default X.509 client key filename used in the library. The key is used during
TLS connections with the KDC to authenticate the client. The string is copied into
the library, so you can dispose of the variable immediately after calling this function.

shishi x509key default file

[Function]const char * shishi_x509key_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Chapter 5: Programming Manual 201

Get filename for default X.509 key.

Return value: Returns the default X.509 client key filename used in the library. The
key is used during TLS connections with the KDC to authenticate the client. The
string is not a copy, so don’t modify or deallocate it.

5.15 Utility Functions

shishi realm default guess

[Function]char * shishi_realm_default_guess (void)
Guesses a realm based on getdomainname() (which really is NIS/YP domain, but if
it is set it might be a good guess), or if it fails, based on gethostname(), or if it fails,
the string "could-not-guess-default-realm". Note that the hostname is not trimmed
off of the data returned by gethostname() to get the domain name and use that as
the realm.

Return value: Returns guessed realm for host as a string that has to be deallocated
with free() by the caller.

shishi realm default

[Function]const char * shishi_realm_default (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Get name of default realm.

Return value: Returns the default realm used in the library. (Not a copy of it, so
don’t modify or deallocate it.)

shishi realm default set

[Function]void shishi_realm_default_set (Shishi * handle , const char *
realm)

handle: Shishi library handle create by shishi_init().

realm: string with new default realm name, or NULL to reset to default.

Set the default realm used in the library. The string is copied into the library, so you
can dispose of the variable immediately after calling this function.

shishi realm for server file

[Function]char * shishi_realm_for_server_file (Shishi * handle , char *
server)

handle: Shishi library handle create by shishi_init().

server: hostname to find realm for.

Find realm for a host using configuration file.

Return value: Returns realm for host, or NULL if not found.

Chapter 5: Programming Manual 202

shishi realm for server dns

[Function]char * shishi_realm_for_server_dns (Shishi * handle , char *
server)

handle: Shishi library handle create by shishi_init().

server: hostname to find realm for.

Find realm for a host using DNS lookups, according to draft-ietf-krb-wg-krb-dns-
locate-03.txt. Since DNS lookups may be spoofed, relying on the realm information
may result in a redirection attack. In a single-realm scenario, this only achieves a
denial of service, but with cross-realm trust it may redirect you to a compromised
realm. For this reason, Shishi prints a warning, suggesting that the user should add
the proper ’server-realm’ configuration tokens instead.

To illustrate the DNS information used, here is an extract from a zone file for the
domain ASDF.COM:

kerberos.asdf.com. IN TXT "ASDF.COM" kerberos.mrkserver.asdf.com. IN
TXT "MARKETING.ASDF.COM" kerberos.salesserver.asdf.com. IN TXT
"SALES.ASDF.COM"

Let us suppose that in this case, a client wishes to use a service on the host
foo.asdf.com. It would first query:

kerberos.foo.asdf.com. IN TXT

Finding no match, it would then query:

kerberos.asdf.com. IN TXT

Return value: Returns realm for host, or NULL if not found.

shishi realm for server

[Function]char * shishi_realm_for_server (Shishi * handle , char * server)
handle: Shishi library handle create by shishi_init().

server: hostname to find realm for.

Find realm for a host, using various methods. Currently this includes static config-
uration files (see shishi_realm_for_server_file()) and DNS (see shishi_realm_
for_server_dns()).

Return value: Returns realm for host, or NULL if not found.

shishi principal default guess

[Function]char * shishi_principal_default_guess (void)
Guesses the principal name for the user, looking at environment variables
SHISHI USER and USER, or if that fails, returns the string "user".

Return value: Returns guessed default principal for user as a string that has to be
deallocated with free() by the caller.

Chapter 5: Programming Manual 203

shishi principal default

[Function]const char * shishi_principal_default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
The default principal name is the name in the environment variable USER, but can
be overridden by specifying the environment variable SHISHI USER.
Return value: Returns the default principal name used in the library. (Not a copy of
it, so don’t modify or deallocate it.)

shishi principal default set

[Function]void shishi_principal_default_set (Shishi * handle , const char *
principal)

handle: Shishi library handle create by shishi_init().
principal: string with new default principal name, or NULL to reset to default.
Set the default realm used in the library. The string is copied into the library, so you
can dispose of the variable immediately after calling this function.

shishi parse name

[Function]int shishi_parse_name (Shishi * handle , const char * name , char **
principal , char ** realm)

handle: Shishi library handle create by shishi_init().
name: Input principal name string, e.g. imap/mail.gnu.orgGNU.ORG.
principal: newly allocated output string with principal name.
realm: newly allocated output string with realm name.
Split up principal name (e.g., "simonJOSEFSSON.ORG") into two newly allocated
strings, the principal ("simon") and realm ("JOSEFSSON.ORG"). If there is no
realm part in NAME, REALM is set to NULL.
Return value: Returns SHISHI INVALID PRINCIPAL NAME if NAME is NULL
or ends with the escape character "\", or SHISHI OK iff successful

shishi principal name

[Function]int shishi_principal_name (Shishi * handle , Shishi asn1 namenode ,
const char * namefield , char ** out , size t * outlen)

handle: Shishi library handle create by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.
out: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate outlen).
outlen: pointer to length of out on output, excluding terminating zero. May be NULL
(to only populate out).
Represent principal name in ASN.1 structure as zero-terminated string. The string
is allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length outlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 204

shishi principal name realm

[Function]int shishi_principal_name_realm (Shishi * handle , Shishi asn1
namenode , const char * namefield , Shishi asn1 realmnode , const char *
realmfield , char ** out , size t * outlen)

handle: Shishi library handle create by shishi_init().
namenode: ASN.1 structure with principal name in namefield.
namefield: name of field in namenode containing principal name.
realmnode: ASN.1 structure with principal realm in realmfield.
realmfield: name of field in realmnode containing principal realm.
out: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate outlen).
outlen: pointer to length of out on output, excluding terminating zero. May be NULL
(to only populate out).
Represent principal name and realm in ASN.1 structure as zero-terminated string.
The string is allocate by this function, and it is the responsibility of the caller to
deallocate it. Note that the output length outlen does not include the terminating
zero.
Return value: Returns SHISHI OK iff successful.

shishi principal name set

[Function]int shishi_principal_name_set (Shishi * handle , Shishi asn1
namenode , const char * namefield , Shishi name type name_type , const
char * [] name)

handle: shishi handle as allocated by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
name: zero-terminated input array with principal name.
Set the given principal name field to given name.
Return value: Returns SHISHI OK iff successful.

shishi principal set

[Function]int shishi_principal_set (Shishi * handle , Shishi asn1 namenode ,
const char * namefield , const char * name)

handle: shishi handle as allocated by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.
name: zero-terminated string with principal name on RFC 1964 form.
Set principal name field in ASN.1 structure to given name.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 205

shishi derive default salt

[Function]int shishi_derive_default_salt (Shishi * handle , const char *
name , char ** salt)

handle: shishi handle as allocated by shishi_init().

name: principal name of user.

salt: output variable with newly allocated salt string.

Derive the default salt from a principal. The default salt is the concatenation of the
decoded realm and principal.

Return value: Return SHISHI OK if successful.

shishi server for local service

[Function]char * shishi_server_for_local_service (Shishi * handle , const
char * service)

handle: shishi handle as allocated by shishi_init().

service: zero terminated string with name of service, e.g., "host".

Construct a service principal (e.g., "imap/yxa.extuno.com") based on supplied ser-
vice name (i.e., "imap") and the system hostname as returned by hostname() (i.e.,
"yxa.extundo.com"). The string must be deallocated by the caller.

Return value: Return newly allocated service name string.

shishi authorization parse

[Function]int shishi_authorization_parse (const char * authorization)
authorization: name of authorization type, e.g. "basic".

Parse authorization type name.

Return value: Return authorization type corresponding to a string.

shishi authorized p

[Function]int shishi_authorized_p (Shishi * handle , Shishi tkt * tkt , const
char * authzname)

handle: shishi handle as allocated by shishi_init().

tkt: input variable with ticket info.

authzname: authorization name.

Simplistic authorization of authzname against encrypted client principal name inside
ticket. Currently this function only compare the principal name with authzname
using strcmp().

Return value: Returns 1 if authzname is authorized for services by authenticated
client principal, or 0 otherwise.

Chapter 5: Programming Manual 206

shishi generalize time

[Function]const char * shishi_generalize_time (Shishi * handle , time t t)
handle: shishi handle as allocated by shishi_init().
t: C time to convert.
Convert C time to KerberosTime. The string must not be deallocate by caller.
Return value: Return a KerberosTime time string corresponding to C time t.

shishi generalize now

[Function]const char * shishi_generalize_now (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Convert current time to KerberosTime. The string must not be deallocate by caller.
Return value: Return a KerberosTime time string corresponding to current time.

shishi generalize ctime

[Function]time_t shishi_generalize_ctime (Shishi * handle , const char * t)
handle: shishi handle as allocated by shishi_init().
t: KerberosTime to convert.
Convert KerberosTime to C time.
Return value: Returns C time corresponding to KerberosTime t.

shishi time

[Function]int shishi_time (Shishi * handle , Shishi asn1 node , const char *
field , char ** t)

handle: shishi handle as allocated by shishi_init().
node: ASN.1 node to get time from.
field: Name of field in ASN.1 node to get time from.
t: newly allocated output array with zero terminated time string.
Extract time from ASN.1 structure.
Return value: Returns SHISHI OK iff successful.

shishi ctime

[Function]int shishi_ctime (Shishi * handle , Shishi asn1 node , const char *
field , time t * t)

handle: shishi handle as allocated by shishi_init().
node: ASN.1 variable to read field from.
field: name of field in node to read.
t: pointer to time field to set.
Extract time from ASN.1 structure.
Return value: Returns SHISHI OK if successful, SHISHI ASN1 NO ELEMENT if
the element do not exist, SHISHI ASN1 NO VALUE if the field has no value, ot
SHISHI ASN1 ERROR otherwise.

Chapter 5: Programming Manual 207

shishi prompt password callback set

[Function]void shishi_prompt_password_callback_set (Shishi * handle ,
shishi prompt password func cb)

handle: shishi handle as allocated by shishi_init().

cb: function pointer to application password callback, a shishi_prompt_password_
func type.

Set a callback function that will be used by shishi_prompt_password() to query the
user for a password. The function pointer can be retrieved using shishi_prompt_
password_callback_get().

The cb function should follow the shishi_prompt_password_func prototype:

int prompt password (Shishi * handle, char **s, const char *format, va list ap);

If the function returns 0, the s variable should contain a newly allocated string with
the password read from the user.

shishi prompt password callback get

[Function]shishi_prompt_password_func
shishi_prompt_password_callback_get (Shishi * handle)

handle: shishi handle as allocated by shishi_init().

Get the application password prompt function callback as set by shishi_prompt_
password_callback_set().

Returns: Returns the callback, a shishi_prompt_password_func type, or NULL.

shishi prompt password

[Function]int shishi_prompt_password (Shishi * handle , char ** s , const char
* format , ...)

handle: shishi handle as allocated by shishi_init().

s: pointer to newly allocated output string with read password.

format: printf(3) style format string. ...: printf(3) style arguments.

Format and print a prompt, and read a password from user. The password is possi-
bly converted (e.g., converted from Latin-1 to UTF-8, or processed using Stringprep
profile) following any "stringprocess" keywords in configuration files.

Return value: Returns SHISHI OK iff successful.

shishi resolv

[Function]Shishi_dns shishi_resolv (const char * zone , uint16 t querytype)
zone: owner name of data, e.g. "EXAMPLE.ORG"

querytype: type of data to query for, e.g., SHISHI DNS TXT.

Query DNS resolver for data of type querytype at owner name zone. Currently TXT
and SRV types are supported.

Return value: Returns linked list of DNS records, or NULL if query failed.

Chapter 5: Programming Manual 208

shishi resolv free

[Function]void shishi_resolv_free (Shishi dns rrs)
rrs: list of DNS RR as returned by shishi_resolv().
Deallocate list of DNS RR as returned by shishi_resolv().

5.16 ASN.1 Functions

shishi asn1 read inline

[Function]int shishi_asn1_read_inline (Shishi * handle , Shishi asn1 node ,
const char * field , char * data , size t * datalen)

handle: shishi handle as allocated by shishi_init().
node: ASN.1 variable to read field from.
field: name of field in node to read.
data: pre-allocated output buffer that will hold ASN.1 field data.
datalen: on input, maximum size of output buffer, on output, actual size of output
buffer.
Extract data stored in a ASN.1 field into a fixed size buffer allocated by caller.
Note that since it is difficult to predict the length of the field, it is often better to use
shishi_asn1_read() instead.
Return value: Returns SHISHI OK if successful, SHISHI ASN1 NO ELEMENT if
the element do not exist, SHISHI ASN1 NO VALUE if the field has no value, ot
SHISHI ASN1 ERROR otherwise.

shishi asn1 read

[Function]int shishi_asn1_read (Shishi * handle , Shishi asn1 node , const char
* field , char ** data , size t * datalen)

handle: shishi handle as allocated by shishi_init().
node: ASN.1 variable to read field from.
field: name of field in node to read.
data: newly allocated output buffer that will hold ASN.1 field data.
datalen: actual size of output buffer.
Extract data stored in a ASN.1 field into a newly allocated buffer. The buffer will
always be zero terminated, even though datalen will not include the added zero.
Return value: Returns SHISHI OK if successful, SHISHI ASN1 NO ELEMENT if
the element do not exist, SHISHI ASN1 NO VALUE if the field has no value, ot
SHISHI ASN1 ERROR otherwise.

shishi asn1 read optional

[Function]int shishi_asn1_read_optional (Shishi * handle , Shishi asn1 node ,
const char * field , char ** data , size t * datalen)

handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 209

node: ASN.1 variable to read field from.
field: name of field in node to read.
data: newly allocated output buffer that will hold ASN.1 field data.
datalen: actual size of output buffer.
Extract data stored in a ASN.1 field into a newly allocated buffer. If the field does
not exist (i.e., SHISHI ASN1 NO ELEMENT), this function set datalen to 0 and
succeeds. Can be useful to read ASN.1 fields which are marked OPTIONAL in the
grammar, if you want to avoid special error handling in your code.
Return value: Returns SHISHI OK if successful, SHISHI ASN1 NO VALUE if the
field has no value, ot SHISHI ASN1 ERROR otherwise.

shishi asn1 done

[Function]void shishi_asn1_done (Shishi * handle , Shishi asn1 node)
handle: shishi handle as allocated by shishi_init().
node: ASN.1 node to dellocate.
Deallocate resources associated with ASN.1 structure. Note that the node must not
be used after this call.

shishi asn1 pa enc ts enc

[Function]Shishi_asn1 shishi_asn1_pa_enc_ts_enc (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for PA-ENC-TS-ENC.
Return value: Returns ASN.1 structure.

shishi asn1 encrypteddata

[Function]Shishi_asn1 shishi_asn1_encrypteddata (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for EncryptedData
Return value: Returns ASN.1 structure.

shishi asn1 padata

[Function]Shishi_asn1 shishi_asn1_padata (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for PA-DATA.
Return value: Returns ASN.1 structure.

shishi asn1 methoddata

[Function]Shishi_asn1 shishi_asn1_methoddata (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for METHOD-DATA.
Return value: Returns ASN.1 structure.

