
FFI Helper User Guide
Matt Wette
May 2024
With NYACC Version 2.02.2

Introduction

NOTE: Parts of this manual are obsololete: the update for version 2 is not complete.

The acronym FFI stands for “Foreign Function Interface”. It refers to the Guile facility
for binding functions and variables from C source libraries into Guile programs. This distri-
bution provides utilities for generating a loadable Guile module from a set of C declarations
and associated libraries. The C declarations can, and conventionally do, come from naming
a set of C include files. The nominal method for use is to write a ffi-module specification in
a file which includes a define-ffi-module declaration, and then use the command guild

compile-ffi to produce an associated file of Guile Scheme code.

$ guild compile-ffi ffi/cairo.ffi

wrote `ffi/cairo.scm'

The FH does not generate C code. The hooks to access functions in the Cairo library are
provided in 100% Guile Scheme via (system foreign).

Since version 2.00, the FFI Helper uses it’s own backend for using bytevectors to handle C
data. In previous versions, the module (bytestructures guile) was used. The bytestruc-
tures implementation is still available by passing -b bytestructures to guild compile-

ffi, or by setting the environment variable FFI_HELP_BACKEND=bytestructures. The
bytestructures backend uses the scheme-bytestructures package, available from https://

github.com/TaylanUB/scheme-bytestructures. Releases are available at https://

github.com/TaylanUB/scheme-bytestructures/releases. In this manual we only dis-
cuss use of the default cdata backend implementation.

To generate Guile Scheme for smaller C code units one can write a ffi-module with the
#:api-code or import the ffi-help module an use the functions load-include-file,
ccode->sexp. The latter functions are not well tested, though.

The compiler for the FFI Helper (FH) is based on the C parser and utilities which are
included in the NYACC (https://www.nongnu.org/nyacc) package. Within the NYACC
distribution, there are a number of example dot-ffi files in the directory examples/ffi.

At runtime, after the FFI Helper has been used to create Scheme code, the modules
(nyacc foreign cdata) and (nyacc foreign arch-info) are required. No other code
from the NYACC distribution is needed. However, note that the process of creating the
Scheme output depends on reading system headers, so the generated code may well contain
operating system and machine dependencies. If you copy code to a new machine, you should
re-run guild compile-ffi.

You are probably hoping to see an example, so let’s try one.

This is a small FH example to illustrate its use. We will start with the Cairo
(cairographics.org) package because that is the first one I started with in developing
the FFI Helper. Say you are an avid Guile user and want to be able to use Cairo in Guile.
On most systems Cairo comes with the associated pkg-config support files; this demo
depends on that support.

1

https://github.com/TaylanUB/scheme-bytestructures
https://github.com/TaylanUB/scheme-bytestructures
https://github.com/TaylanUB/scheme-bytestructures/releases
https://github.com/TaylanUB/scheme-bytestructures/releases
https://www.nongnu.org/nyacc
cairographics.org
cairographics.org

Warning: The FFI Helper package is under active development and there is some chance
the following example will cease to work in the future.

If you want to follow along and are working in the distribution tree, you should source
the file env.sh in the examples directory.

By practice, I like to put all FH generated modules under a directory called ffi/, so we
will do that. We start by generating, in the ffi directory, a file named cairo.ffi with the
following contents:

(define-ffi-module (ffi cairo)

#:pkg-config "cairo"

#:include '("cairo.h" "cairo-pdf.h" "cairo-svg.h"))

To generate a Guile module you execute guild as follows:

$ guild compile-ffi ffi/cairo.ffi

compiling `ffi/cairo.ffi' ...

... wrote `ffi/cairo.scm'

compiling `ffi/cairo.scm' ...

