
Not Yet Another Compiler-Compiler
A LALR(1) Parser Generator Implemented in Guile

User’s manual for NYACC version 1.02.0

Matt Wette

i

Table of Contents

1 Demonstration . 1
1.1 A Simple Batch Calculator . 1
1.2 Generating a Language to Run in Guile . 3
1.3 Debugging Output . 4

2 Parsing . 5
2.1 The Specification . 5
2.2 Parsing a Sublanguage of a Specification . 10
2.3 Generating the Machine . 10
2.4 The Match Table . 12
2.5 Constructing Lexical Analyzers . 12
2.6 The Parser-Lex’er Interface . 15
2.7 Parser Tables . 16
2.8 Hashing and Compacting . 17
2.9 Exporting Parsers . 17
2.10 Debugging . 17

3 Translation . 20
3.1 Tagged Lists . 21
3.2 Working with SXML Based Parse Trees . 22

4 Coding to the Compiler Tower 24
4.1 Pretty Print . 24

5 Administrative Notes . 25
5.1 Installation . 25
5.2 Reporting Bugs . 25
5.3 The Free Documentation License . 25

6 TODOs, Notes, Ideas . 26

7 References . 27

1

1 Demonstration

A LALR(1) parser is a pushdown automata for parsing computer languages. LALR parser
generators like NYACC have been around since the 1970’s. In NYACC the automata,
along with its auxiliary parameters (e.g., actions), is called a machine. The grammar is
called the specification. The program that processes, driven by the machine, input tokens
to generate a final output, or error, is the parser.

A more detailed explantion of how to use an LALR parser generator can be found in the
Bison manual (see Chapter 7 [References], page 27).

1.1 A Simple Batch Calculator

An easy way to introduce you to NYACC is to work through a simple example.
Consider the following. A similar example is in the file calc.scm in the subdirectory
examples/nyacc/lang/calc/ of the source distribution. (To execute the file you need to
source the file env.sh in the top-level sub-directory examples.)

(use-modules (nyacc lalr))

(use-modules (nyacc lex))

(use-modules (nyacc parse))

(define (next) (newline) (display "> ") (force-output))

(define spec

(lalr-spec

(prec< (left "+" "-") (left "*" "/"))

(start prog)

(grammar

(prog

(stmt-list))

(stmt-list

(stmt)

(stmt-list "\n" stmt))

(stmt

($empty ($$ (next)))

(expr ($$ (display $1) (next))))

(expr

(expr "+" expr ($$ (+ $1 $3)))

(expr "-" expr ($$ (- $1 $3)))

(expr "*" expr ($$ (* $1 $3)))

(expr "/" expr ($$ (/ $1 $3)))

($fixed ($$ (string->number $1)))

($float ($$ (string->number $1)))

($ident ($$ (module-ref (current-module) (string->symbol $1))))

("(" expr ")" ($$ $2))))))

(define mach (make-lalr-machine spec))

(define mtab (lalr-match-table mach))

Chapter 1: Demonstration 2

(define gen-lexer (make-lexer-generator mtab))

(define raw-parse (make-lalr-parser mach))

(define (parse) (raw-parse (gen-lexer)))

(parse)

Here is an explanation of the above code:

1. The relevent modules are imported using Guile’s use-modules syntax.

2. The procedure next is used to generate a prompt to the user.

3. The syntax form lalr-spec is used to generate a language specification from the
grammar and options provided in the form.

4. The prec< directive indicates that the tokens appearing in the sequence of associativity
directives should be interpreted in increasing order of precedence. The associativity
statements left indicate that the tokens have left associativity. So, in this grammar
+, -, *, and / are left associative, * and / have equal precedence, + and - have equal
precedence, but * and / have higher precedence than + and -.

5. The start directive indicates which left-hand symbol in the grammar is the starting
symbol for the grammar.

6. The grammar directive is used to specify the production rules.

• In the example above one left-hand side is associated with multiple right hand
sides. But this is not required. Multiple right-hand sides can be written for a
single left-hand side.