Chapter 5: Programming Manual 210

shishi asn1 etype info

[Function]Shishi_asn1 shishi_asn1_etype_info (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for ETYPE-INFO.
Return value: Returns ASN.1 structure.

shishi asn1 etype info2

[Function]Shishi_asn1 shishi_asn1_etype_info2 (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for ETYPE-INFO2.
Return value: Returns ASN.1 structure.

shishi asn1 asreq

[Function]Shishi_asn1 shishi_asn1_asreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for AS-REQ.
Return value: Returns ASN.1 structure.

shishi asn1 asrep

[Function]Shishi_asn1 shishi_asn1_asrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for AS-REP.
Return value: Returns ASN.1 structure.

shishi asn1 tgsreq

[Function]Shishi_asn1 shishi_asn1_tgsreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for TGS-REQ.
Return value: Returns ASN.1 structure.

shishi asn1 tgsrep

[Function]Shishi_asn1 shishi_asn1_tgsrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for TGS-REP.
Return value: Returns ASN.1 structure.

shishi asn1 apreq

[Function]Shishi_asn1 shishi_asn1_apreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for AP-REQ.
Return value: Returns ASN.1 structure.

Chapter 5: Programming Manual 211

shishi asn1 aprep

[Function]Shishi_asn1 shishi_asn1_aprep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for AP-REP.
Return value: Returns ASN.1 structure.

shishi asn1 encapreppart

[Function]Shishi_asn1 shishi_asn1_encapreppart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for AP-REP.
Return value: Returns ASN.1 structure.

shishi asn1 ticket

[Function]Shishi_asn1 shishi_asn1_ticket (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for Ticket.
Return value: Returns ASN.1 structure.

shishi asn1 encticketpart

[Function]Shishi_asn1 shishi_asn1_encticketpart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for EncTicketPart.
Return value: Returns ASN.1 structure.

shishi asn1 authenticator

[Function]Shishi_asn1 shishi_asn1_authenticator (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for Authenticator.
Return value: Returns ASN.1 structure.

shishi asn1 enckdcreppart

[Function]Shishi_asn1 shishi_asn1_enckdcreppart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for EncKDCRepPart.
Return value: Returns ASN.1 structure.

shishi asn1 encasreppart

[Function]Shishi_asn1 shishi_asn1_encasreppart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Create new ASN.1 structure for EncASRepPart.
Return value: Returns ASN.1 structure.

Chapter 5: Programming Manual 212

shishi asn1 krberror

[Function]Shishi_asn1 shishi_asn1_krberror (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Create new ASN.1 structure for KRB-ERROR.

Return value: Returns ASN.1 structure.

shishi asn1 krbsafe

[Function]Shishi_asn1 shishi_asn1_krbsafe (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Create new ASN.1 structure for KRB-SAFE.

Return value: Returns ASN.1 structure.

shishi asn1 priv

[Function]Shishi_asn1 shishi_asn1_priv (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Create new ASN.1 structure for KRB-PRIV.

Return value: Returns ASN.1 structure.

shishi asn1 encprivpart

[Function]Shishi_asn1 shishi_asn1_encprivpart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Create new ASN.1 structure for EncKrbPrivPart.

Return value: Returns ASN.1 structure.

shishi asn1 to der field

[Function]int shishi_asn1_to_der_field (Shishi * handle , Shishi asn1 node ,
const char * field , char ** der , size t * len)

handle: shishi handle as allocated by shishi_init().

node: ASN.1 data that have field to extract.

field: name of field in node to extract.

der: output array that holds DER encoding of field in node.

len: output variable with length of der output array.

Extract newly allocated DER representation of specified ASN.1 field.

Return value: Returns SHISHI OK if successful, or SHISHI ASN1 ERROR if DER
encoding fails (common reasons for this is that the ASN.1 is missing required values).

Chapter 5: Programming Manual 213

shishi asn1 to der

[Function]int shishi_asn1_to_der (Shishi * handle , Shishi asn1 node , char **
der , size t * len)

handle: shishi handle as allocated by shishi_init().

node: ASN.1 data to convert to DER.

der: output array that holds DER encoding of node.

len: output variable with length of der output array.

Extract newly allocated DER representation of specified ASN.1 data.

Return value: Returns SHISHI OK if successful, or SHISHI ASN1 ERROR if DER
encoding fails (common reasons for this is that the ASN.1 is missing required values).

shishi asn1 msgtype

[Function]Shishi_msgtype shishi_asn1_msgtype (Shishi * handle , Shishi asn1
node)

handle: shishi handle as allocated by shishi_init().

node: ASN.1 type to get msg type for.

Determine msg-type of ASN.1 type of a packet. Currently this uses the msg-type field
instead of the APPLICATION tag, but this may be changed in the future.

Return value: Returns msg-type of ASN.1 type, 0 on failure.

shishi der msgtype

[Function]Shishi_msgtype shishi_der_msgtype (Shishi * handle , const char *
der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Determine msg-type of DER coded data of a packet.

Return value: Returns msg-type of DER data, 0 on failure.

shishi der2asn1

[Function]Shishi_asn1 shishi_der2asn1 (Shishi * handle , const char * der ,
size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Convert arbitrary DER data of a packet to a ASN.1 type.

Return value: Returns newly allocate ASN.1 corresponding to DER data, or NULL on
failure.

Chapter 5: Programming Manual 214

shishi der2asn1 padata

[Function]Shishi_asn1 shishi_der2asn1_padata (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of PA-DATA and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 methoddata

[Function]Shishi_asn1 shishi_der2asn1_methoddata (Shishi * handle , const
char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of METHOD-DATA and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 etype info

[Function]Shishi_asn1 shishi_der2asn1_etype_info (Shishi * handle , const
char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of ETYPE-INFO and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 etype info2

[Function]Shishi_asn1 shishi_der2asn1_etype_info2 (Shishi * handle , const
char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of ETYPE-INFO2 and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

Chapter 5: Programming Manual 215

shishi der2asn1 ticket

[Function]Shishi_asn1 shishi_der2asn1_ticket (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of Ticket and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 encticketpart

[Function]Shishi_asn1 shishi_der2asn1_encticketpart (Shishi * handle ,
const char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of EncTicketPart and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 asreq

[Function]Shishi_asn1 shishi_der2asn1_asreq (Shishi * handle , const char *
der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of AS-REQ and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 tgsreq

[Function]Shishi_asn1 shishi_der2asn1_tgsreq (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of TGS-REQ and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

Chapter 5: Programming Manual 216

shishi der2asn1 asrep

[Function]Shishi_asn1 shishi_der2asn1_asrep (Shishi * handle , const char *
der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of AS-REP and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 tgsrep

[Function]Shishi_asn1 shishi_der2asn1_tgsrep (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of TGS-REP and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 kdcrep

[Function]Shishi_asn1 shishi_der2asn1_kdcrep (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of KDC-REP and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 encasreppart

[Function]Shishi_asn1 shishi_der2asn1_encasreppart (Shishi * handle ,
const char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of EncASRepPart and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

Chapter 5: Programming Manual 217

shishi der2asn1 enctgsreppart

[Function]Shishi_asn1 shishi_der2asn1_enctgsreppart (Shishi * handle ,
const char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of EncTGSRepPart and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 enckdcreppart

[Function]Shishi_asn1 shishi_der2asn1_enckdcreppart (Shishi * handle ,
const char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of EncKDCRepPart and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 authenticator

[Function]Shishi_asn1 shishi_der2asn1_authenticator (Shishi * handle ,
const char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of Authenticator and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 krberror

[Function]Shishi_asn1 shishi_der2asn1_krberror (Shishi * handle , const
char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of KRB-ERROR and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

Chapter 5: Programming Manual 218

shishi der2asn1 krbsafe

[Function]Shishi_asn1 shishi_der2asn1_krbsafe (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of KRB-SAFE and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 priv

[Function]Shishi_asn1 shishi_der2asn1_priv (Shishi * handle , const char *
der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of KRB-PRIV and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 encprivpart

[Function]Shishi_asn1 shishi_der2asn1_encprivpart (Shishi * handle , const
char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of EncKrbPrivPart and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 apreq

[Function]Shishi_asn1 shishi_der2asn1_apreq (Shishi * handle , const char *
der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of AP-REQ and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

Chapter 5: Programming Manual 219

shishi der2asn1 aprep

[Function]Shishi_asn1 shishi_der2asn1_aprep (Shishi * handle , const char *
der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of AP-REP and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 encapreppart

[Function]Shishi_asn1 shishi_der2asn1_encapreppart (Shishi * handle ,
const char * der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of EncAPRepPart and create a ASN.1 structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi der2asn1 kdcreq

[Function]Shishi_asn1 shishi_der2asn1_kdcreq (Shishi * handle , const char
* der , size t derlen)

handle: shishi handle as allocated by shishi_init().

der: input character array with DER encoding.

derlen: length of input character array with DER encoding.

Decode DER encoding of AS-REQ, TGS-REQ or KDC-REQ and create a ASN.1
structure.

Return value: Returns ASN.1 structure corresponding to DER data.

shishi asn1 print

[Function]void shishi_asn1_print (Shishi * handle , Shishi asn1 node , FILE *
fh)

handle: shishi handle as allocated by shishi_init().

node: ASN.1 data that have field to extract.

fh: file descriptor to print to, e.g. stdout.

Print ASN.1 structure in human readable form, typically for debugging purposes.

Chapter 5: Programming Manual 220

5.17 Error Handling

Most functions in ‘Libshishi’ are returning an error if they fail. For this reason, the applica-
tion should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

5.17.1 Error Values

Errors are returned as an int. Except for the SHISHI OK case, an application should
always use the constants instead of their numeric value. Applications are encouraged to use
the constants even for SHISHI OK as it improves readability. Possible values are:

SHISHI_OK
This value indicates success. The value of this error is guaranteed to always be
0 so you may use it in boolean constructs.

SHISHI_ASN1_ERROR
Error in ASN.1 function (corrupt data?)

SHISHI_FOPEN_ERROR
Could not open file

SHISHI_IO_ERROR
File input/output error

SHISHI_MALLOC_ERROR
Memory allocation error in shishi library.

SHISHI_BASE64_ERROR
Base64 encoding or decoding failed. Data corrupt?

SHISHI_REALM_MISMATCH
Client realm value differ between request and reply.

SHISHI_CNAME_MISMATCH
Client name value differ between request and reply.

SHISHI_NONCE_MISMATCH
Replay protection value (nonce) differ between request and reply.

SHISHI_TICKET_BAD_KEYTYPE
Keytype used to encrypt ticket doesn’t match provided key. This usually indi-
cates an internal application error.

SHISHI_CRYPTO_INTERNAL_ERROR
Internal error in low-level crypto routines.

SHISHI_CRYPTO_ERROR
Low-level cryptographic primitive failed. This usually indicates bad password
or data corruption.

Chapter 5: Programming Manual 221

SHISHI_KDC_TIMEOUT
Timedout talking to KDC. This usually indicates a network or KDC address
problem.

SHISHI_KDC_NOT_KNOWN_FOR_REALM
No KDC for realm known.

SHISHI_SOCKET_ERROR
The system call socket() failed. This usually indicates that your system does
not support the socket type.

SHISHI_BIND_ERROR
The system call bind() failed. This usually indicates insufficient permissions.

SHISHI_SENDTO_ERROR
The system call sendto() failed.

SHISHI_CLOSE_ERROR
The system call close() failed.

SHISHI_GOT_KRBERROR
Server replied with an error message to request.

SHISHI_INVALID_TKTS
Ticketset not initialized. This usually indicates an internal application error.

SHISHI_APREQ_DECRYPT_FAILED
Could not decrypt AP-REQ using provided key. This usually indicates an
internal application error.

SHISHI_TICKET_DECRYPT_FAILED
Could not decrypt Ticket using provided key. This usually indicates an internal
application error.

SHISHI_KEYTAB_ERROR
Failed to parse keytab file

SHISHI_CCACHE_ERROR
Failed to parse credential cache file

5.17.2 Error Functions

shishi strerror

[Function]const char * shishi_strerror (int err)
err: shishi error code.

Convert return code to human readable string.

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the error value err. This string can be used to output a
diagnostic message to the user.

Chapter 5: Programming Manual 222

shishi error

[Function]const char * shishi_error (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Extract detailed error information string. Note that the memory is managed by the
Shishi library, so you must not deallocate the string.
Return value: Returns pointer to error information string, that must not be deallocate
by caller.

shishi error clear

[Function]void shishi_error_clear (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Clear the detailed error information string. See shishi_error() for how to access
the error string, and shishi_error_set() and shishi_error_printf() for how to
set the error string. This function is mostly for Shishi internal use, but if you develop
an extension of Shishi, it may be useful to use the same error handling infrastructure.

shishi error set

[Function]void shishi_error_set (Shishi * handle , const char * errstr)
handle: shishi handle as allocated by shishi_init().
errstr: Zero terminated character array containing error description, or NULL to
clear the error description string.
Set the detailed error information string to specified string. The string is copied into
the Shishi internal structure, so you can deallocate the string passed to this function
after the call. This function is mostly for Shishi internal use, but if you develop an
extension of Shishi, it may be useful to use the same error handling infrastructure.

shishi error printf

[Function]void shishi_error_printf (Shishi * handle , const char * format ,
...)

handle: shishi handle as allocated by shishi_init().
format: printf style format string. ...: print style arguments.
Set the detailed error information string to a printf formatted string. This function
is mostly for Shishi internal use, but if you develop an extension of Shishi, it may be
useful to use the same error handling infrastructure.

shishi error outputtype

[Function]int shishi_error_outputtype (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Get the current output type for logging messages.
Return value: Return output type (NULL, stderr or syslog) for informational and
warning messages.

Chapter 5: Programming Manual 223

shishi error set outputtype

[Function]void shishi_error_set_outputtype (Shishi * handle , int type)
handle: shishi handle as allocated by shishi_init().

type: output type.

Set output type (NULL, stderr or syslog) for informational and warning messages.

shishi info

[Function]void shishi_info (Shishi * handle , const char * format , ...)
handle: shishi handle as allocated by shishi_init().

format: printf style format string. ...: print style arguments.

Print informational message to output as defined in handle.

shishi warn

[Function]void shishi_warn (Shishi * handle , const char * format , ...)
handle: shishi handle as allocated by shishi_init().

format: printf style format string. ...: print style arguments.

Print a warning to output as defined in handle.

shishi verbose

[Function]void shishi_verbose (Shishi * handle , const char * format , ...)
handle: shishi handle as allocated by shishi_init().

format: printf style format string. ...: print style arguments.

Print a diagnostic message to output as defined in handle.

5.18 Examples

This section will be extended to contain walk-throughs of example code that demonstrate
how ‘Shishi’ is used to write your own applications that support Kerberos 5. The rest of
the current section consists of some crude hints for the example client/server applications
that is part of Shishi, taken from an email but saved here for lack of a better place to put
it.

There are two programs: ’client’ and ’server’ in src/.

The client output an AP-REQ, waits for an AP-REP, and then simply reads data from
stdin.

The server waits for an AP-REQ, parses it and prints an AP-REP, and then read data
from stdin.