... wrote `cairo.scm.go'

Though the file cairo/cairo.ffi is only three lines long, the file ffi/cairo.scm will be
over five thousand lines long. It looks something like the following:

(define-module (ffi cairo)

#:use-module ((system foreign) #:prefix ffi:)

#:use-module (system foreign-library)

#:use-module (nyacc foreign cdata))

;; extern int cairo_version(void);

(define-public cairo_version

(let ((~proc (delay (ffi:pointer->procedure

ffi:int

(foreign-pointer-search "cairo_version")

(list)))))

(lambda () (let () ((force ~proc))))))

...

(define-public cairo_matrix_t

(name-ctype

'cairo_matrix_t

(cstruct

(list `(xx ,(cbase 'double))

`(yx ,(cbase 'double))

`(xy ,(cbase 'double))

`(yy ,(cbase 'double))

`(x0 ,(cbase 'double))

`(y0 ,(cbase 'double))))))

(define-public cairo_matrix_t*

2

(name-ctype

'cairo_matrix_t*

(cpointer cairo_matrix_t)))

... many, many more declarations ...

;; access to enum symbols and #define'd constants:

(define ffi-cairo-symbol-tab

'((CAIRO_SVG_UNIT_PERCENT . 9)

(CAIRO_SVG_UNIT_PC . 8)

(CAIRO_SVG_UNIT_PT . 7)

... more constants ...

))

(define ffi-cairo-symbol-val

(lambda (k)

(or (assq-ref ffi-cairo-symbol-tab k))))

(export ffi-cairo-symbol-val)

... more ...

Note that from the pkg-config spec the FH compiler picks up the required libraries to bind
in. Also, #define based constants, as well as those defined by enums, are provided in a
lookup function ffi-cairo-symbol-val. So, for example

guile> (use-modules (ffi cairo))

;;; ffi/cairo.scm:6112:11: warning:

possibly unbound variable `cairo_raster_source_acquire_func_t*'

;;; ffi/cairo.scm:6115:11: warning:

possibly unbound variable `cairo_raster_source_release_func_t*'

guile> (ffi-cairo-symbol-val 'CAIRO_FORMAT_ARGB32))

$1 = 0

We will discuss the warnings later. They are signals that extra code needs to be added
to the ffi module. But you see how the constants (but not CPP function macros) can be
accessed.

Let’s try something more useful: a real program. Create the following code in a file, say
cairo-demo.scm, then fire up a Guile session and load the file.

(use-modules (ffi cairo))

(define srf (cairo_image_surface_create 'CAIRO_FORMAT_ARGB32 200 200))

(define cr (cairo_create srf))

(cairo_move_to cr 10.0 10.0)

(cairo_line_to cr 190.0 10.0)

(cairo_line_to cr 190.0 190.0)

(cairo_line_to cr 10.0 190.0)

(cairo_line_to cr 10.0 10.0)

(cairo_stroke cr)

(cairo_surface_write_to_png srf "cairo-demo.png")

3

(cairo_destroy cr)

(cairo_surface_destroy srf)

guile> (load "cairo-demo.scm")

...

;;; compiled /.../cairo-demo.scm.go

guile>

If we set up everything correctly we should have generared the target file cairo-demo.png
which contains the image of a square. A few items in the above code are notable. First, the
call to cairo_image_surface_create accepted a symbolic form 'CAIRO_FORMAT_ARGB32

for the format argument. It would have also accepted the associated constant 0. In addition,
procedures declared in (ffi cairo) will accept Scheme strings where the C function wants
“pointer to string.”

Now try this in your Guile session:

guile> srf

$4 = #<cdata cairo_surface_t* 0x7fda53e01880>

guile> cr

$5 = #<cdata cairo_t* 0x7fda54828800>

Note that the FH keeps track of the C types you use. This can be useful for debugging (at
a potential cost of bloating the namespace). The constants you see are the pointer values.
But it goes further. Let’s generate a matrix type:

guile> (use-modules (nyacc foreign cdata))

guile> (define m (make-cdata cairo_matrix_t))

guile> m

$6 = #<cdata cairo_matrix_t 0x7056028777a0>

guile> (cdata& m)

$7 = #<cdata cairo_matrix_t* 0x7055f7da7b30>

When it comes to C APIs that expect the user to allocate memory for a structure and pass
the pointer address to the C function, FH provides a solution:

guile> (cairo_get_matrix cr (cdata& m))

guile> (cdata-ref m 'xx)

$8 = 1.0

But the FFI helper can also be used on a per declaration basis, but you must first import
the proper modules and libraries. This functionality is still under development.