• Non-terminals are indicated using symbols (e.g., expr).

• Terminals are indicated using string literals (e.g.,"+"), character literals (e.g., #\+),
quoted symbols (e.g., ’+) or NYACCreserved symbols, which always begin with
$. Reserved symbols used in this example are $fixed and $float. Note that
tokens or terminals do not need to be declared as in Bison or in the Guile module
(system base lalr).

• The reserved symbols $fixed and $float indicate unsigned integer and floating
point number, respectively. The NYACC procedures for generating lexical ana-
lyzers will emit this token when the corresponding numbers are detected in the
input.

• Within the right-hand side of a production rule a $$ form is used to specify an
action associated with the rule. Ordinarily, the action appears as the last element
of a right-hand side, but mid-rule actions are possible. Inside the $$ form, the
variables $1, $2, etc. refer to the symantic value of the corresponding item in the
right hand side of the production rule. See [Actions], page 9, for more details on
how those actions are evaluated.

• The expression returned by lalr-spec is an association list (a-list); you can peek
at the internals using typical Scheme procedures for a-lists.

7. The the automaton (aka machine) mach is defined using the procedure make-lalr-

machine, which returns an association list. The procedure does the bulk of the work
to produce what is needed to generate a LALR(1) parser. Separate procedures can be
called to further compact tables and hash the automaton. See [Hashing and Compact-
ing], page 17,

Chapter 1: Demonstration 3

8. One item needed is the match-table this is the a-list that maps input character, se-
quences to be read by the lexical analyzer, to tokens, either symbols or integers, used
by the parser. The variable mtab is defined to be the machine’s match-table.

9. Next we generating a raw parser. The generated procedure raw-parser takes one
required argument, a lexical analyzer procecdure, and optional keyword arguments.

10. The next task is to create a generator for lexical analyzers. This is performed as follows:

(define gen-lexer (make-lexer-generator mtab))

Note that the above returns a generator for lexical analyzers: lexical analysis for a call
to the parser may require maintaining internal state (e.g., line number, mode). (Sorry,
we now deviate from being purely function. This could be fixed by using continua-
tion passing style, but I digress.) The procedure make-lexer-generator is imported
from the module (nyacc lex). Optional arguments to make-lexer-generator allow
the user to specify custom readers for identifiers, comments, numbers, etc. See [lex],
page 12,

11. We bring the above items together to provide a usable procedure for an interactive
calculator.

(next)

(parse)

The lexical analyzer reads code from (current-input-port). If we want to run this
on a string we would need to use with-input-from-string or equivalent. See Section
“Input and Output” in guile

12. And now we can run it:

$ guile calc.scm

...

> 1 + 1

2

>

If we execute the example file above we should get the following:

$ guile calc1.scm

2 + 2 => 4

$

1.2 Generating a Language to Run in Guile

One of the many cool features of Guile is that it provides a backend infrastructure for evalu-
ation of multiple frontend languages. The files mach.scm, parser.scm and compiler.scm in
the examples/nyacc/lang/calc directory and spec.scm in the examples/language/calc
directory implement our calculator within this Guile infrastructure. You can run the cal-
culator if you have sourced the env.sh file as described above.

$ guile

...

scheme@(guile-user)> ,L calc

...

Happy hacking with calc! To switch back, type ‘,L scheme’.

Chapter 1: Demonstration 4

calc@(guile-user)> (2 + 2)/(1 + 1)

2

calc@(guile-user)>

The evaluator uses SXML as the intermediate representation between the parser
and compiler, which generates to Tree-IL. See also the example in the directory
examples/language/javascript and examples/nyacc/lang/javascript directories.
For details on the Guile backend see

1.3 Debugging Output

The parser can provide debugging output with the appropriate keyword argument. In
calc1.scm there is a modified version of calc1-eval which will print out debugging info:

(define (calc1-eval str)

(with-input-from-string str

(lambda () (raw-parser (gen-lexer) #:debug #t))))