Both programs accept a Kerberos server name as the first command line argument. Your
KDC must know this server, since the client tries to get a ticket for it (first it gets a ticket
granting ticket for the default username), and you must write the key for the server into
/usr/local/etc/shishi.keys on the Shishi format, e.g.:

Chapter 5: Programming Manual 224

-----BEGIN SHISHI KEY-----
Keytype: 16 (des3-cbc-sha1-kd)
Principal: sample/latte.josefsson.org
Realm: JOSEFSSON.ORG

8W0VrQQBpxlACPQEqN91EHxbvFFo2ltt
-----END SHISHI KEY-----

You must extract the proper encryption key from the KDC in some way. (This part will
be easier when Shishi include a KDC, a basic one isn’t far away, give me a week or to.)

The intention is that the data read, after the authentication phase, should be protected
using KRB SAFE (see RFC) but I haven’t added this yet.

5.19 Kerberos Database Functions

Shisa is a separate and standalone library from Shishi (see Section 3.1 [Introduction to
Shisa], page 19). If you only wish to manipulate the information stored in the Kerberos
user database used by Shishi, you do not need to link or use the Shishi library at all.
However, you may find it useful to combine the two libraries.

For two real world examples on using the Shisa library, refer to ‘src/shisa.c’ (Shisa
command line tool) and ‘src/kdc.c’ (part of Shishid server).

Shisa uses two ‘struct’s to carry information. The first, Shisa_principal, is used to
hold information about principals. The struct does not contain pointers to strings etc, so
the library assumes the caller is responsible for allocating and deallocating the struct itself.
Each such struct is (uniquely) identified by the combination of principal name and realm
name.

struct Shisa_principal
{
int isdisabled;
uint32_t kvno;
time_t notusedbefore;
time_t lastinitialtgt; /* time of last initial request for a TGT */
time_t lastinitialrequest; /* time of last initial request */
time_t lasttgt; /* time of issue for the newest TGT used */
time_t lastrenewal; /* time of the last renewal */
time_t passwordexpire; /* time when the password will expire */
time_t accountexpire; /* time when the account will expire. */

};
typedef struct Shisa_principal Shisa_principal;

The second structure is called Shisa_key and hold information about cryptographic keys.
Because the struct contain pointers, and the caller cannot know how many keys a principal
have, the Shisa library manages memory for the struct. The library allocate the structs, and
the pointers within them. The caller may deallocate them, but it is recommended to use
shisa_key_free or shisa_keys_free instead. Note that each principal may have multiple
keys.

struct Shisa_key
{

Chapter 5: Programming Manual 225

uint32_t kvno;
int32_t etype;
int priority;
char *key;
size_t keylen;
char *salt;
size_t saltlen;
char *str2keyparam;
size_t str2keyparamlen;
char *password;

};
typedef struct Shisa_key Shisa_key;

Shisa is typically initialized by calling shisa_init, and deinitialized (when the applica-
tion no longer need to use Shisa, typically when it shuts down) by calling shisa_done, but
here are the complete (de)initialization interface functions.

shisa

[Function]Shisa * shisa (void)
Initializes the Shisa library. If this function fails, it may print diagnostic errors to
stderr.

Return value: Returns Shisa library handle, or NULL on error.

shisa done

[Function]void shisa_done (Shisa * dbh)
Deallocates the shisa library handle. The handle must not be used in any calls to
shisa functions after this.

shisa init

[Function]int shisa_init (Shisa ** dbh)
dbh: pointer to library handle to be created.

Create a Shisa library handle, using shisa(), and read the system configuration file
from their default locations. The paths to the default system configuration file is
decided at compile time ($sysconfdir/shisa.conf).

The handle is allocated regardless of return values, except for SHISA INIT ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISA_OK iff successful.

shisa init with paths

[Function]int shisa_init_with_paths (Shisa ** dbh , const char * file)
dbh: pointer to library handle to be created.

file: Filename of system configuration, or NULL.

Chapter 5: Programming Manual 226

Create a Shisa library handle, using shisa(), and read the system configuration file
indicated location (or the default location, if NULL). The paths to the default system
configuration file is decided at compile time ($sysconfdir/shisa.conf).

The handle is allocated regardless of return values, except for SHISA INIT ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISA_OK iff successful.

The default configuration file is typically read automatically by calling shisa_init, but
if you wish to manually access the Shisa configuration file functions, here is the complete
interface.

shisa cfg db

[Function]int shisa_cfg_db (Shisa * dbh , const char * value)
dbh: Shisa library handle created by shisa().

value: string with database definition.

Setup and open a new database. The syntax of the value parameter is "TYPE[
LOCATION[PARAMETER]]", where TYPE is one of the supported database types
(e.g., "file") and LOCATION and PARAMETER are optional strings passed to the
database during initialization. Neither TYPE nor LOCATION can contain " " (SPC),
but PARAMETER may.

Return Value: Returns SHISA_OK if database was parsed and open successfully.

shisa cfg

[Function]int shisa_cfg (Shisa * dbh , const char * option)
dbh: Shisa library handle created by shisa().

option: string with shisa library option.

Configure shisa library with given option.

Return Value: Returns SHISA OK if option was valid.

shisa cfg from file

[Function]int shisa_cfg_from_file (Shisa * dbh , const char * cfg)
dbh: Shisa library handle created by shisa().

cfg : filename to read configuration from.

Configure shisa library using configuration file.

Return Value: Returns SHISA_OK iff succesful.

shisa cfg default systemfile

[Function]const char * shisa_cfg_default_systemfile (Shisa * dbh)
dbh: Shisa library handle created by shisa().

Return value: Return system configuration filename.

Chapter 5: Programming Manual 227

The core part of the Shisa interface follows. The typical procedure is to use shisa_
principal_find to verify that a specific principal exists, and to extract some information
about it, and then use shisa_keys_find to get the cryptographic keys for the principal,
usually suppliying some hints as to which of all keys you are interested in (e.g., key version
number and encryption algorithm number).

shisa enumerate realms

[Function]int shisa_enumerate_realms (Shisa * dbh , char *** realms , size t *
nrealms)

dbh: Shisa library handle created by shisa().

realms: Pointer to newly allocated array of newly allocated zero-terminated UTF-8
strings indicating name of realm.

nrealms: Pointer to number indicating number of allocated realm strings.

Extract a list of all realm names in backend, as zero-terminated UTF-8 strings. The
caller must deallocate the strings.

Return value: Returns SHISA OK on success, or error code.

shisa enumerate principals

[Function]int shisa_enumerate_principals (Shisa * dbh , const char * realm ,
char *** principals , size t * nprincipals)

dbh: Shisa library handle created by shisa().

realm: Name of realm, as zero-terminated UTF-8 string.

nprincipals: Pointer to number indicating number of allocated realm strings.

Extract a list of all principal names in realm in backend, as zero-terminated UTF-8
strings. The caller must deallocate the strings.

Return value: Returns SHISA OK on success, SHISA NO REALM if the specified
realm does not exist, or error code.

shisa principal find

[Function]int shisa_principal_find (Shisa * dbh , const char * realm , const
char * principal , Shisa principal * ph)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to get information on.

ph: Pointer to previously allocated principal structure to fill out with information
about principal.

Extract information about given PRINCIPALREALM.

Return value: Returns SHISA_OK iff successful, SHISA_NO_REALM if the indicated realm
does not exist, SHISA_NO_PRINCIPAL if the indicated principal does not exist, or an
error code.

Chapter 5: Programming Manual 228

shisa principal update

[Function]int shisa_principal_update (Shisa * dbh , const char * realm , const
char * principal , const Shisa principal * ph)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to get information on.

ph: Pointer to principal structure with information to store in database.

Modify information stored for given PRINCIPALREALM. Note that it is usually a
good idea to only set the fields in ph that you actually want to update. Specifically,
first calling shisa_principal_find() to get the current information, then modifying
one field, and calling shisa_principal_update() is not recommended in general, as
this will 1) overwrite any modifications made to other fields between the two calls (by
other processes) and 2) will cause all values to be written again, which may generate
more overhead.

Return value: Returns SHISA OK if successful, SHISA_NO_REALM if the indicated
realm does not exist, SHISA_NO_PRINCIPAL if the indicated principal does not exist,
or an error code.

shisa principal add

[Function]int shisa_principal_add (Shisa * dbh , const char * realm , const
char * principal , const Shisa principal * ph , const Shisa key * key)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to add, may be NULL to indicate that the realm should
be created, in which case ph and key are not used.

ph: Pointer to principal structure with information to store in database.

key : Pointer to key structure with information to store in database.

Add given information to database as PRINCIPALREALM.

Return value: Returns SHISA OK iff successfully added, or an error code.

shisa principal remove

[Function]int shisa_principal_remove (Shisa * dbh , const char * realm , const
char * principal)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to remove, may be NULL to indicate that the realm itself
should be removed (requires that the realm to be empty).

Remove all information stored in the database for given PRINCIPALREALM.

Return value: Returns SHISA_OK if successful, or an error code.

Chapter 5: Programming Manual 229

shisa keys find

[Function]int shisa_keys_find (Shisa * dbh , const char * realm , const char *
principal , const Shisa key * hint , Shisa key *** keys , size t * nkeys)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to add key for.

hint: Pointer to Shisa key structure with hints on matching the key to modify, may
be NULL to match all keys.

keys: pointer to newly allocated array with Shisa key structures.

nkeys: pointer to number of newly allocated Shisa key structures in keys.

Iterate through keys for given PRINCIPALREALM and extract any keys that match
hint. Not all elements of hint need to be filled out, only use the fields you are
interested in. For example, if you want to extract all keys with an etype of 3 (DES-
CBC-MD5), set the key->etype field to 3, and set all other fields to 0.

Return value: Returns SHISA_OK iff successful, or an error code.

shisa key add

[Function]int shisa_key_add (Shisa * dbh , const char * realm , const char *
principal , const Shisa key * key)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to add key for.

key : Pointer to Shisa key structure with key to add.

Add key to database for given PRINCIPALREALM.

Return value: Returns SHISA_OK iff successful, or an error code.

shisa key update

[Function]int shisa_key_update (Shisa * dbh , const char * realm , const char *
principal , const Shisa key * oldkey , const Shisa key * newkey)

dbh: Shisa library handle created by shisa().

realm: Name of realm the principal belongs in.

principal: Name of principal to remove key for.

oldkey : Pointer to Shisa key structure with hints on matching the key to modify.

newkey : Pointer to Shisa key structure with new values for the key, note that all
fields are used (and not just the ones specified by oldkey).

Modify data about a key in the database, for the given PRINCIPALREALM. First the
oldkey is used to locate the key to update (similar to shisa_keys_find()), then
that key is modified to contain whatever information is stored in newkey. Not all
elements of oldkey need to be filled out, only enough as to identify the key uniquely.
For example, if you want to modify the information stored for the only key with an

Chapter 5: Programming Manual 230

etype of 3 (DES-CBC-MD5), set the key->etype field to 3, and set all other fields to
0.
Return value: Returns SHISA_OK on success, SHISA_NO_KEY if no key could be iden-
tified, and SHISA_MULTIPLE_KEY_MATCH if more than one key matched the given cri-
teria, or an error code.

shisa key remove

[Function]int shisa_key_remove (Shisa * dbh , const char * realm , const char *
principal , const Shisa key * key)

dbh: Shisa library handle created by shisa().
realm: Name of realm the principal belongs in.
principal: Name of principal to remove key for.
key : Pointer to Shisa key structure with hints on matching the key to remove.
Remove a key, matching the hints in key, from the Shisa database for the user
PRINCIPALREALM. Not all elements of key need to be filled out, only those you
are interested in. For example, if you want to remove the only key with an etype of
3 (DES-CBC-MD5), set the key->etype field to 3, and set all other fields to 0.
Return value: Returns SHISA_OK on success, SHISA_NO_KEY if no key could be iden-
tified, and SHISA_MULTIPLE_KEY_MATCH if more than one key matched the given cri-
teria, or an error code.

shisa key free

[Function]void shisa_key_free (Shisa * dbh , Shisa key * key)
dbh: Shisa library handle created by shisa().
key : Pointer to Shisa key structure to deallocate.
Deallocate the fields of a Shisa key structure, and the structure itself.

shisa keys free

[Function]void shisa_keys_free (Shisa * dbh , Shisa key ** keys , size t nkeys)
dbh: Shisa library handle created by shisa().
keys: Pointer to array with nkeys elements of keys.
nkeys: Number of key elements in keys array.
Deallocate each element of an array with Shisa database keys, using shisa_key_
free().

Error handling is similar to that for Shishi in general (see Section 5.17 [Error Handling],
page 220), i.e., you invoke shisa_strerror on the integer return value received by some
function, if the return value is non-zero. Below is the complete interface.

shisa strerror

[Function]const char * shisa_strerror (int err)
err: shisa error code

Chapter 5: Programming Manual 231

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the error value err. This string can be used to output a
diagnostic message to the user.

shisa info

[Function]void shisa_info (Shisa * dbh , const char * format , ...)
dbh: Shisa library handle created by shisa().
format: printf style format string. ...: print style arguments.
Print informational message to standard error.

5.20 Generic Security Service

As an alternative to the native Shishi programming API, it is possible to program Shishi
through the Generic Security Services (GSS) API. The advantage of using GSS-API in your
security application, instead of the native Shishi API, is that it will be easier to port your
application between different Kerberos 5 implementations, and even beyond Kerberos 5
to different security systems, that support GSS-API. In the free software world, however,
almost the only widely used security system that supports GSS-API is Kerberos 5, so the
last advantage is somewhat academic. But if you are porting applications using GSS-API
for other Kerberos 5 implementations, or want a more mature and stable API than the
native Shishi API, you may find using Shishi’s GSS-API interface compelling. Note that
GSS-API only offer basic services, for more advanced uses you must use the native API.

Since the GSS-API is not specific to Shishi, it is distributed indepen-
dently from Shishi. Further information on the GSS project can be found at
http://www.gnu.org/software/gss/.

http://www.gnu.org/software/gss/

Chapter 6: Acknowledgements 232

6 Acknowledgements

Shishi uses Libtasn1 by Fabio Fiorina, Libgcrypt and Libgpg-error by Werner Koch, Libidn
by Simon Josefsson, cvs2cl by Karl Fogel, and gdoc by Michael Zucchi.

Several GNU packages simplified development considerably, those packages include Au-
toconf, Automake, Libtool, Gnulib, Gettext, Indent, CVS, Texinfo, Help2man and Emacs.

Several people reported bugs, sent patches or suggested improvements, see the file
THANKS.

Nicolas Pouvesle wrote the section about the Kerberos rsh/rlogin protocol.
This manual borrows text from the Kerberos 5 specification.

Appendix A: Criticism of Kerberos 233

Appendix A Criticism of Kerberos

The intention with this section is to discuss various problems with Kerberos 5, so you
can form a conscious decision how to deploy and use Shishi correctly in your organization.
Currently the issues below are condensed, and mostly serve as a reminder for the author to
elaborate on them.

No encryption scheme with security proof.
No standardized API, and GSS mechanism lack important functionality.
Lack of authorization system. (krb5 kuserok())
Host to realm mapping relies on insecure DNS or static configuration files.
Informational model and user database administration.
Non-formal specification. Unclear on the etype to use for session keys (etype in request

or database?). Unclear on how to populate some “evident” fields (e.g., cname in tickets
for AS-REQ, or crealm, cname, realm, sname, ctime and cusec in KRB-ERROR). Unclear
error code semantics (e.g., logic for when to use S PRINCIPAL UNKNOWN absent). Some
KRB-ERROR fields are required, but can’t be usefully populated in some situations, and
no guidance is given on what they should contain.