The following example shows how to convert to scheme code using the procedure ccode-
>sexp:

guile> (use-modules (nyacc lang c99 ffi-help))

guile> (define sx (ccode->sexp "struct foo { int x; };"))

guile> ,pp sx

$4 = (begin

(define-public struct-foo

(name-ctype

'struct-foo

(cstruct (list `(x ,(cbase 'int))))))

4

(define-public struct-foo*

(name-ctype 'struct-foo* (cpointer struct-foo))))

guile> (eval sx (current-module))

guile> struct-foo

$5 = #<ctype struct struct-foo 0x73af1fc95480>

Common Errors

Wrong type argument in position 1 (expecting PRIMITIVE_P):

#<procedure 7fed1234 (_ _ _ _)>

This typically indicates that a lambda form passed to a ffi-data procedure.

The Guile Foreign Function Interface

Guile has an API, called the Foreign Function Interface, which allows one to avoid writing
and compiling C wrapper code in order to access C coded libraries. The API is based on
libffi and is covered in the Guile Reference Manual. We review some important bits here.
For more insight you should read the relevant sections in the Guile Reference Manual. For
more info on libffi internals visit libffi (https://github.com/libffi/libffi).

The relevant procedures used by the FH are

foreign-library-pointer

generates Scheme-level pointer to a C function or data

pointer->procedure

geneates a Scheme lambda given C function signature

dynamic-pointer

provides access to global C variables

string->pointer

converts a Scheme string to a Guile pointer

pointer->string

converts Guile pointer for C string to a Scheme string

Several of the above require import one or both of the modules (system foreign) and
(system foreign-library.

In order to generate a Guile procedure wrapper for a function, say int foo(char *str),
in some foreign library, say libbar.so, you can use something like the following:

(use-modules (system foreign))

(define foo (pointer->procedure

int

(foreign-library-pointer "foo" "libbar")

(list '*)))

The argument int is a variable name for the return type, the next argument is an expression
for the function pointer and the third argument is an expression for the function argument
list. To execute the function, which expects a C string, you use something like

(define result-code (foo (string->pointer "hello")))

5

https://github.com/libffi/libffi

If you want to try a real example, this should work:

guile> (use-modules (system foreign))

guile> (define strlen

(pointer->procedure

int (dynamic-func "strlen" (dynamic-link)) (list '*)))

guile> (strlen (string->pointer "hello, world"))

$1 = 12

It is important to realize that internally Guile takes care of converting Scheme arguments
to and from C types. Scheme does not have the same type system as C and the Guile FFI
is somewhat forgiving here. When we declare a C function interface with, say, an uint32
argument type, in Scheme you can pass an exact numeric integer. The FH attempts to
be even more forgiving, allowing one to pass symbols where C enums (i.e., integers) are
expected.

As mentioned, access to libraries not compiled into Guile is accomplished via foreign-

library-pointer.
FIXME: update this.
To link the shared library libfoo.so into Guile one would write something like the follow-
ing:

(define foo-lib (dynamic-link "libfoo"))

Note that Guile takes care of dealing with the file extension (e.g., .so). Where Guile looks
for libraries is system dependent, but usually it will find shared objects in the following

• (assq-ref %guile-build-info 'libdir)

• (assq-ref %guile-build-info 'extensiondir)

• /usr/lib on GNU/Linux and macOS

• $DYLD LIBRARY PATH on GNU/Linux and macOS

• directories listed in /etc/ld.so.conf on GNU/Linux

When used with no argument dynamic-link returns a handle for objects already linked
with Guile. The procedure dynamic-link returns a library handle for acquiring function
and variable handles, or pointers, for objects (e.g., a pointer for a function) in the li-
brary. Theoretically, once a library has been dynamically linked into Guile, the expression
(dynamic-link) (with no argument) should suffice to provide a handle to acquire object
handles, but I have found this is not always the case. The FH will try all library handles
defined by a ffi module to acquire object pointers.