To make use of this info you probably want to generate an output file as describe in Section
[Human Readable Output], page 17, which provides context for the debugging output. The
output looks like

state 0, token "2" => (shift . 3)

state 3, token "+" => (reduce . 5)

state 0, token expr => (shift . 4)

state 4, token "+" => (shift . 5)

state 5, token "2" => (shift . 3)

state 3, token #<eof> => (reduce . 5)

state 5, token expr => (shift . 14)

state 14, token #<eof> => (reduce . 1)

state 0, token expr => (shift . 4)

state 4, token #<eof> => (accept . 0)

2 + 2 => 4

5

2 Parsing

Most of the syntax and procecures for generating skelton parsers exported from the module
(nyacc lalr). Other modules include

(lalr lex)

This module provides procedures for generating lexical analyzers.

(lalr util)

This module provides utilities used by the other modules.

2.1 The Specification

The syntax for generating specifications is lalr-spec. As mentioned in the previous chap-
ter, the syntax generates an association list, or a-list.

[Syntax]lalr-spec grammar => a-list
This routine reads a grammar in a scheme-like syntax and returns an a-list. The
returned a-list is normally used as an input for make-lalr-machine. The syntax is
of the form

(lalr-spec (specifier ...) ...)

The order of the specifiers does not matter, but typically the grammar specifier occurs
last.

The specifiers are

notice This is used to push a comment string (e.g., copyright) into the resulting parser
tables.

reserve This is a list of tokens which do not appear in the grammar but should be added
to the match table.

prec<, prec>

These specifiers are used to specify precedence and associativity symbols.

expect This is the expected number of shift-reduce conflicts to occur.

start This specifies the top-level starting non-terminal.

alt-start

This specifies alternative start symbols used in restart-spec. Its use prevents
warning messages.

grammar the grammar see below

The Notice

The notice specifier allows one to provide a comment that will be carried into generated
output files (e.g., parse tables generated by write-lalr-tables. For example, if the spec’
looks like

(define spec

(lalr-spec

(notice "last edit: Mar 25, 2015")

Chapter 2: Parsing 6

...))

and one generates parse tables from the machine with write-lalr-tables then the result-
ing file will look like

;; calctab.scm

;; last edit: Mar 25, 2015

(define calc-len-v

#(1 1 ...

...

The notice is available using the expression

[Procedure]pp-lalr-notice spec [port]
Print the notice to the port, if specified, or (current-output-port).

Reserving Tokens

The notice specifier allows one to provide a comment that will be carried into generated
output files (e.g., parse tables generated by write-lalr-tables. In the javascript parser
we have added reserved keywords:

(reserve "abstract" "boolean" "byte" "char"

"class" "const" ...)

and this results in a generated match table (for a hashed machine) that looks like:

... ("abstract" . 86) ("boolean" . 87) ("byte" . 88)

("char" . 89) ("class" . 90) ("const" . 91) ...

Precedence and Associativity

Recall the following specifier from the calc1 example:

(prec< (left "+" "-") (left "*" "/"))

This declaration indicates presedence among the math operators. The < in prec< indicates
that the precedence is in increasing order. An equivalent specification would be as follows:

(prec> (left "*" "/") (left "+" "-"))

The precedence specification can be used along with $prec in the grammer to resolve
shift-reduce or reduce-reduce conflicts in a grammar. The classical case is the if-then-else
construct in C, where a conflict occurs on the input

if (expr1) if (expr2) bar(); else baz();

The above could be interpreted as

if (expr1) { if (expr2) bar(); } else baz();

or as

if (expr1) { if (expr2) bar(); else baz(); }

hence a conflict. The language specification indicates the latter, so the parser should shift.
This rule can be specificed in a C parser as follows:

(lalr-spec

...

Chapter 2: Parsing 7

(prec< ’then "else") ; "then/else" SR-conflict resolution

...

(grammar

...

(selection-statement

("if" "(" expression ")" statement ($prec ’then)

($$ ‘(if ,$3 ,$5)))

("if" "(" expression ")" statement "else" statement

($$ ‘(if ,$3 ,$5 ,$7)))

...