RFC 1510/1510bis incompatibilities. NULL enctype removed without discussion, and
it is still used by some 1964 GSSAPI implementations. KRB SAFE text (3.4.1) says the
checksum is generated using the session or sub-session key, which contradicts itself (compare
section 3.2.6) and also RFC 1510, which both allow the application to define the key.
Verification of KRB SAFE now require the key to be compatible with the (sub-)session
key, in 1510 the only requirement was that it was collision proof.

Problems with RFC 1510bis. Uses bignum INTEGER for TYPED-DATA and AD-AND-
OR.

Problems with crypto specification. It uses the word “random” many times, but there is
no discussion on the randomness requirements. Practical experience indicate it is impossible
to use true randomness for all “random” fields, and no implementation does this. A post
by Don Davis on the ietf-krb-wg list tried to provide insight, but the information was never
added to the specification.

Appendix B: Protocol Extensions 234

Appendix B Protocol Extensions

This appendix specifies the non-standard protocol elements implemented by Shishi. By
nature of being non-standard, everything described here is experimental. Comments and
feedback is appreciated.

B.1 STARTTLS protected KDC exchanges

Shishi is able to “upgrade” TCP communications with the KDC to use the Transport
Layer Security (TLS) protocol. The TLS protocol offers integrity and privacy protected
exchanges. TLS also offers authentication using username and passwords, X.509 certificates,
or OpenPGP certificates. Kerberos 5 claims to offer some of these features, although it is
not as rich as the TLS protocol. An inconclusive list of the motivation for using TLS is
given below.

• Server authentication of the KDC to the client. In traditional Kerberos 5, KDC au-
thentication is only proved as a side effect that the KDC knows your encryption key
(i.e., your password).

• Client authentication against KDC. Kerberos 5 assume the user knows a key (usually in
the form of a password). Sometimes external factors make this hard to fulfill. In some
situations, users are equipped with smart cards with a RSA authentication key. In oth-
ers, users have a OpenPGP client on their desktop, with a public OpenPGP key known
to the server. In some situations, the policy may be that password authentication may
only be done through SRP.

• Kerberos exchanges are privacy protected. Part of many Kerberos packets are trans-
fered without privacy protection (i.e., encryption). That part contains information,
such as the client principal name, the server principal name, the encryption types sup-
ported by the client, the lifetime of tickets, etc. Revealing such information is, in some
threat models, considered a problem. Thus, this enables “anonymity”.

• Prevents downgrade attacks affecting encryption types. The encryption type of the
ticket in KDC-REQ are sent in the clear in Kerberos 5. This allows an attacker to
replace the encryption type with a compromised mechanisms, e.g. 56-bit DES. Since
clients in general cannot know the encryption types other servers support, it is diffi-
cult for the client to detect if there was a man-in-the-middle or if the remote server
simply did not support a stronger mechanism. Clients may chose to refuse 56-bit DES
altogether, but in some environments this leads to operational difficulties.

• TLS is well-proved and the protocol is studied by many parties. This is an advantage
in network design, where TLS is often already assumed as part of the solution since it
is used to protect HTTP, IMAP, SMTP etc. In some threat models, the designer prefer
to reduce the number of protocols that can hurt the overall system security if they are
compromised.

Other reasons for using TLS exists.

B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)

RFC 1510bis requires Kerberos servers (KDCs) to accept TCP requests. Each request
and response is prefixed by a 4 octet integer in network byte order, indicating the length

Appendix B: Protocol Extensions 235

of the packet. The high bit of the length was reserved for future expansion, and servers
that do not understand how to interpret a set high bit must return a KRB-ERROR with a
KRB_ERR_FIELD_TOOLONG and close the TCP stream.

The TCP/IP transport with TLS upgrade (STARTTLS) uses this reserved bit as follows.
First we define a new extensible typed hole for Kerberos 5 messages, because we used the
only reserved bit. It is thus prudent to offer future extensions on our proposal. Secondly we
reserve two values in this new typed hole, and described how they are used to implement
STARTTLS.

B.1.2 Extensible typed hole based on reserved high bit

When the high bit is set, the remaining 31 bits of the 4 octets are treated as an extensible
typed hole, and thus form a 31 bit integer enumerating various extensions. Each of the
values indicate a specific extended operation mode, two of which are used and defined here,
and the rest are left for others to use. If the KDC do not understand a requested extension,
it MUST return a KRB-ERROR with a KRB_ERR_FIELD_TOOLONG value (prefixed by the 4 octet
length integer, with the high bit clear, as usual) and close the TCP stream.

Meaning of the 31 lower bits in the 4 octet field, when the high bit is set:
0 RESERVED.
1 STARTTLS requested by client.
2 STARTTLS request accepted by server.
3...2147483647 AVAILABLE for registration (via bug-shishi@josefsson.org).
2147483648 RESERVED.

B.1.3 STARTTLS requested by client (extension mode 1)

When this is sent by the client, the client is requesting the server to start TLS negotiation on
the TCP stream. The client MUST NOT start TLS negotiation immediately. Instead, the
client wait for either a KRB-ERROR (sent normally, prefixed by a 4 octet length integer)
indicating the server do not understand the set high bit, or 4 octet which is to interpreted
as an integer in network byte order, where the high bit is set and the remaining 31 bit are
interpreted as an integer specifying the “STARTTLS request accepted by server”. In the
first case, the client infer that the server do not understand (or wish to support) STARTTLS,
and can re-try using normal TCP, if unprotected Kerberos 5 exchanges are acceptable to
the client policy. In the latter case, it should invoke TLS negotiation on the stream. If any
other data is received, the client MUST close the TCP stream.

B.1.4 STARTTLS request accepted by server (extension mode 2)

This 4 octet message should be sent by the server when it has received the previous 4 octet
message. The message is an acknowledgment of the client’s request to initiate STARTTLS
on the channel. The server MUST then invoke a TLS negotiation.

B.1.5 Proceeding after successful TLS negotiation

If the TLS negotiation ended successfully, possibly also considering client or server policies,
the exchange within the TLS protected stream is performed like normal UDP Kerberos
5 exchanges, i.e., there is no TCP 4 octet length field before each packet. Instead each
Kerberos packet MUST be sent within one TLS record, so the application can use the TLS
record length as the Kerberos 5 packet length.

Appendix B: Protocol Extensions 236

B.1.6 Proceeding after failed TLS negotiation

If the TLS negotiation fails, possibly due to client or server policy (e.g., inadequate support
of encryption types in TLS, or lack of client or server authentication) the entity that detect
the failure MUST disconnected the connection. It is expected that any error messages that
explain the error condition is transfered by TLS.

B.1.7 Interaction with KDC addresses in DNS

Administrators for a KDC may announce the KDC address by placing SRV records in
DNS for the realm, as described in ‘draft-ietf-krb-wg-krb-dns-locate-03.txt’. That
document mention TLS, but do not reference any work that describe how KDCs uses TLS.
Until further clarified, consider the TLS field in that document to refer to implementation
supporting this STARTTLS protocol.

B.1.8 Using TLS authentication logic in Kerberos

The server MAY consider the authentication performed by the TLS exchange as sufficient to
issue Kerberos 5 tickets to the client, without requiring, e.g., pre-authentication. However,
it is not an error to require or use pre-authentication as well.

The client may also indicate that it wishes to use TLS both for authentication and
data protection by using the ‘NULL’ encryption type in its request. The server can decide
from its local policy whether or not issuing tickets based solely on TLS authentication, and
whether ‘NULL’ encryption within TLS, is acceptable or not. This mode is currently under
investigation.

B.1.9 Security considerations

Because the initial token is not protected, it is possible for an active attacker to make
it appear to the client that the server do not support this extension. It is up to client
configuration to disallow non-TLS connections, if this vulnerability is deemed unacceptable.
For interoperability, we suggest the default behaviour should be to allow automatic fallback
to TCP or UDP.

The security considerations of both TLS and Kerberos 5 are inherited. Using TLS
for authentication and/or data protection together with Kerberos alter the authentication
logic fundamentally. Thus, it may be that even if the TLS and Kerberos 5 protocols and
implementations were secure, the combination of TLS and Kerberos 5 described here could
be insecure.

No channel bindings are provided in the Kerberos messages. It is an open question
whether, and how, this should be fixed.

B.2 Telnet encryption with AES-CCM

This appendix describe how Shishi use the Advanced Encryption Standard (AES) encryp-
tion algorithm in Counter with CBC-MAC mode (RFC 3610) with the telnet encryption
option (RFC 2946).

B.2.1 Command Names and Codes

Encryption Type

Appendix B: Protocol Extensions 237

AES_CCM 12

Suboption Commands

AES_CCM_INFO 1
AES_CCM_INFO_OK 2
AES_CCM_INFO_BAD 3

B.2.2 Command Meanings

IAC SB ENCRYPT IS AES_CCM AES_CCM_INFO <M> <L> <nonce> IAC SE

The sender of this command select desired M and L parameters, and nonce, as described in
RFC 3610, and sends it to the other side of the connection. The parameters and the nonce
are sent in clear text. Only the side of the connection that is WILL ENCRYPT may send
the AES CCM INFO command.

IAC SB ENCRYPT REPLY AES_CCM AES_CCM_INFO_BAD IAC SE

The sender of this command reject the parameters received in the AES CCM INFO
command. Only the side of the connection that is DO ENCRYPT may send the
AES CCM INFO BAD command. The command MUST be sent if the nonce field length
does not match the selected value for L. The command MAY be sent if the receiver do not
accept the parameters for reason such as policy. No capability is provided to negotiate
these parameters.

IAC SB ENCRYPT REPLY AES_CCM AES_CCM_INFO_OK IAC SE

The sender of this command accepts the parameters received in the AES CCM INFO
command. Only the side of the connection that is DO ENCRYPT may send the
AES CCM INFO BAD command. The command MUST NOT be sent if the nonce field
length does not match the selected value for L.

B.2.3 Implementation Rules

Once a AES CCM INFO OK command has been received, the WILL ENCRYPT side of the
connection should do keyid negotiation using the ENC KEYID command. Once the keyid
negotiation has successfully identified a common keyid, then START and END commands
may be sent by the side of the connection that is WILL ENCRYPT. Data will be encrypted
using the AES-CCM algorithm, with the negotiated nonce and parameters M and L. After
each successful encryption and decryption, the nonce is treated as an integer in network
byte order, and incremented by one.

If encryption (decryption) is turned off and back on again, and the same keyid is used
when re-starting the encryption (decryption), the intervening clear text must not change
the state of the encryption (decryption) machine. In particular, the AES-CCM nonce must
not be re-set.

If a START command is sent (received) with a different keyid, the encryption (decryp-
tion) machine must be re-initialized immediately following the end of the START command
with the new key and the parameters sent (received) in the last AES CCM INFO command.

If a new AES CCM INFO command is sent (received), and encryption (decryption) is
enabled, the encryption (decryption) machine must be re-initialized immediately following

Appendix B: Protocol Extensions 238

the end of the AES CCM INFO command with the new nonce and parameters, and the
keyid sent (received) in the last START command.

If encryption (decryption) is not enabled when a AES CCM INFO command is sent
(received), the encryption (decryption) machine must be re- initialized after the next START
command, with the keyid sent (received) in that START command, and the nonce and
parameters sent (received) in this AES CCM INFO command.

At all times MUST each end make sure that a AES-CCM nonce is not used twice under
the same encryption key. The rules above help accomplish this in an interoperable way.

B.2.4 Integration with the AUTHENTICATION telnet option

<<This section is slightly complicated. Can’t we simplify this?>>

As noted in the telnet ENCRYPTION option specifications, a keyid value of zero indi-
cates the default encryption key, as might be derived from the telnet AUTHENTICATION
option. If the default encryption key negotiated as a result of the telnet AUTHENTICA-
TION option contains less than 32 bytes (corresponding to two 128 bit keys), then the
AES CCM option MUST NOT be offered or used as a valid telnet encryption option. Fur-
thermore, depending on policy for key lengths, the AES CCM option MAY be disabled if
the default encryption key contain less than 48 bytes (for two 192 bit keys), or less than 64
bytes (for two 256 bit keys), as well.

The available encrypt key data is divided on two halves, where the first half is used to
encrypt data sent from the server (decrypt data received by the client), and the second half
is used to encrypt data sent from the client (decrypt data received by the server).

Note that the above algorithm assumes that the AUTHENTICATION mechanism gen-
erate keying material suitable for AES-CCM as used in this specification. This is not
necessarily true in general, but we specify this behaviour as the default since it is true for
most authentication systems in popular use today. New telnet AUTHENTICATION mech-
anisms may specify alternative methods for determining the keys to be used for this cipher
suite in their specification, if the session key negotiated by that authentication mechanism
is not a DES key and and where this algorithm may not be safely used.

Kerberos 5 authentication clarification: The key used to encrypt data from the client to
the server is taken from the sub-session key in the AP-REQ. The key used to decrypt data
from the server to the client is taken from the sub-session key in the AP-REP. If mutual
authentication is not negotiated, the key used to encrypt data from the client to the server is
taken from the session key in the ticket, and the key used to decrypt data from the server to
the client is taken from the sub-session key in the AP-REQ. Leaving the AP-REQ sub-key
field empty MUST disable the AES CCM option.

B.2.5 Security Considerations

The protocol must be properly and securely implemented. For example, an implementation
should not be vulnerable to various implementation-specific attacks such as buffer overflows
or side-channel analysis.

We wish to repeat the suggestion from RFC 2946, to investigate in a STARTTLS ap-
proach for Telnet encryption (and also authentication), when the security level provided by
this specification is not adequate.

Appendix B: Protocol Extensions 239

B.2.5.1 Telnet Encryption Protocol Security Considerations

The security consideration of the Telnet encryption protocol are inherited.

It should be noted that the it is up to the authentication protocol used, if any, to bind
the authenticity of the peers to a specific session.

The Telnet encryption protocol does not, in general, protect against possibly malicious
downgrading to any mutually acceptable, but not preferred, encryption type. This places
a requirement on each peer to only accept encryption types it trust fully. In other words,
the Telnet encryption protocol do not guarantee that the strongest mutually acceptable
encryption type is always selected.

B.2.5.2 AES-CCM Security Considerations

The integrity and privacy claims are inherited from AES-CCM. In particular, the imple-
mentation must make sure a nonce is not used more than once together with the same
key.

Furthermore, the encryption key is assumed to be random, i.e., it should not be possible
to guess it with probability of success higher than guessing any uniformly selected random
key. RFC 1750 gives an overview of issues and recommendations related to randomness.

B.2.6 Acknowledgments

This document is based on the various Telnet Encryption RFCs (RFC 2946, RFC 2947,
RFC 2948, RFC 2952 and RFC 2953).

B.3 Kerberized rsh and rlogin

This appendix describe the KCMDV0.2 protocol used in shishi patched version of inetutils.
The KCMD protocol was developped by the MIT Kerberos team for kerberized rsh an
rlogin programs. Differences between rlogin an rsh will be explained, like those between
v0.1 and v0.2 of the protocol for compatibility reasons. It is possible that some parts of this
document are not in conformity with original KCMD protocol because there is no official
specification about it. However, it seems that shishi implementation is compatible with
MIT’s one.