The C-data Module

Explanation of the C-data module is provided in a separate document.

The FFI Helper Design

In this section we hope to provide some insight into the FH works. The FH specification,
via the dot-ffi file, determines the set of declarations which will be included in the target
Guile module. If there is no declartion filter, then all the declarations from the specified set
of include files are targeted. With the use of a declaration filter, this set can be reduced.

6

By declaration we mean typedefs, aggregate definitions (i.e., structs and unions), function
declarations, and external variables.

In the C language typedefs define type aliases, so there is no harm in expanding typedefs
which appear outside the specification. For example, say the file foo.h includes a declaration
for the typedef foo_t and the file bar.h includes a declaration for the typedef bar_t.
Furthermore, suppose foo_t is a struct that references bar_t. Then the FH will preserve
the typedef foo_t but expand bar_t. That is, if the declarations are

typedef int bar_t; /* from bar.h */

typedef struct { bar_t x; double y; } foo_t; /* from foo.h */

then the FH will treat foo_t as if it had been declared as

typedef struct { int x; double y; } foo_t; /* from foo.h */

When it comes to handling C types in Scheme the FH tries to leave base types (i.e.,
numeric types) alone and uses its own type system, based on Guiles structs and associated
vtables, for structs, unions, function types and pointer types. Enum types are handled
specially as described below. The FH type system associates with each type a number of
procedures. One of these is the printer procedure which provided the association of type
with output seen in the demo above.

One of the challenges in automating C-Scheme type conversion is that C code uses a lot
of pointers. So as the FH generates types for aggregates, it will automatically generate types
for associated pointers. For example, in the case above with foo_t the FH will generate
an aggregate type named foo_t and a pointer type named foo_t*. In addition the FH
generates code to link these two together so that, given an object f1 of type foo_t, the
expression (cdata& f1) will generate an object of type foo_t*. This makes the task of
generating an object value in Scheme, and then passing the pointer to that value as an
argument to a FFI-generated procedure, easy. The inverse operation (cdata* f1* is also
provided. Note that sometimes the C code needs to work with pointer pointer types. The
FH does not produce double-pointers and in that case, the user must add code to the FH
module defintion to support the required additional type (e.g., foo_t**).

FIXME: Need to re-write this.

In addition, the FH type system provides unwrap and wrap procedures used internal to
ffi-generated modules for function calls. These convert FH types to and from objects of type
expected by Guile’s FFI interface. For example, the unwrap procedure associated with the
FH pointer type foo_t* will convert an foo_t* object to a Guile pointer. Similarly, on
return the wrap procedure are applied to convert to FH types. When the FH generates a
type, for example foo_t it also generates an exported procedure make-foo_t that users can
use to build an object of that type. The FH also generates a predicate foo_t? to determine
if an object is of that type. The (system ffi-help-rt) module provides a procedure fh-

object-ref to convert an object of type foo_t to the underlying bytevector representation.
For numeric and pointer types, this will generate a number and for aggregate types, a
bytestructure. Additional arguments to fh-object-ref for aggregates work as with the
bytestructures package and enable selection of components of the aggregate. Note that the
underlying type for a bytestructure pointer is an integer.

7

Enums are handled specially. In C, enums are represented by integers. The FH does
not generate types for C enums or C enum typedefs. Instead, the FH defines unwrap and
wrap procedures to convert Scheme values to and from integers, where the Scheme values
can be integers or symbols. For example, if, in C, the enum typedef baz_t has element
OPTION_A with value 1, a procedure expecting an argument of type baz_t will accept the
symbol 'OPTION_A or the integer 1.