It is important to note here that we use a quoted symbol ’then rather than a string "then"

as a dummy token. If we would have used "then" as the dummy then the lex’er would
return the associated token when "then" appears in the input and the C declaration

int then(int);

would produce a syntax error.

Expected Conflicts

There are default rules for handling shift-reduce conflicts. If you can live with these it is
possible to inhibit the error messages generated by using the expect specifier, which takes
as argument the expected number of shift-reduce conflicts:

(lalr-spec

(expect 3)

...

Grammar

The grammer is a list of production rules. Each production rule take the form

(lhs (rhs1 ...) (rhs2 ...) ...)

where lhs is the left hand side is a non-termianl represented as a Scheme identifier. Each
right hand side is a list non-terminals, terminals, actions or proxies, represented by Scheme
indentifiers, Scheme constants, $$-expressions or proxy expressions, respectively. The ter-
minals can be Scheme strings, character constants or quoted symbols, but not numbers.
For example, the following is the production rule for a C99 additive expression:

(add-expr

(mul-expr)

(add-expr "+" mul-expr ($$ ‘(add ,$1 ,$3)))

(add-expr "-" mul-expr ($$ ‘(sub ,$1 ,$3))))

Here add-expr and mul-expr are non-terminals and "+", "-" are terminals and ($$

‘(add ,$1 ,$3)) and ($$ ‘(sub ,$1 ,$3)) are actions. In the actions $1 refers to the
semantic value of the term add-expr.

Symbols starting with $ are reserved. The following symbols have special meaning: All
symbols starting with $ are reserved. Unused reserved symbols will likely not signal an
error. The following reserved symbols are in use:

$prec This symbol is used in the right hand side of a production rule to indicate
precedence (e.g., ($prec ’foo)).

Chapter 2: Parsing 8

$error This symbol is used in the right hand side of a production rule to indicate the
rule is an error. The associated parser will abort on this rule.

$empty This symbol can be used in the right hand side of a production to indicate it
has no terms.

$ident This is emitted by the lexical analyzer to indicate an identifier.

$fixed This is emitted by the lexical analyzer to indicate an unsigned integer.

$float This is emitted by the lexical analyzer to indicate an unsigned floating point
number.

$string This is emitted by the lexical analyzer to indicate a string.

$code-comm

This is emitted by the lexical analyzer to indicate a comment starting after
code appearing on a line.

$lone-comm

This is emitted by the lexical analyzer to indicate a comment starting on a line
without preceeding code.

$$, $$-ref, $$/ref

These define an action in the right-hand side of a production. They have the
forms

($$ body)

($$-ref ’rule12)

($$/ref ’rule12 body)

In an action, body is a Scheme expression, which can refer to the semantic values
via the special variables $1, $2, . . . See [Actions], page 9, for more details on
how body is evaluated. The ref forms are used to provide references for future
use to support other (non-Scheme) languages, where the parser will be equipped
to execute reduce-actions by reference (e.g. an associative array).

$1, $2, ...

These appear as arguments to user-supplied actions and will appear in the body
shown above. The variables reference the symantic values of right-hand-side
symbols of a production rule. Note that mid-rule actions count here so

(lhs (l-expr ($$ (gen-op)) r-expr ($$ (list $2 $1 $3))))

generates a list from the return of (gen-op) followed by the semantic value
associated with l-expr and then r-expr.

$?, $*, $+

These are (experimental) macros used for grammar specification.

($? foo bar baz) => ‘‘foo bar baz’’ occurs never or once

($* foo bar baz) => ‘‘foo bar baz’’ occurs zero or more times

($+ foo bar baz) => ‘‘foo bar baz’’ occurs one or more times

However, these have hardcoded actions and are considered to be, in current
form, unattractive for practical use.

Chapter 2: Parsing 9

In addition, the following reserved symbols may appear in output files:

$chlit This is emitted by the lexical analyzer to indicate a character literal.

$start This is used in the machine specification to indicate the production rule for
starting the grammar.

$end This is emitted by the lexical analysis to indicate end of input and appears in
the machine to catch the end of input.

$P1, $P2, ...