Warning: If you are seriously considering using Kerberos rsh or rlogin, instead
of more robust remote access protocols such as SSH, you may first want to ex-
plore http://www.cs.berkeley.edu/~hildrum/kerberos/ and the full paper at
http://www.cs.berkeley.edu/~hildrum/043.pdf.

B.3.1 Establish connection

First the client should establish a TCP connection with the server. Default ports are 543
(klogin), 544 (kshell), 2105 (eklogin). eklogin is the same as klogin but with encryption.
Their is no longer ekshell port because encrypted and normal connection use the same
port (kshell). Kshell need a second connection for stderr. The client should send a null
terminated string that represent the port of this second connection. Klogin and eklogin
does not use a second connection for stderr so the client must send a null byte to the server.
Contrary to classic rsh/rlogin, server must not check if the client port is in the range 0-1023.

http://www.cs.berkeley.edu/~hildrum/kerberos/
http://www.cs.berkeley.edu/~hildrum/043.pdf

Appendix B: Protocol Extensions 240

B.3.2 Kerberos identification

When connections are established, first thing to do is to indicate kerberos authentication
must be used. So the client will send a string to indicate it will used kerberos 5. It will
call a length-string "strl" the couple (lenght of the string strl, null terminated string strl).
Length of the string is an int32 (32bits int) in MSB order (for the network). So the client
send this length-string strl :

KRB5_SENDAUTH_V1.0

After that the client must indicate which version of the protocol it will used by sending
this length-string strl :

KCMDV0.2

It can be V0.1 for older versions. If indentification from client is good, server will send
a null byte (0x00). Else if authentication message is wrong, server send byte 0x01, else if
protocol version message is wrong server send byte 0x02.

B.3.3 Kerberos authentication

When client is indentified, kerberos authentication can begin. The client must send an
AP-REQ to the server. AP-REQ authenticator must have a subkey (only for KCMDV0.2)
and a checksum. Authenticator checksum is created on following string :

"serverport:""terminaltype""remoteusername"

for example :
543:linux/38400user

remoteusername corresponds to the identity of the client on remote machine.
AP-REQ is sended in der encoded format. The length (int32) of der encoded AP-REQ

is sended in network format (MSB), following by the der encoded AP-REQ. If all is correct,
server send a null int32 (MSB format but like it is null it is not important). KCMD protocol
use mutual authentication, so server must now send and AP-REP : (in32 lenght in MSB of
der encoded AP-REP)(der encoded AP-REP).

Now server and client are partially authenticated.

B.3.4 Extended authentication

Client must now send 3 different null terminated strings (without lenght) :
• remote user name (user identity on remote machine)
• terminal type for rlogin or command for rsh
• local user name (user identity on client machine)

example for rsh :
"rname\0"
"cat /usr/local/etc/shishi.conf"
"lname\0"

Server must verify that checksum in AP-REQ authenticator is correct by computing a
new hash like client has done.

Server must verify that principal (in AP-REQ) has right to log in on the remote user
account. For the moment shishi only check if remote user name is equal to principal. A

Appendix B: Protocol Extensions 241

more complex authorization code is planned. Look at the end to know how MIT/Heimdal
do to check authorization.

If all is correct server send a null byte, else an error message string (null terminated
string) is sent. User read the first byte. If it is equal to zero, authentication is correct and
is logged on the remote host. Else user can read the error messsage send by the server.

B.3.5 Window size

For rlogin protocol, when authentication is complete, the server can optionnaly send a
message to ask for window terminal size of user. Then the user can respond but it is not
an obligation.

In KCMDV0.1 server send an urgent TCP message (MSG OOB) with one byte :
TIOCPKT_WINDOW = 0x80

In KCMDV0.2 server does not send an urgent message but write on the socket 5 bytes :
’\377’, ’\377’, ’o’, ’o’, TIOCPKT_WINDOW

If encryption is enabled (eklogin) server must send this 5 bytes encrypted.
Client can answer in both protocol version with :

’\377’, ’\377’, ’s’, ’s’, "struct winsize"

The winsize structure is filled with corresponding setting to client’s terminal. If encryp-
tion is enabled this answer must be send encrypted.

B.3.6 End of authentication

The "classic" rsh/rlogin can be used now.

B.3.7 Encryption

Encryption mode is used when a connection with eklogin is established. Encryption with
krsh can be used too. Before, there was a specific port for that (ekshell), but now to indicate
that encryption must be used with krsh, client must add "-x " before the command when
it send it between remote user name and local user name. When the client compute the
checksum for AP-REQ authenticator the "- x" must not be included.

Encryption in KCMDV0.2 is not the same as in KCMDV0.1. KCMDV0.1 uses ticket
session key as encryption key, and use standard Kerberos encryption functions. This pro-
tocol only supports des-cbc-crc, des-cbc-md4, des-cbc-md5 and does not use initialisation
vectors.

For example on each encryption/decryption calls, the following prototype kerberos func-
tion should be used :

kerberos_encrypt (key, keyusage, in, out) (or decrypt)

KCMDV0.2 can be used with all kerberos encryption modes (des, 3des, aes, arcfour)
and use AP-REQ authenticator subkey. In opposite to KCMDV0.1 initialisation vectors
are used. All encryptions/descryptions must be made using a cryptographic context (for
example to use the updated iv, or sbox) :

kerberos_init(ctx, iv, key, keyusage)
kerberos_encrypt (ctx, in, out)

For both protocols, keyusage id for des-cbc-md5, des-cbc-md4, des-cbc-crc and des3-cbc-
sha1 (for KCMDV0.2) :

Appendix B: Protocol Extensions 242

keyusage = 1026

For other KCMDV0.2 modes keyusage is different for each encryption/decryption usage.
To understand, eklogin use 1 socket. It encrypts data (output 1) to send and decrypts
(input 1) received data. Kshell use 2 sockets (1 for transmit data, 1 for stderr). So there
are four modes :

transmit : input 1
output 1

stderr : input 2
output 2

There is a keyusage for each modes. The keyusage must correspond on client and server
side. For example in klogin client input 1 keyusage will be server output 1 keyusage.
I/O Client Server
intput 1 1028 1030
output 1 1030 1028
intput 2 1032 1034
output 2 1034 1032

Those keyusages must be used with AES and ARCFOUR modes.
KCMDV0.2 uses IV (initialisation vector). Like for keyusage, client IV must correspond

to server IV. IV size is equal to key type, blocksize. All bytes of IV must be initialised to :
I/O Client Server
intput 1 0 1
output 1 1 0
intput 2 2 3
output 2 3 2

ARCFOUR mode does not use IV. However, like it is said before, a context must be
used to keep the updated sbox.

Normal message with klogin and kshell are sent like that :
(int 32 lenght of message in MSB order)
(message)

In encrypted mode it is a bit different :
(int 32 length of unencrypted message in MSB order)
(encrypted message)

In KCMDV0.2 encrypted message is create like that :
encrypt (
(int 32 length of message in MSB order)
(message)
)

A check on message size can be made in second version of the protocol.

B.3.8 KCMDV0.3

This part only gives possible ways to extend KCMD protocol. Does not take that as must
have in KCMD implementation.

Appendix B: Protocol Extensions 243

Extensions of KCMV0.2 could be made. For example kshell supposes there are no files
with name "-x *". I think the same thing can be supposed with terminal name for klogin.
So client could add "-x " to terminal type it sends to server to indicate it will use encryption.
Like that there will be only one port for klogin/eklogin : 543.

In encrypted mode kshell send command in clear on the network, this could be considered
as insecure as user have decided to use encryption. This is not really a problem for klogin
because it just sends terminal type.

In encrypted mode, klogin and kshell clients could only send "-x" as command or terminal
type. After that encryption is activated, and the client could send terminal type or command
encrypted. The server will send the null byte to say that all is correct, or error message in
encrypted form.

B.3.9 MIT/Heimdal authorization

This part describes how MIT/Heimdal version check authorization of the user to log in on
the remote machine.

Authorization check is made by looking if the file .k5login exists on the account of the
remote user. If this file does not exist, remote user name must be the same as principal in
AP-REQ to valid authorization. Else if this file exists, check first verify that remote user
or root are the owner of .k5login. If it is not the case, the check fails. If it is good, check
reads each line of that file and compare each readed name to principal. If principal is found
in .k5login, authorization is valid, else user is not allowed to connect on remote host with
the specified remote user name (that can be the same as principal).

So someone (for example user "user1") can remote log into "user2" account if .k5login is
present in user2 home dir and this file is owned by user2 or root and user1 name is present
in this file.

B.4 Key as initialization vector

The des-cbc-crc algorithm (see Section 1.4 [Cryptographic Overview], page 5) uses the
DES key as the initialization vector. This is problematic in general (see below1), but may
be mitigated in Kerberos by the CRC checksum that is also included.

From daw@espresso.CS.Berkeley.EDU Fri Mar 1 13:32:34 PST 1996
Article: 50440 of sci.crypt
Path: agate!daw
From: daw@espresso.CS.Berkeley.EDU (David A Wagner)
Newsgroups: sci.crypt
Subject: Re: DES-CBC and Initialization Vectors
Date: 29 Feb 1996 21:48:16 GMT
Organization: University of California, Berkeley
Lines: 31
Message-ID: <4h56v0$3no@agate.berkeley.edu>
References: <4h39li$33o@gaia.ns.utk.edu>
NNTP-Posting-Host: espresso.cs.berkeley.edu

1 The post is copyrighted by David Wagner, included here with permission, the canonical location is
http://www.cs.berkeley.edu/~daw/my-posts/key-as-iv-broken

http://www.cs.berkeley.edu/~daw/my-posts/key-as-iv-broken

Appendix B: Protocol Extensions 244

In article <4h39li$33o@gaia.ns.utk.edu>,
Nair Venugopal <venu@mars.utcc.utk.edu> wrote:
> Is there anything wrong in using the key as the I.V. in DES-CBC mode?

Yes, you’re open to a chosen-ciphertext attack which recovers the key.

Alice is sending stuff DES-CBC encrypted with key K to Bob. Mary is an
active adversary in the middle. Suppose Alice encrypts some plaintext
blocks P_1, P_2, P_3, ... in DES-CBC mode with K as the IV, and sends off
the resulting ciphertext

A->B: C_1, C_2, C_3, ...
where each C_j is a 8-byte DES ciphertext block. Mary wants to discover
the key K, but doesn’t even know any of the P_j’s. She replaces the above
message by

M->B: C_1, 0, C_1
where 0 is the 8-byte all-zeros block. Bob will decrypt under DES-CBC,
recovering the blocks

Q_1, Q_2, Q_3
where

Q_1 = DES-decrypt(K, C_1) xor K = P_1
Q_2 = DES-decrypt(K, C_2) xor C_1 = (some unimportant junk)
Q_3 = DES-decrypt(K, C_1) xor 0 = P_1 xor K

Bob gets this garbage-looking message Q_1,Q_2,Q_3 which Mary recovers
(under the chosen-ciphertext assumption: this is like a known-plaintext
attack, which isn’t too implausible). Notice that Mary can recover K by

K = Q_1 xor Q_3;
so after this one simple active attack, Mary gets the key back!

So, if you must use a fixed IV, don’t use the key-- use 0 or something
like that. Even better, don’t use a fixed IV-- use the DES encryption
of a counter, or something like that.

B.5 The Keytab Binary File Format

The keytab file format is described in the file ‘keytab.txt’, included in verbatim below.

The Kerberos Keytab Binary File Format
Copyright (C) 2006 Michael B Allen <mba2000 ioplex.com>
http://www.ioplex.com/utilities/keytab.txt
Last updated: Fri May 5 13:39:40 EDT 2006

The MIT keytab binary format is not a standard format, nor is it
documented anywhere in detail. The format has evolved and may continue
to. It is however understood by several Kerberos implementations including
Heimdal and of course MIT and keytab files are created by the ktpass.exe
utility from Windows. So it has established itself as the defacto format
for storing Kerberos keys.

Appendix B: Protocol Extensions 245

The following C-like structure definitions illustrate the MIT keytab
file format. All values are in network byte order. All text is ASCII.

keytab {
uint16_t file_format_version; /* 0x502 */
keytab_entry entries[*];

};

keytab_entry {
int32_t size;
uint16_t num_components; /* sub 1 if version 0x501 */
counted_octet_string realm;
counted_octet_string components[num_components];
uint32_t name_type; /* not present if version 0x501 */
uint32_t timestamp;
uint8_t vno8;
keyblock key;
uint32_t vno; /* only present if >= 4 bytes left in entry */

};

counted_octet_string {
uint16_t length;
uint8_t data[length];

};

keyblock {
uint16_t type;
counted_octet_string;

};

The keytab file format begins with the 16 bit file_format_version which
at the time this document was authored is 0x502. The format of older
keytabs is described at the end of this document.

The file_format_version is immediately followed by an array of
keytab_entry structures which are prefixed with a 32 bit size indicating
the number of bytes that follow in the entry. Note that the size should be
evaluated as signed. This is because a negative value indicates that the
entry is in fact empty (e.g. it has been deleted) and that the negative
value of that negative value (which is of course a positive value) is
the offset to the next keytab_entry. Based on these size values alone
the entire keytab file can be traversed.

The size is followed by a 16 bit num_components field indicating the
number of counted_octet_string components in the components array.

Appendix B: Protocol Extensions 246

The num_components field is followed by a counted_octet_string
representing the realm of the principal.

A counted_octet_string is simply an array of bytes prefixed with a 16
bit length. For the realm and name components, the counted_octet_string
bytes are ASCII encoded text with no zero terminator.

Following the realm is the components array that represents the name of
the principal. The text of these components may be joined with slashs
to construct the typical SPN representation. For example, the service
principal HTTP/www.foo.net@FOO.NET would consist of name components
"HTTP" followed by "www.foo.net".

Following the components array is the 32 bit name_type (e.g. 1 is
KRB5_NT_PRINCIPAL, 2 is KRB5_NT_SRV_INST, 5 is KRB5_NT_UID, etc). In
practice the name_type is almost certainly 1 meaning KRB5_NT_PRINCIPAL.

The 32 bit timestamp indicates the time the key was established for that
principal. The value represents the number of seconds since Jan 1, 1970.

The 8 bit vno8 field is the version number of the key. This value is
overridden by the 32 bit vno field if it is present.

The keyblock structure consists of a 16 bit value indicating the keytype
(e.g. 3 is des-cbc-md5, 23 is arcfour-hmac-md5, 16 is des3-cbc-sha1,
etc). This is followed by a counted_octet_string containing the key.

The last field of the keytab_entry structure is optional. If the size of
the keytab_entry indicates that there are at least 4 bytes remaining,
a 32 bit value representing the key version number is present. This
value supersedes the 8 bit vno8 value preceeding the keyblock.

Older keytabs with a file_format_version of 0x501 are different in
three ways:

1) All integers are in host byte order [1].
2) The num_components field is 1 too large (i.e. after decoding,

decrement by 1).
3) The 32 bit name_type field is not present.

[1] The file_format_version field should really be treated as two
separate 8 bit quantities representing the major and minor version
number respectively.