Where the FH generates types, the underlying representation is a bytestructure descrip-
tor. That is, the FH types are essentially a layer on top of a bytestructure. The layer
provides identification seen at the Guile REPL, unwrap and wrap procedures which are
used in function handling (not normally visible to the user) and procedures to convert
types to and from pointier-types.

For base types (e.g., int, double) the FH uses the associated Scheme values or the
associated bytestructures values. (I think this is all bytestructure values now.)

The underlying representation of bytestructure values is bytevectors. See the Guile Ref-
erence Manual for more information on this datatype.

The following routines are user-level procedures provided by the

You can pass a bytestructure struct value:

guile> (make-ENTRY `((key 0) (data 0)))

#<ENTRY 0x18a10b0>

TODO: should we support (make-ENTRY 0 0) ?

Creating FFI Modules with (nyacc lang c99 ffi-help)

(define ffi-module module-name ...)

#:pkg-config

This option take a single string argument which provides the name used for the
pkg-config program. Try man pkg-config.

#:include

This form, with expression argument, indicates the list of include files to be
processed at the top level. Without use of the #:inc-filter form, only decla-
rations in these files will be output. To constrain the set of declarations output
use the #:decl-filter form.

#:inc-filter

This form, with predicate procedure argument taking the form (proc file-

spec path-spec), is used to indicate which includes beyond the top-level should
have processed declarations emitted in the output. The file-spec argument is
a string as parsed from #include statements in the C code, including brackets
or double quotes (e.g., "<stdio.h>", "\"foo.h\""). The path-spec is the full
path to the file.

#:use-ffi-module

This form, with literal module-type argument (e.g., (ffi glib)), indicates de-
pendency on declarations from another processed ffi module. For example,
the ffi-module for (ffi gobject) includes the form #:use-ffi-module (ffi

glib).

8

#:decl-filter

This form, with a predicate procedure argument, is used to restrict which dec-
larations should be processed for output. The single argument is either a string
or a pair. The string form is used for simple identifiers and the pair is used for
struct, union and enum forms from the C code (e.g., (struct . "foo")).

#:library

This form, with a list of strings, indicates which (shared object) libraries need
to be loaded. The formmat of each string in the list should be as provided to
the dynamic-link form in Guile.

#:renamer

The argument is a procedure of the form proc name ctxt) where name is a
string for the name being translated and ctxt is the context. The context can
be

field field in a struct or union

enum name of an enum

type name of a typedef, struct, union or enum definition

function name of a function

variable name of an extern variable

#:cpp-defs

This form, with a list of strings, provides extra C preprodessor definitions to
be used in processing the header files. The defines take the form "SYM=val".

#:inc-dirs

This form, with a list of strings, provides extra directories in which to search
for include files.

#:inc-help

todo

#:api-code

todo

#:def-keepers

This form, with a list of strings, provides extra (non-function) C preprocessor
macro definitions that should be included in the output.

#:library '("libcairo" "libmisc")

#:inc-dirs '("/opt/local/include/cairo" "/opt/local/include")

#:renamer (string-renamer

(lambda (n)

(if (string=? "cairo" (substring n 0 5)) n

(string-append "cairo-" n))))

#:pkg-config "cairo"

#:include '("cairo.h" "cairo-svg.h")

#:inc-help (cond

9

((string-contains %host-type "darwin")

'(("__builtin" "__builtin_va_list=void*")

("sys/cdefs.h" "__DARWIN_ALIAS(X)=")))

(else '()))

#:decl-filter (string-member-proc

"cairo_t" "cairo_status_t" "cairo_surface_t"

"cairo_create" "cairo_svg_surface_create"

"cairo_destroy" "cairo_surface_destroy")

#:export (make-cairo-unit-matrix)

Another decl-filter, useful for debugging.