Symbols of the form $P1, $P2,... are as symbols for proxy productions (e.g., for
mid-rule actions). For example, the production rule

(lhs (ex1 ($$ (gen-x)) ex2 ex3) ($$ (list $1 $2 $3 $4)))

will result in the internal p-rules

(lhs (ex1 $P1 ex2 ex3) ($$ (list $1 $2 $3 $4)))

($P1 ($empty ($$ (gen-x))))

$default This is used in the generated parser to indicate a default action.

Acions

A grammar rule’s right-hand side can contain actions:

($$ body)

body is a Scheme expression which can refer to the values matched by the rule’s right-hand
side via the variables ($1, $2, . . .). This expression is evaluates in the top-level environment
of the module from which ’make-lalr-parser’ is called, so it will “see” the bindings defined
there.

When actions appear within a production rule (known as mid-rule actions) they count as
right-hand side items and thus the results of their evaluation is bound to the corresponding
$n variable available for the end-of-rule action.

Recovery from Syntax Errors

The grammar specification allows the user to handle some syntax errors. This allows parsing
to continue. The behavior is similar to parser generators like yacc or bison. The following
production rule-list allows the user to trap an error.

(line

("\n")

(exp "\n")

($error "\n"))

If the current input token does not match the grammar, then the parser will skip input
tokens until a "\n" is read. The default behavior is to generate an error message: "syntax
error". To provide a user-defined handler just add an action for the rule:

(line

("\n")

(exp "\n")

($error "\n" ($$ (format #t "line error\n"))))

Note that if the action is not at the end of the rule then the default recovery action ("syntax
error") will be executed.

Chapter 2: Parsing 10

2.2 Parsing a Sublanguage of a Specification

Say you have a NYACC specification cspec for the C language and you want to generate
a machine for parsing C expressions. You can do this using restart-spec:

(define cxspec (restart-spec cspec ’expression))

(define cxmach (make-lalr-machine cxspec))

2.3 Generating the Machine

[Procedure]make-lalr-machine spec => a-list
Given a specification generated by lalr-spec this procecure generates an a-list
which contains the data required to implement a parser generated with, for example,
make-lalr-parser.

The generated a-list includes the following keys:

pat-v a vector of parse action procecures

ref-v a vector of parse action references (for supporting other languages)

len-v a vector of p-rule lengths

rto-v a vector of lhs symbols (“reduce to” symbols)

lhs-v a vector of left hand side symbols

rhs-v a vector of vectors of right hand side symbols

kis-v a vector of itemsets

Using Hashed Tables

The lexical analyzer returns tokens to the parser. The parser executes state transitions
based on these tokens. When we build a lexical analyzer (via make-lexer) we provide a
list of strings to detect along with associated tokens to return to the parser. By default
the tokens returned are symbols or characters. But these could as well be integers. Also,
the parser uses symbols to represent non-terminals, which are also used to trigger state
transitions. We could use integers instead of symbols and characters by mapping the tokens
to integers. This makes the parser more efficient. The tokens we are talking about include

1. the $end marker

2. identifiers (using the symbolic token $ident

3. non-negative integers (using the symbolic token $fixed)

4. non-negative floats (using the symbolic token $float)

5. $accept

6. $default

7. $error

For the hash table we use positive integers for terminals and negative integers for non-
terminals. To apply such a hash table we perform the following:

1. From the spec’s list of terminals (aka tokens), generate a list of terminal to integer
pairs (and vice versa).

Chapter 2: Parsing 11

2. From the spec’s list of non-terminals generate a list of symbols to integers and vice
versa.

3. Go through the parser-action table and convert symbols and characters to integers.

4. Go through the token list passed to the lexical analyzer and replace symbols and
characters with integers.

Note that the parser is hardcoded to assume that the phony token for the default (reduce)
action is ’$default for unhashed machine or 1 for a hashed machine.

The actions that the parser executes based on these are shift, reduce and accept. When a
shift occurs, the parser must transition to a new state. We can encode the parser transitions
using integers.