Permission to copy, modify, and distribute this document, with or
without modification, for any purpose and without fee or royalty is
hereby granted, provided that you include this copyright notice in ALL

Appendix B: Protocol Extensions 247

copies of the document or portions thereof, including modifications.

B.6 The Credential Cache Binary File Format

The credential cache file format is described in the file ‘keytab.txt’, included in verbatim
below.

The Kerberos Credential Cache Binary File Format
Copyright (C) 2006 Simon Josefsson <simon josefsson.org>
http://josefsson.org/shishi/ccache.txt
Last updated: Sat Sep 23 12:04:11 CEST 2006

Like the MIT keytab binary format (see Michael B Allen’s reverse
engineered description in keytab.txt), the credential cache format is
not standard nor documented anywhere.

In C style notation, the MIT credential cache file format is as
follows. All values are in network byte order. All text is ASCII.

ccache {
uint16_t file_format_version; /* 0x0504 */
uint16_t headerlen; /* only if version is 0x0504 */
header headers[]; /* only if version is 0x0504 */
principal primary_principal;
credential credentials[*];

};

header {
uint16_t tag; /* 1 = DeltaTime */
uint16_t taglen;
uint8_t tagdata[taglen]

};

The ccache.taglen and ccache.tags fields are only present in 0x0504
versions, not in earlier. Both MIT and Heimdal appear to correctly
ignore unknown tags, so it appears safe to add them (although there is
no central place to "register" tags).

Currently only one tag is widely implemented, DeltaTime (0x0001). Its
taglen is always 8, and tagdata will contain:

DeltaTime {
uint32_t time_offset;
uint32_t usec_offset;

};

After reading the file_format_version, header tags, and default
principal, a list of credentials follow. You deduce from the file

Appendix B: Protocol Extensions 248

length when there are no more credentials.

credential {
principal client;
principal server;
keyblock key;
times time;
uint8_t is_skey; /* 1 if skey, 0 otherwise */
uint32_t tktflags; /* stored in reversed byte order */
uint32_t num_address;
address addrs[num_address];
uint32_t num_authdata;
authdata authdata[num_authdata];
countet_octet_string ticket;
countet_octet_string second_ticket;

};

keyblock {
uint16_t keytype;
uint16_t etype; /* only present if version 0x0503 */
uint16_t keylen;
uint8_t keyvalue[keylen];

};

times {
uint32_t authtime;
uint32_t starttime;
uint32_t endtime;
uint32_t renew_till;

};

address {
uint16_t addrtype;
counted_octet_string addrdata;

};

authdata {
uint16_t authtype;
counted_octet_string authdata;

};

principal {
uint32_t name_type; /* not present if version 0x0501 */
uint32_t num_components; /* sub 1 if version 0x501 */
counted_octet_string realm;
counted_octet_string components[num_components];

};

Appendix B: Protocol Extensions 249

counted_octet_string {
uint32_t length;
uint8_t data[length];

};

Permission to copy, modify, and distribute this document, with or
without modification, for any purpose and without fee or royalty is
hereby granted, provided that you include this copyright notice in ALL
copies of the document or portions thereof, including modifications.

Appendix C: Copying Information 250

Appendix C Copying Information

C.1 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix C: Copying Information 251

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix C: Copying Information 252

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix C: Copying Information 253

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix C: Copying Information 254

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: Copying Information 255

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: Copying Information 256

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix C: Copying Information 257

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

C.2 GNU General Public License
Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

http://fsf.org/

Appendix C: Copying Information 258

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes

Appendix C: Copying Information 259

copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.
To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.
A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.
The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.
The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.
The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its

Appendix C: Copying Information 260

content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.
Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.
b. The work must carry prominent notices stating that it is released under this Li-

cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any

Appendix C: Copying Information 261

applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

Appendix C: Copying Information 262

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.
A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.
If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-

Appendix C: Copying Information 263

sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will

Appendix C: Copying Information 264

automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

Appendix C: Copying Information 265

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Appendix C: Copying Information 266

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-

Appendix C: Copying Information 267

TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:

http://www.gnu.org/licenses/

Appendix C: Copying Information 268

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Function and Data Index 269

Function and Data Index

A
ago in date strings . 55
am in date strings . 54

D
day in date strings . 55

F
first in date strings . 52
fortnight in date strings . 55

G
get_date . 51

H
hour in date strings . 55

L
last day . 55
last in date strings . 52

M
midnight in date strings . 54
minute in date strings . 55
month in date strings . 55

N
next day . 55
next in date strings . 52
noon in date strings . 54
now in date strings . 55

P
pm in date strings . 54

S
shisa . 225
shisa_cfg . 226
shisa_cfg_db . 226
shisa_cfg_default_systemfile 226
shisa_cfg_from_file . 226
shisa_done . 225
shisa_enumerate_principals 227
shisa_enumerate_realms . 227

shisa_info . 231
shisa_init . 225
shisa_init_with_paths . 225
shisa_key_add . 229
shisa_key_free . 230
shisa_key_remove . 230
shisa_key_update . 229
shisa_keys_find . 229
shisa_keys_free . 230
shisa_principal_add . 228
shisa_principal_find . 227
shisa_principal_remove . 228
shisa_principal_update . 228
shisa_strerror . 230
shishi . 61
shishi_3des . 198
shishi_aes_cts . 198
shishi_ap . 72
shishi_ap_authenticator . 77
shishi_ap_authenticator_cksumdata 76
shishi_ap_authenticator_cksumdata_set 76
shishi_ap_authenticator_cksumraw_set 77
shishi_ap_authenticator_cksumtype 77
shishi_ap_authenticator_cksumtype_set 77
shishi_ap_authenticator_set 78
shishi_ap_done . 72
shishi_ap_encapreppart . 82
shishi_ap_encapreppart_set 82
shishi_ap_etype . 72
shishi_ap_etype_tktoptionsdata 75
shishi_ap_key . 80
shishi_ap_nosubkey . 72
shishi_ap_option2string . 82
shishi_ap_rep . 80
shishi_ap_rep_asn1 . 81
shishi_ap_rep_build . 81
shishi_ap_rep_der . 80
shishi_ap_rep_der_set . 80
shishi_ap_rep_set . 80
shishi_ap_rep_verify . 81
shishi_ap_rep_verify_asn1 81
shishi_ap_rep_verify_der 81
shishi_ap_req . 78
shishi_ap_req_asn1 . 79
shishi_ap_req_build . 79
shishi_ap_req_decode . 79
shishi_ap_req_der . 78
shishi_ap_req_der_set . 78
shishi_ap_req_process . 79
shishi_ap_req_process_keyusage 79
shishi_ap_req_set . 78
shishi_ap_set_tktoptions 73
shishi_ap_set_tktoptionsasn1usage 73
shishi_ap_set_tktoptionsdata 73
shishi_ap_set_tktoptionsraw 73

Function and Data Index 270

shishi_ap_string2option . 82
shishi_ap_tkt . 76
shishi_ap_tkt_set . 76
shishi_ap_tktoptions . 74
shishi_ap_tktoptionsasn1usage 75
shishi_ap_tktoptionsdata 74
shishi_ap_tktoptionsraw . 75
shishi_aprep . 87
shishi_aprep_from_file . 88
shishi_aprep_get_enc_part_etype 88
shishi_aprep_parse . 87
shishi_aprep_print . 87
shishi_aprep_read . 88
shishi_aprep_save . 87
shishi_aprep_to_file . 87
shishi_apreq . 82
shishi_apreq_add_authenticator 84
shishi_apreq_from_file . 84
shishi_apreq_get_authenticator_etype 86
shishi_apreq_get_ticket . 86
shishi_apreq_mutual_required_p 85
shishi_apreq_options . 85
shishi_apreq_options_add 86
shishi_apreq_options_remove 86
shishi_apreq_options_set 85
shishi_apreq_parse . 83
shishi_apreq_print . 82
shishi_apreq_read . 83
shishi_apreq_save . 83
shishi_apreq_set_authenticator 84
shishi_apreq_set_ticket . 85
shishi_apreq_to_file . 83
shishi_apreq_use_session_key_p 85
shishi_arcfour . 197
shishi_as . 115
shishi_as_check_cname . 133
shishi_as_check_crealm . 133
shishi_as_derive_salt . 132
shishi_as_done . 115
shishi_as_krberror . 118
shishi_as_krberror_der . 118
shishi_as_krberror_set . 118
shishi_as_process . 135
shishi_as_rep . 116
shishi_as_rep_build . 117
shishi_as_rep_der . 117
shishi_as_rep_der_set . 117
shishi_as_rep_process . 117
shishi_as_rep_set . 117
shishi_as_req . 115
shishi_as_req_build . 116
shishi_as_req_der . 116
shishi_as_req_der_set . 116
shishi_as_req_set . 116
shishi_as_sendrecv . 119
shishi_as_sendrecv_hint 119
shishi_as_tkt . 118
shishi_as_tkt_set . 118

shishi_asn1_aprep . 211
shishi_asn1_apreq . 210
shishi_asn1_asrep . 210
shishi_asn1_asreq . 210
shishi_asn1_authenticator 211
shishi_asn1_done . 209
shishi_asn1_encapreppart 211
shishi_asn1_encasreppart 211
shishi_asn1_enckdcreppart 211
shishi_asn1_encprivpart 212
shishi_asn1_encrypteddata 209
shishi_asn1_encticketpart 211
shishi_asn1_etype_info . 210
shishi_asn1_etype_info2 210
shishi_asn1_krberror . 212
shishi_asn1_krbsafe . 212
shishi_asn1_methoddata . 209
shishi_asn1_msgtype . 213
shishi_asn1_pa_enc_ts_enc 209
shishi_asn1_padata . 209
shishi_asn1_print . 219
shishi_asn1_priv . 212
shishi_asn1_read . 208
shishi_asn1_read_inline 208
shishi_asn1_read_optional 208
shishi_asn1_tgsrep . 210
shishi_asn1_tgsreq . 210
shishi_asn1_ticket . 211
shishi_asn1_to_der . 213
shishi_asn1_to_der_field 212
shishi_asrep . 146
shishi_asreq . 135
shishi_asreq_clientrealm 138
shishi_authenticator . 153
shishi_authenticator_add_authorizationdata

. 160
shishi_authenticator_add_cksum 159
shishi_authenticator_add_cksum_type 159
shishi_authenticator_add_random_subkey . . 161
shishi_authenticator_add_random_subkey_

etype . 162
shishi_authenticator_add_subkey 162
shishi_authenticator_authorizationdata . . 160
shishi_authenticator_cksum 158
shishi_authenticator_clear_

authorizationdata . 160
shishi_authenticator_client 158
shishi_authenticator_client_set 156
shishi_authenticator_clientrealm 158
shishi_authenticator_ctime 156
shishi_authenticator_ctime_set 156
shishi_authenticator_cusec_get 157
shishi_authenticator_cusec_set 157
shishi_authenticator_from_file 155
shishi_authenticator_get_subkey 161
shishi_authenticator_parse 155
shishi_authenticator_print 154
shishi_authenticator_read 155

Function and Data Index 271

shishi_authenticator_remove_subkey 161
shishi_authenticator_save 154
shishi_authenticator_seqnumber_get 157
shishi_authenticator_seqnumber_remove . . . 157
shishi_authenticator_seqnumber_set 157
shishi_authenticator_set_cksum 159
shishi_authenticator_set_cname 156
shishi_authenticator_set_crealm 155
shishi_authenticator_set_subkey 161
shishi_authenticator_subkey 154
shishi_authenticator_to_file 154
shishi_authorization_parse 205
shishi_authorized_p . 205
shishi_cfg . 63
shishi_cfg_authorizationtype_set 65
shishi_cfg_clientkdcetype 64
shishi_cfg_clientkdcetype_fast 64
shishi_cfg_clientkdcetype_set 64
shishi_cfg_default_systemfile 63
shishi_cfg_default_userdirectory 63
shishi_cfg_default_userfile 64
shishi_cfg_from_file . 63
shishi_cfg_print . 63
shishi_cfg_userdirectory_file 64
shishi_check_version . 58
shishi_checksum . 184
shishi_checksum_cksumlen 183
shishi_checksum_name . 183
shishi_checksum_parse . 183
shishi_checksum_supported_p 183
shishi_cipher_blocksize 182
shishi_cipher_confoundersize 182
shishi_cipher_defaultcksumtype 183
shishi_cipher_keylen . 182
shishi_cipher_name . 182
shishi_cipher_parse . 183
shishi_cipher_randomlen 182
shishi_cipher_supported_p 182
shishi_crc . 195
shishi_crypto . 194
shishi_crypto_close . 195
shishi_crypto_decrypt . 194
shishi_crypto_encrypt . 194
shishi_ctime . 206
shishi_decrypt . 192
shishi_decrypt_etype . 190
shishi_decrypt_iv . 191
shishi_decrypt_iv_etype 190
shishi_decrypt_ivupdate 191
shishi_decrypt_ivupdate_etype 189
shishi_der_msgtype . 213
shishi_der2asn1 . 213
shishi_der2asn1_aprep . 219
shishi_der2asn1_apreq . 218
shishi_der2asn1_asrep . 216
shishi_der2asn1_asreq . 215
shishi_der2asn1_authenticator 217
shishi_der2asn1_encapreppart 219

shishi_der2asn1_encasreppart 216
shishi_der2asn1_enckdcreppart 217
shishi_der2asn1_encprivpart 218
shishi_der2asn1_enctgsreppart 217
shishi_der2asn1_encticketpart 215
shishi_der2asn1_etype_info 214
shishi_der2asn1_etype_info2 214
shishi_der2asn1_kdcrep . 216
shishi_der2asn1_kdcreq . 219
shishi_der2asn1_krberror 217
shishi_der2asn1_krbsafe 218
shishi_der2asn1_methoddata 214
shishi_der2asn1_padata . 214
shishi_der2asn1_priv . 218
shishi_der2asn1_tgsrep . 216
shishi_der2asn1_tgsreq . 215
shishi_der2asn1_ticket . 215
shishi_derive_default_salt 205
shishi_des . 197
shishi_des_cbc_mac . 197
shishi_dk . 193
shishi_done . 61
shishi_dr . 193
shishi_encapreppart . 88
shishi_encapreppart_ctime 90
shishi_encapreppart_ctime_set 90
shishi_encapreppart_cusec_get 91
shishi_encapreppart_cusec_set 91
shishi_encapreppart_from_file 90
shishi_encapreppart_get_key 90
shishi_encapreppart_parse 89
shishi_encapreppart_print 88
shishi_encapreppart_read 89
shishi_encapreppart_save 89
shishi_encapreppart_seqnumber_get 91
shishi_encapreppart_seqnumber_remove 91
shishi_encapreppart_seqnumber_set 91
shishi_encapreppart_time_copy 92
shishi_encapreppart_to_file 89
shishi_enckdcreppart_authtime_set 151
shishi_enckdcreppart_endtime_set 152
shishi_enckdcreppart_flags_set 151
shishi_enckdcreppart_get_key 150
shishi_enckdcreppart_key_set 151
shishi_enckdcreppart_nonce_set 151
shishi_enckdcreppart_populate_encticketpart

. 153
shishi_enckdcreppart_renew_till_set 152
shishi_enckdcreppart_sname_set 153
shishi_enckdcreppart_srealm_set 152
shishi_enckdcreppart_starttime_set 152
shishi_encprivpart_set_user_data 102
shishi_encprivpart_user_data 102
shishi_encrypt . 188
shishi_encrypt_etype . 186
shishi_encrypt_iv . 188
shishi_encrypt_iv_etype 186
shishi_encrypt_ivupdate 187