#:decl-filter (lambda (k)

(cond

((member k '(

"cairo_t" "cairo_status_t"

"cairo_glyph_t" "cairo_path_data_t"

)) #t)

((equal? k '(union . "union-_cairo_glyph_t")) #t)

(else #f)))

Direct Usage

Work to go here:

[Procedure]load-include-file filename [#pkg-config pkg]
This is the functionality that Ludo was asking for: to be at guile prompt and be able
to issue

(use-modules (nyacc lang c99 ffi-help))

(load-include-file "cairo.h" #:pkg-config "cairo")

guile> ,use (nyacc lang c99 ffi-help)

guile> (load-include-file "cairo.h" #:pkg-config "cairo")

;; wait a while

guile> ...

Tuning and Debugging

Since this is not all straightforward you will get errors.

Method

1. compile-ffi with flag to echo declarations

2. compile -O0 the resulting scm file

3. guile -c ’(use-modules (ffi mymod))’

MAX_HEAP_SECTS

The message is

Too many heap sections: Increase MAXHINCR or MAX HEAP SECTS

10

The message comes from the garbage collector. It means you’ve run out of memory. I
found that this actually came from a bug in the ff-compiler which generated this code:

(bs:struct

(list ...

`(compose_buffer ,(bs:vector #f unsigned-int))

The original C declaration was

struct _GtkIMContextSimple {

...

guint compose_buffer[7 + 1];

...

};

This bug, failure to evaluate 7+1 to an integer, was fixed.

Trimming Things Down

After using the FFI Helper to provide code for some packages you may notice that the
quantity of code produced is large. For example, to generate a guile interface for gtk2+,
along with glib, gobject, pango and gdk you will end up with over 100k lines of scm code.
This may seem bulky. Instead it may be preferable to generate a small number of calls
for gtk and work from there. In order to achieve this you could use the #:api-code or
#:decl-filter options.

For example, in the expansion of the GLU/GL FFI module, called glugl.ffi, I found
that a very large number of declarations starting with PF were being generated. I removed
these using the #:decl-filter option:

(define-ffi-module (ffi glugl)

#:include '("GL/gl.h" "GL/glu.h")

#:library '("libGLU" "libGL")

#:inc-filter (lambda (spec path) (string-contains path "GL/" 0))

#:decl-filter (lambda (n) (not (and (string? n) (string-prefix? "PF" n)))))

Using the option reduced glugl.scm from 59,274 lines down to 15,354 lines.

As another example, if we wanted to just generate code for the gtk hello world demo we
could write

(define-ffi-module (hack1)

#:pkg-config "gtk+-2.0"

#:api-code "

#include <gtk2.h>

void gtk_init(int *argc, char ***argv);

void gtk_container_set_border_width(GtkContainer *container,

guint border_width);

void gtk_container_add(GtkContainer *container, GtkWidget *widget);

void gtk_widget_show(GtkWidget *widget);

void gtk_main(void);

")

11

Since the above example does not ask the FH to pull in typedef’s then the pointer types
will be expanded to native. You could invent your own types or echo the typedefs from the
package headers

Warning: Possibly Unbound Variable
;;; ffi/gtk2+.scm:3564:5: warning:

possibly unbound variable `GtkEnumValue*'

;;; ffi/gtk2+.scm:3581:5: warning:

possibly unbound variable `GtkFlagValue*'

;;; ffi/gtk2+.scm:10717:11: warning:

possibly unbound variable `GtkAllocation*'

;;; ffi/gtk2+.scm:15107:15: warning:

possibly unbound variable `GdkNativeWindow'

;;; ffi/gtk2+.scm:15122:15: warning:

possibly unbound variable `GdkNativeWindow'

;;; ffi/gtk2+.scm:26522:11: warning:

possibly unbound variable `GSignalCMarshaller'

;;; ffi/gtk2+.scm:62440:11: warning:

possibly unbound variable `GdkNativeWindow'

;;; ffi/gtk2+.scm:62453:5: warning:

possibly unbound variable `GdkNativeWindow'

When I see this I check the scm file and see one of many things

(fht-unwrap GtkAllocation*)

This usually means that GtkAllocation was somehow defined but not the
pointer type.