Function and Data Index 272

shishi_encrypt_ivupdate_etype 185
shishi_encticketpart_authtime_set 129
shishi_encticketpart_client 130
shishi_encticketpart_clientrealm 130
shishi_encticketpart_cname_set 129
shishi_encticketpart_crealm_set 129
shishi_encticketpart_endtime_set 130
shishi_encticketpart_flags_set 128
shishi_encticketpart_get_key 128
shishi_encticketpart_key_set 128
shishi_encticketpart_transited_set 129
shishi_error . 222
shishi_error_clear . 222
shishi_error_outputtype 222
shishi_error_printf . 222
shishi_error_set . 222
shishi_error_set_outputtype 223
shishi_generalize_ctime 206
shishi_generalize_now . 206
shishi_generalize_time . 206
shishi_hmac_md5 . 196
shishi_hmac_sha1 . 196
shishi_hostkeys_default_file 180
shishi_hostkeys_default_file_set 180
shishi_hostkeys_for_localservice 181
shishi_hostkeys_for_localservicerealm . . . 181
shishi_hostkeys_for_server 181
shishi_hostkeys_for_serverrealm 181
shishi_info . 223
shishi_init . 61
shishi_init_server . 62
shishi_init_server_with_paths 62
shishi_init_with_paths . 62
shishi_kdc_check_nonce . 134
shishi_kdc_copy_cname . 133
shishi_kdc_copy_crealm . 133
shishi_kdc_copy_nonce . 134
shishi_kdc_process . 135
shishi_kdcrep_add_enc_part 150
shishi_kdcrep_clear_padata 150
shishi_kdcrep_client_set 149
shishi_kdcrep_cname_set 148
shishi_kdcrep_crealm_set 148
shishi_kdcrep_from_file 148
shishi_kdcrep_get_enc_part_etype 149
shishi_kdcrep_get_ticket 149
shishi_kdcrep_parse . 147
shishi_kdcrep_print . 147
shishi_kdcrep_read . 148
shishi_kdcrep_save . 147
shishi_kdcrep_set_enc_part 150
shishi_kdcrep_set_ticket 149
shishi_kdcrep_to_file . 147
shishi_kdcreq_add_padata 146
shishi_kdcreq_add_padata_preauth 146
shishi_kdcreq_add_padata_tgs 146
shishi_kdcreq_allow_postdate_p 142
shishi_kdcreq_clear_padata 145

shishi_kdcreq_client . 138
shishi_kdcreq_disable_transited_check_p

. 143
shishi_kdcreq_enc_tkt_in_skey_p 143
shishi_kdcreq_etype . 140
shishi_kdcreq_forwardable_p 141
shishi_kdcreq_forwarded_p 141
shishi_kdcreq_from_file 137
shishi_kdcreq_get_padata 145
shishi_kdcreq_get_padata_tgs 145
shishi_kdcreq_nonce_set 137
shishi_kdcreq_options . 140
shishi_kdcreq_options_add 145
shishi_kdcreq_options_set 144
shishi_kdcreq_parse . 136
shishi_kdcreq_postdated_p 142
shishi_kdcreq_print . 136
shishi_kdcreq_proxiable_p 141
shishi_kdcreq_proxy_p . 142
shishi_kdcreq_read . 137
shishi_kdcreq_realm . 138
shishi_kdcreq_renew_p . 144
shishi_kdcreq_renewable_ok_p 143
shishi_kdcreq_renewable_p 142
shishi_kdcreq_save . 136
shishi_kdcreq_server . 139
shishi_kdcreq_set_cname 137
shishi_kdcreq_set_etype 140
shishi_kdcreq_set_realm 139
shishi_kdcreq_set_sname 139
shishi_kdcreq_till . 139
shishi_kdcreq_tillc . 140
shishi_kdcreq_to_file . 136
shishi_kdcreq_validate_p 144
shishi_key . 175
shishi_key_copy . 176
shishi_key_done . 176
shishi_key_from_base64 . 176
shishi_key_from_name . 177
shishi_key_from_random . 177
shishi_key_from_string . 177
shishi_key_from_value . 176
shishi_key_length . 175
shishi_key_name . 175
shishi_key_principal . 173
shishi_key_principal_set 174
shishi_key_random . 176
shishi_key_realm . 174
shishi_key_realm_set . 174
shishi_key_type . 174
shishi_key_type_set . 174
shishi_key_value . 174
shishi_key_value_set . 175
shishi_key_version . 175
shishi_key_version_set . 175
shishi_keys . 178
shishi_keys_add . 179
shishi_keys_done . 178

Function and Data Index 273

shishi_keys_for_localservicerealm_in_file

. 180
shishi_keys_for_server_in_file 180
shishi_keys_for_serverrealm_in_file 179
shishi_keys_nth . 178
shishi_keys_print . 179
shishi_keys_remove . 179
shishi_keys_size . 178
shishi_keys_to_file . 179
shishi_krberror . 162
shishi_krberror_build . 164
shishi_krberror_client . 165
shishi_krberror_client_set 166
shishi_krberror_crealm . 165
shishi_krberror_ctime . 168
shishi_krberror_ctime_set 168
shishi_krberror_cusec . 168
shishi_krberror_cusec_set 169
shishi_krberror_der . 164
shishi_krberror_edata . 171
shishi_krberror_errorcode 170
shishi_krberror_errorcode_fast 170
shishi_krberror_errorcode_message 173
shishi_krberror_errorcode_set 170
shishi_krberror_etext . 171
shishi_krberror_from_file 164
shishi_krberror_message 173
shishi_krberror_methoddata 172
shishi_krberror_parse . 163
shishi_krberror_pretty_print 172
shishi_krberror_print . 163
shishi_krberror_read . 164
shishi_krberror_realm . 166
shishi_krberror_remove_cname 166
shishi_krberror_remove_crealm 165
shishi_krberror_remove_ctime 168
shishi_krberror_remove_cusec 169
shishi_krberror_remove_edata 172
shishi_krberror_remove_etext 171
shishi_krberror_remove_sname 167
shishi_krberror_save . 163
shishi_krberror_server . 167
shishi_krberror_server_set 168
shishi_krberror_set_cname 166
shishi_krberror_set_crealm 165
shishi_krberror_set_edata 172
shishi_krberror_set_etext 171
shishi_krberror_set_realm 167
shishi_krberror_set_sname 167
shishi_krberror_stime . 169
shishi_krberror_stime_set 169
shishi_krberror_susec . 170
shishi_krberror_susec_set 170
shishi_krberror_to_file 163
shishi_md4 . 196
shishi_md5 . 196
shishi_n_fold . 193
shishi_parse_name . 203

shishi_pbkdf2_sha1 . 198
shishi_principal_default 203
shishi_principal_default_guess 202
shishi_principal_default_set 203
shishi_principal_name . 203
shishi_principal_name_realm 204
shishi_principal_name_set 204
shishi_principal_set . 204
shishi_priv . 97
shishi_priv_build . 102
shishi_priv_done . 98
shishi_priv_enc_part_etype 101
shishi_priv_encprivpart . 99
shishi_priv_encprivpart_der 99
shishi_priv_encprivpart_der_set 100
shishi_priv_encprivpart_set 99
shishi_priv_from_file . 101
shishi_priv_key . 98
shishi_priv_key_set . 98
shishi_priv_parse . 101
shishi_priv_print . 100
shishi_priv_priv . 98
shishi_priv_priv_der . 98
shishi_priv_priv_der_set 99
shishi_priv_priv_set . 98
shishi_priv_process . 103
shishi_priv_read . 101
shishi_priv_save . 100
shishi_priv_set_enc_part 102
shishi_priv_to_file . 100
shishi_prompt_password . 207
shishi_prompt_password_callback_get 207
shishi_prompt_password_callback_set 207
shishi_random_to_key . 184
shishi_randomize . 195
shishi_realm_default . 201
shishi_realm_default_guess 201
shishi_realm_default_set 201
shishi_realm_for_server 202
shishi_realm_for_server_dns 202
shishi_realm_for_server_file 201
shishi_resolv . 207
shishi_resolv_free . 208
shishi_safe . 92
shishi_safe_build . 96
shishi_safe_cksum . 95
shishi_safe_done . 93
shishi_safe_from_file . 95
shishi_safe_key . 93
shishi_safe_key_set . 93
shishi_safe_parse . 95
shishi_safe_print . 94
shishi_safe_read . 95
shishi_safe_safe . 93
shishi_safe_safe_der . 93
shishi_safe_safe_der_set 94
shishi_safe_safe_set . 93
shishi_safe_save . 94

Function and Data Index 274

shishi_safe_set_cksum . 96
shishi_safe_set_user_data 96
shishi_safe_to_file . 94
shishi_safe_user_data . 96
shishi_safe_verify . 97
shishi_server . 61
shishi_server_for_local_service 205
shishi_strerror . 221
shishi_string_to_key . 184
shishi_tgs . 121
shishi_tgs_ap . 121
shishi_tgs_done . 121
shishi_tgs_krberror . 123
shishi_tgs_krberror_der 124
shishi_tgs_krberror_set 124
shishi_tgs_process . 134
shishi_tgs_rep . 123
shishi_tgs_rep_build . 123
shishi_tgs_rep_der . 123
shishi_tgs_rep_process . 123
shishi_tgs_req . 121
shishi_tgs_req_build . 122
shishi_tgs_req_der . 122
shishi_tgs_req_der_set . 122
shishi_tgs_req_process . 122
shishi_tgs_req_set . 122
shishi_tgs_sendrecv . 125
shishi_tgs_sendrecv_hint 124
shishi_tgs_set_realm . 125
shishi_tgs_set_realmserver 125
shishi_tgs_set_server . 125
shishi_tgs_tgtkt . 121
shishi_tgs_tgtkt_set . 121
shishi_tgs_tkt . 124
shishi_tgs_tkt_set . 124
shishi_tgsrep . 147
shishi_tgsreq . 136
shishi_ticket . 126
shishi_ticket_add_enc_part 128
shishi_ticket_get_enc_part_etype 127
shishi_ticket_realm_get 126
shishi_ticket_realm_set 126
shishi_ticket_server . 126
shishi_ticket_set_enc_part 127
shishi_ticket_sname_set 127
shishi_time . 206
shishi_tkt . 103
shishi_tkt_authctime . 112
shishi_tkt_client . 105
shishi_tkt_client_p . 105
shishi_tkt_clientrealm . 106
shishi_tkt_clientrealm_p 106
shishi_tkt_done . 104
shishi_tkt_enckdcreppart 104
shishi_tkt_enckdcreppart_set 104
shishi_tkt_encticketpart 104
shishi_tkt_encticketpart_set 105
shishi_tkt_endctime . 112

shishi_tkt_expired_p . 113
shishi_tkt_flags . 107
shishi_tkt_flags_add . 107
shishi_tkt_flags_set . 107
shishi_tkt_forwardable_p 107
shishi_tkt_forwarded_p . 108
shishi_tkt_hw_authent_p 110
shishi_tkt_initial_p . 110
shishi_tkt_invalid_p . 109
shishi_tkt_kdcrep . 104
shishi_tkt_key . 105
shishi_tkt_key_set . 105
shishi_tkt_keytype . 111
shishi_tkt_keytype_fast 111
shishi_tkt_keytype_p . 112
shishi_tkt_lastreq_pretty_print 113
shishi_tkt_lastreqc . 112
shishi_tkt_match_p . 68
shishi_tkt_may_postdate_p 108
shishi_tkt_ok_as_delegate_p 111
shishi_tkt_postdated_p . 109
shishi_tkt_pre_authent_p 110
shishi_tkt_pretty_print 113
shishi_tkt_proxiable_p . 108
shishi_tkt_proxy_p . 108
shishi_tkt_realm . 106
shishi_tkt_renew_tillc . 113
shishi_tkt_renewable_p . 109
shishi_tkt_server . 106
shishi_tkt_server_p . 107
shishi_tkt_startctime . 112
shishi_tkt_ticket . 104
shishi_tkt_ticket_set . 104
shishi_tkt_transited_policy_checked_p . . . 110
shishi_tkt_valid_at_time_p 113
shishi_tkt_valid_now_p . 113
shishi_tkt2 . 103
shishi_tkts . 66
shishi_tkts_add . 67
shishi_tkts_default . 66
shishi_tkts_default_file 65
shishi_tkts_default_file_guess 65
shishi_tkts_default_file_set 65
shishi_tkts_done . 66
shishi_tkts_expire . 68
shishi_tkts_find . 69
shishi_tkts_find_for_clientserver 69
shishi_tkts_find_for_server 69
shishi_tkts_from_file . 67
shishi_tkts_get . 70
shishi_tkts_get_for_clientserver 71
shishi_tkts_get_for_server 71
shishi_tkts_get_tgs . 70
shishi_tkts_get_tgt . 70
shishi_tkts_new . 67
shishi_tkts_nth . 66
shishi_tkts_print . 68
shishi_tkts_print_for_service 68

Function and Data Index 275

shishi_tkts_read . 67
shishi_tkts_remove . 66
shishi_tkts_size . 66
shishi_tkts_to_file . 68
shishi_tkts_write . 67
shishi_verbose . 223
shishi_verify . 185
shishi_warn . 223
shishi_x509ca_default_file 199
shishi_x509ca_default_file_guess 199
shishi_x509ca_default_file_set 199
shishi_x509cert_default_file 200
shishi_x509cert_default_file_guess 199
shishi_x509cert_default_file_set 200
shishi_x509key_default_file 200
shishi_x509key_default_file_guess 200

shishi_x509key_default_file_set 200

T
this in date strings . 55
today in date strings . 55
tomorrow in date strings . 55

W
week in date strings . 55

Y
year in date strings . 55
yesterday in date strings . 55

Concept Index 276

Concept Index

3
3DES . 5

A
abbreviations for months . 53
AES . 5
AIX . 9
anonymous tls . 28
Application Programming Interface (API) 58
ARCFOUR . 5
authenticated tls . 29
Authentication . 37
Authentication header . 37
Authentication path . 37
Authenticator . 37
Authorization . 38
authors of get_date . 57
Autoconf tests . 59

B
beginning of time, for POSIX 56
Bellovin, Steven M. 57
Berets, Jim . 57
Berry, K. 57

C
calendar date item . 53
Capability . 38
case, ignored in dates . 52
certificate authority (CA) . 29
Ciphertext . 38
Client . 38
client authentication . 29
comments, in dates . 52
Compiling your application . 59
concurrent writers . 34
configuration file . 43
Configure tests . 59
Contributing . 12
Credentials . 38

D
database definition . 46
Database interface . 224
date format, iso 8601 . 53
date input formats . 51
day of week item . 54
Debian . 9
DES . 5
Diffie Hellman key exchange 28

displacement of dates . 55
Download . 11

E
Eggert, Paul . 57
Encryption Type (etype) . 38
End-user Shishi usage . 14
epoch, for POSIX . 56
Error Handling . 220
Examples . 223

F
fail over . 35
FDL, GNU Free Documentation License 250
FreeBSD . 10

G
general date syntax . 52
Generic Security Service . 231
GNUTLS . 27
GPL, GNU General Public License 257
GSS-API . 231
GSSLib . 231