Other

User is responsible for calling string->pointer and pointer->string.

By definition: wrap is c->scm; unwrap is scm->c.

define-ffi-module options:

#:decl-filter proc

proc is a prodicate taking a key of the form "name", (struct . "name"), (union
. "name") or (enum . "name").

#:inc-filter proc

#:include expr

expr is string or list or procecure that evaluates to string or list

#:library expr

expr is string or list or procecure that evaluates to string or list

#:pkg-config string

#:renamer proc

procdure

Here are the type of hacks I need to parse inside /usr/include with NYACC’s C99
parser. There is no such thing as a working C standard.

(define cpp-defs

12

(cond

((string-contains %host-type "darwin")

'("__GNUC__=6")

(remove (lambda (s)

(string-contains s "_ENVIRONMENT_MAC_OS_X_VERSION"))

(get-gcc-cpp-defs)))

(else '())))

(define fh-inc-dirs

(append

`(,(assq-ref %guile-build-info 'includedir) "/usr/include")

(get-gcc-inc-dirs)))

(define fh-inc-help

(cond

((string-contains %host-type "darwin")

'(("__builtin"

"__builtin_va_list=void*"

"__attribute__(X)="

"__inline=" "__inline__="

"__asm(X)=" "__asm__(X)="

"__has_include(X)=__has_include__(X)"

"__extension__="

"__signed=signed"

)))

(else

'(("__builtin"

"__builtin_va_list=void*" "__attribute__(X)="

"__inline=" "__inline__="

"__asm(X)=" "__asm__(X)="

"__has_include(X)=__has_include__(X)"

"__extension__="

)))))

The Run-time Module (system ffi-help-rt)

Here we provide details of the run-time support module.

Work to Go

02 if need foo t pointer then I gen wrapper for foo t* but add foo t to *wrappers*
so if I later run into need for foo t may be prob

03 allow user to specify #:renamer (lambda (n) "make goo" => "make-goo")

04 Now the hard part if we want to reference other ffi-modules for types or other
c-routines. Say ffi-module foo defines foo t now in ffi-module bar we want to
reference, but redefine, foo t

(define-ffi-module (cairo cairo) ...)

(define-ffi-module (cairo cairo-svg) #:use-ffi-module (cairo cairo)

13

05 Should setters for bs:struct enum fields check for symbolic arg?

06 Use guardians for cairo_destroy and cairo_surface_destroy?

07 What about vectors? If foo(foo_t x[],

1. user must make vector of foo t

2. ffi-module author should generate a make-foo t-vector procedure

Completed

01

enum-wrap 0 => 'CAIRO_STATUS_SUCCESS

enum-unwrap 'CAIRO_STATUS_SUCCESS => 0

Administrative Items

Installation

./configure --prefix=xxx

make install

Reporting Bugs

Please report bugs by navigating with your browser to ‘https://savannah.nongnu.org/projects/nyacc’
and select the “Submit New” item under the “Bugs” menu. Alternatively, ask on the Guile
user’s mailing list guile-user@gnu.org.

Notes

1. The following situation is a bit tricky for me.

typedef struct foo foo_t;

typedef foo_t bar_t;

struct foo { int a; };

int baz(foo_t *x);

Right now, on the first declaration I assign foo_t the type fh-void. The second
declaration is handled as a type-alias. When I get to the third declaration I define the
struct foo compound type, then re-define the foo_t as a compound type, and it’s
pointer type (missed this first time).

Copyright

Copyright (C) 2017-2024 – Matthew Wette.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included with the distribution as COPYING.DOC.

14

mailto:guile-user@gnu.org