H
Hacking . 12
High Availability . 35
HP-UX . 10

I
Installation . 11
IPSEC . 34
IRIX . 9
iso 8601 date format . 53
items in date strings . 52

K
KDC . 38
Kerberos . 38
Kerberos Ticket . 39
Key Version Number (kvno) 38

L
language, in dates . 52
LDAP . 34
License, GNU GPL . 257

Concept Index 277

M
MacKenzie, David . 57
MacOS X . 10
Mandrake . 9
master server . 34
Meyering, Jim . 57
minutes, time zone correction by 54
month names in date strings 53
months, written-out . 52
Motorola Coldfire . 10

N
NetBSD . 10
NFS . 34
numbers, written-out . 52

O
OpenBSD . 10
ordinal numbers . 52

P
Pinard, F. 57
Plaintext . 38
Principal . 38
Principal identifier . 38
pure numbers in date strings 56

R
RedHat . 9
RedHat Advanced Server . 9
relative items in date strings 55
remote databases . 34
Reporting Bugs . 12
rsync . 34

S
Salz, Rich . 57
Seal . 39
secondary server . 34
Secret key . 39
Server . 39
server authentication . 29
Service . 39
Session key . 39
Shisa API . 224
Solaris . 10
specifying user database . 46
SQL . 34
STARTTLS . 27
Sub-session key . 39
SuSE . 9
SuSE Linux . 9

T
Ticket . 39
time of day item . 53
time zone correction . 54
time zone item . 52, 54
TLS . 27
tls resume . 27
Tru64 . 9

U
uClibc . 10
uClinux . 10
user database definition . 46

X
X.509 authentication . 29

v

Short Contents

1 Introduction . 1

2 User Manual . 14

3 Administration Manual . 19

4 Reference Manual . 37

5 Programming Manual . 58

6 Acknowledgements . 232

A Criticism of Kerberos . 233

B Protocol Extensions . 234

C Copying Information . 250

Function and Data Index . 269

Concept Index . 276

vi

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features and Status . 1
1.3 Overview . 3
1.4 Cryptographic Overview . 5
1.5 Supported Platforms . 9
1.6 Getting help . 10
1.7 Commercial Support . 10
1.8 Downloading and Installing . 11
1.9 Bug Reports . 12
1.10 Contributing . 12

2 User Manual . 14
2.1 Proxiable and Proxy Tickets . 16
2.2 Forwardable and Forwarded Tickets . 17

3 Administration Manual . 19
3.1 Introduction to Shisa . 19
3.2 Configuring Shisa . 19
3.3 Using Shisa . 20
3.4 Starting Shishid . 24
3.5 Configuring DNS for KDC . 26

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names 26
3.5.2 Overview - KDC location information . 26
3.5.3 Example - KDC location information . 27
3.5.4 Security considerations . 27

3.6 Kerberos via TLS . 27
3.6.1 Setting up TLS resume . 27
3.6.2 Setting up Anonymous TLS . 28
3.6.3 Setting up X.509 authenticated TLS . 29

3.6.3.1 Create a Kerberos Certificate Authority 29
3.6.3.2 Create a Kerberos KDC Certificate 30
3.6.3.3 Create a Kerberos Client Certificate 32
3.6.3.4 Starting KDC with X.509 authentication support 33

3.7 Multiple servers . 34
3.8 Developer information . 36

4 Reference Manual . 37
4.1 Environmental Assumptions . 37
4.2 Glossary of terms . 37
4.3 Realm and Principal Naming . 39

4.3.1 Realm Names . 39

vii

4.3.2 Principal Names . 40
4.3.2.1 Name of server principals . 41
4.3.2.2 Name of the TGS . 42

4.3.3 Choosing a principal with which to communicate 42
4.3.4 Principal Name Form . 43

4.4 Shishi Configuration . 43
4.4.1 ‘default-realm’ . 43
4.4.2 ‘default-principal’ . 44
4.4.3 ‘client-kdc-etypes’ . 44
4.4.4 ‘verbose’, ‘verbose-asn1’, ‘verbose-noise’,

‘verbose-crypto’, ‘verbose-crypto-noise’ 44
4.4.5 ‘realm-kdc’ . 44
4.4.6 ‘server-realm’ . 44
4.4.7 ‘kdc-timeout’, ‘kdc-retries’ . 44
4.4.8 ‘stringprocess’ . 45
4.4.9 ‘ticket-life’ . 45
4.4.10 ‘renew-life’ . 45

4.5 Shisa Configuration . 46
4.5.1 ‘db’ . 46

4.6 Parameters for shishi . 47
4.7 Parameters for shishid . 48
4.8 Parameters for shisa . 49
4.9 Environment variables . 51
4.10 Date input formats . 51

4.10.1 General date syntax . 52
4.10.2 Calendar date items . 53
4.10.3 Time of day items . 53
4.10.4 Time zone items . 54
4.10.5 Day of week items . 54
4.10.6 Relative items in date strings . 55
4.10.7 Pure numbers in date strings . 56
4.10.8 Seconds since the Epoch . 56
4.10.9 Specifying time zone rules . 56
4.10.10 Authors of get_date . 57

5 Programming Manual . 58
5.1 Preparation . 58

5.1.1 Header . 58
5.1.2 Initialization . 58
5.1.3 Version Check . 58
5.1.4 Building the source . 59
5.1.5 Autoconf tests . 59

5.1.5.1 Autoconf test via ‘pkg-config’ . 59
5.1.5.2 Standalone Autoconf test using Libtool 60
5.1.5.3 Standalone Autoconf test . 60

5.2 Initialization Functions . 61
5.3 Ticket Set Functions . 65
5.4 AP-REQ and AP-REP Functions . 71

viii

5.5 SAFE and PRIV Functions . 92
5.6 Ticket Functions . 103
5.7 AS Functions . 114
5.8 TGS Functions . 119
5.9 Ticket (ASN.1) Functions . 125
5.10 AS/TGS Functions . 131
5.11 Authenticator Functions . 153
5.12 KRB-ERROR Functions . 162
5.13 Cryptographic Functions . 173
5.14 X.509 Functions . 199
5.15 Utility Functions . 201
5.16 ASN.1 Functions . 208
5.17 Error Handling . 220

5.17.1 Error Values . 220
5.17.2 Error Functions . 221

5.18 Examples . 223
5.19 Kerberos Database Functions . 224
5.20 Generic Security Service . 231

6 Acknowledgements . 232

Appendix A Criticism of Kerberos 233

Appendix B Protocol Extensions 234
B.1 STARTTLS protected KDC exchanges . 234

B.1.1 TCP/IP transport with TLS upgrade (STARTTLS) 234
B.1.2 Extensible typed hole based on reserved high bit 235
B.1.3 STARTTLS requested by client (extension mode 1) 235
B.1.4 STARTTLS request accepted by server (extension mode 2)

. 235
B.1.5 Proceeding after successful TLS negotiation 235
B.1.6 Proceeding after failed TLS negotiation 236
B.1.7 Interaction with KDC addresses in DNS 236
B.1.8 Using TLS authentication logic in Kerberos 236
B.1.9 Security considerations . 236

B.2 Telnet encryption with AES-CCM . 236
B.2.1 Command Names and Codes . 236
B.2.2 Command Meanings . 237
B.2.3 Implementation Rules . 237
B.2.4 Integration with the AUTHENTICATION telnet option

. 238
B.2.5 Security Considerations . 238

B.2.5.1 Telnet Encryption Protocol Security Considerations
. 239

B.2.5.2 AES-CCM Security Considerations 239
B.2.6 Acknowledgments . 239

B.3 Kerberized rsh and rlogin . 239

ix

B.3.1 Establish connection . 239
B.3.2 Kerberos identification . 240
B.3.3 Kerberos authentication . 240
B.3.4 Extended authentication . 240
B.3.5 Window size . 241
B.3.6 End of authentication . 241
B.3.7 Encryption . 241
B.3.8 KCMDV0.3 . 242
B.3.9 MIT/Heimdal authorization . 243

B.4 Key as initialization vector . 243
B.5 The Keytab Binary File Format . 244
B.6 The Credential Cache Binary File Format . 247

Appendix C Copying Information 250
C.1 GNU Free Documentation License . 250
C.2 GNU General Public License . 257

Function and Data Index . 269

Concept Index . 276

	Introduction
	Getting Started
	Features and Status
	Overview
	Cryptographic Overview
	Supported Platforms
	Getting help
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing

	User Manual
	Proxiable and Proxy Tickets
	Forwardable and Forwarded Tickets

	Administration Manual
	Introduction to Shisa
	Configuring Shisa
	Using Shisa
	Starting Shishid
	Configuring DNS for KDC
	DNS vs. Kerberos - Case Sensitivity of Realm Names
	Overview - KDC location information
	Example - KDC location information
	Security considerations

	Kerberos via TLS
	Setting up TLS resume
	Setting up Anonymous TLS
	Setting up X.509 authenticated TLS
	Create a Kerberos Certificate Authority
	Create a Kerberos KDC Certificate
	Create a Kerberos Client Certificate
	Starting KDC with X.509 authentication support

	Multiple servers
	Developer information

	Reference Manual
	Environmental Assumptions
	Glossary of terms
	Realm and Principal Naming
	Realm Names
	Principal Names
	Name of server principals
	Name of the TGS

	Choosing a principal with which to communicate
	Principal Name Form

	Shishi Configuration
	default-realm
	default-principal
	client-kdc-etypes
	verbose, verbose-asn1, verbose-noise, verbose-crypto, verbose-crypto-noise
	realm-kdc
	server-realm
	kdc-timeout, kdc-retries
	stringprocess
	ticket-life
	renew-life

	Shisa Configuration
	db

	Parameters for shishi
	Parameters for shishid
	Parameters for shisa
	Environment variables
	Date input formats
	General date syntax
	Calendar date items
	Time of day items
	Time zone items
	Day of week items
	Relative items in date strings
	Pure numbers in date strings
	Seconds since the Epoch
	Specifying time zone rules
	Authors of get_date

	Programming Manual
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool
	Standalone Autoconf test

	Initialization Functions
	Ticket Set Functions
	AP-REQ and AP-REP Functions
	SAFE and PRIV Functions
	Ticket Functions
	AS Functions
	TGS Functions
	Ticket (ASN.1) Functions
	AS/TGS Functions
	Authenticator Functions
	KRB-ERROR Functions
	Cryptographic Functions
	X.509 Functions
	Utility Functions
	ASN.1 Functions
	Error Handling
	Error Values
	Error Functions

	Examples
	Kerberos Database Functions
	Generic Security Service

	Acknowledgements
	Criticism of Kerberos
	Protocol Extensions
	STARTTLS protected KDC exchanges
	TCP/IP transport with TLS upgrade (STARTTLS)
	Extensible typed hole based on reserved high bit
	STARTTLS requested by client (extension mode 1)
	STARTTLS request accepted by server (extension mode 2)
	Proceeding after successful TLS negotiation
	Proceeding after failed TLS negotiation
	Interaction with KDC addresses in DNS
	Using TLS authentication logic in Kerberos
	Security considerations

	Telnet encryption with AES-CCM
	Command Names and Codes
	Command Meanings
	Implementation Rules
	Integration with the AUTHENTICATION telnet option
	Security Considerations
	Telnet Encryption Protocol Security Considerations
	AES-CCM Security Considerations

	Acknowledgments

	Kerberized rsh and rlogin
	Establish connection
	Kerberos identification
	Kerberos authentication
	Extended authentication
	Window size
	End of authentication
	Encryption
	KCMDV0.3
	MIT/Heimdal authorization

	Key as initialization vector
	The Keytab Binary File Format
	The Credential Cache Binary File Format

	Copying Information
	GNU Free Documentation License
	GNU General Public License

	Function and Data Index
	Concept Index
	Introduction
	Getting Started
	Features and Status
	Overview
	Cryptographic Overview
	Supported Platforms
	Getting help
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing
	User Manual
	Proxiable and Proxy Tickets
	Forwardable and Forwarded Tickets
	Administration Manual
	Introduction to Shisa
	Configuring Shisa
	Using Shisa
	Starting Shishid
	Configuring DNS for KDC
	DNS vs. Kerberos - Case Sensitivity of Realm Names
	Overview - KDC location information
	Example - KDC location information
	Security considerations
	Kerberos via TLS
	Setting up TLS resume
	Setting up Anonymous TLS
	Setting up X.509 authenticated TLS
	Create a Kerberos Certificate Authority
	Create a Kerberos KDC Certificate
	Create a Kerberos Client Certificate
	Starting KDC with X.509 authentication support
	Multiple servers
	Developer information
	Reference Manual
	Environmental Assumptions
	Glossary of terms
	Realm and Principal Naming
	Realm Names
	Principal Names
	Name of server principals
	Name of the TGS
	Choosing a principal with which to communicate
	Principal Name Form

	Shishi Configuration
	default-realm
	default-principal
	client-kdc-etypes
	verbose, verbose-asn1, verbose-noise, verbose-crypto, verbose-crypto-noise
	realm-kdc
	server-realm
	kdc-timeout, kdc-retries
	stringprocess
	ticket-life
	renew-life
	Shisa Configuration
	db
	Parameters for shishi

	Parameters for shishid
	Parameters for shisa
	Environment variables
	Date input formats
	General date syntax
	Calendar date items
	Time of day items
	Time zone items
	Day of week items
	Relative items in date strings
	Pure numbers in date strings
	Seconds since the Epoch
	Specifying time zone rules
	Authors of get_date
	Programming Manual
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool
	Standalone Autoconf test
	Initialization Functions
	Ticket Set Functions
	AP-REQ and AP-REP Functions

	SAFE and PRIV Functions
	Ticket Functions
	AS Functions
	TGS Functions
	Ticket (ASN.1) Functions

	AS/TGS Functions
	Authenticator Functions
	KRB-ERROR Functions
	Cryptographic Functions
	X.509 Functions
	Utility Functions
	ASN.1 Functions
	Error Handling
	Error Values
	Error Functions
	Examples
	Kerberos Database Functions

	Generic Security Service
	Acknowledgements
	Criticism of Kerberos
	Protocol Extensions
	STARTTLS protected KDC exchanges
	TCP/IP transport with TLS upgrade (STARTTLS)
	Extensible typed hole based on reserved high bit
	STARTTLS requested by client (extension mode 1)
	STARTTLS request accepted by server (extension mode 2)
	Proceeding after successful TLS negotiation
	Proceeding after failed TLS negotiation
	Interaction with KDC addresses in DNS
	Using TLS authentication logic in Kerberos
	Security considerations
	Telnet encryption with AES-CCM
	Command Names and Codes
	Command Meanings
	Implementation Rules
	Integration with the AUTHENTICATION telnet option
	Security Considerations
	Telnet Encryption Protocol Security Considerations
	AES-CCM Security Considerations
	Acknowledgments
	Kerberized rsh and rlogin
	Establish connection
	Kerberos identification
	Kerberos authentication
	Extended authentication
	Window size
	End of authentication
	Encryption
	KCMDV0.3
	MIT/Heimdal authorization
	Key as initialization vector
	The Keytab Binary File Format
	The Credential Cache Binary File Format
	Copying Information
	GNU Free Documentation License
	GNU General Public License
	Function and Data Index
	Concept Index