1. If positive, shift and go to the integer state.

2. If negative, reduce by the additive inverse of the integer action.

3. If zero, accept and return.

The NYACC procedure to convert a machine to a hashed-machine is hashify-machine.

[Procedure]hashify-machine mach => mach
Convert machine to use integers instead of symbols. The match table will change
from

("abc" . ’abc)

to

("abc" . 2)

and the pax will change from

("abc" . (reduce . 1))

to

("abc" . 2)

[Procedure]machine-hashed? mach => #t|#f
Indicate if the machine has been hashed.

Compacting Machine Tables

[Procedure]compact-machine mach [#:keep 3] [#:keepers ’()] => mach
A "filter" to compact the parse table. For each state this will replace the most populus
set of reductions of the same production rule with a default production. However,
reductions triggered by user-specified keepers and the default keepers – ’$error,
’$end, ’$lone-comm and ’$lone-comm are not counted. The parser will want to
treat errors and comments separately so that they can be trapped (e.g., unaccounted
comments are skipped).

Chapter 2: Parsing 12

2.4 The Match Table

In some parser generators one declares terminals in the grammar file and the generator
will provide an include file providing the list of terminals along with the associated “hash
codes”. In NYACC the terminals are detected in the grammar as non-identifiers: strings
(e.g., "for"), symbols (e.g., ’$ident) or characters (e.g., #\+). The machine generation
phase of the parser generates a match table which is an a-list of these objects along with
the token code. These codes are what the lexical analyzer should return. In the end we
have

• The user specifies the grammar with terminals in natural form (e.g., "for").

• The parser generator internalizes these to symbols or integers, and generates an a-list,
the match table, of (natural form, internal form).

• The programmer provides the match table to the procedure that builds a lexical ana-
lyzer generator (e.g., make-lexer-generator).

• The lexical analyzer uses this table to associate strings in the input with entries in
the match table. In the case of keywords the keys will appear as strings (e.g., for),
whereas in the case of special items, processed in the lexical analyzer by readers (e.g.,
read-num), the keys will be symbols (e.g., ’$float).

• The lexical analyzer returns pairs in the form (internal form, natural form) to the
parser. Note the reflexive behavior of the lexical analyzer. It was built with pairs of
the form (natural form, internal form) and returns pairs of the form (internal form,
natural form).

The symbol for the default transition is ’$default. For hashified machines this is
translated to the integer 1.

2.5 Constructing Lexical Analyzers

The lex module provides a set of procedures to build lexical analyzers. The approach is to
first build a set of readers for different types of tokens (e.g., numbers, identifiers, character
sequences) and then process input characters (or code points) through the procedures. The
signature of most readers is the following:

(reader ch) => #f | (type . value)

If the reader fails to read a token then #f is returned. If the reader reads more characters
from input and fails, then it will push back characters. So, the basic structure of a lexical
analyzer is

(lambda ()

(let iter ((ch (get-char)))

(cond

((eof-object? ch) ’($end . ""))

((whitespace-reader ch) (iter (read-char)))

((comment-reader ch) (iter (read-char)))

((number-reader ch))

((keyword-reader ch))

((ident-reader ch))

...

(else (error)))))

Chapter 2: Parsing 13

The types of readers used are

ident-reader
reads an identifier

num-reader
reads a number

string-reader
reads a string literal

chlit-reader
reads a character literal

comm-reader
reads a comment

comm-skipper
same as comm-reader

chseq-reader
a reader for a sequence of characters (e.g., +=)

Note that some of our parsers (e.g., the C99 parser) is crafted to keep some comments
in the output syntax tree. So comments may be passed to the parser or skipped, hence the
“skipper”.

The Lex Module does not provide lexical analyzers (lex’ers), but lexical analyzer gener-
ator generators. The rationale behind this is as follows. A lexical analyzer may have state
(e.g., beginning of line state for languages where newline is not whitespace). In addition,
our generator uses a default set of readers, but allows the caller to specify other readers.
Or, if the user prefers, lex’ers can be rolled from provided readers. Now we introduce our
lex’er generator generator:

[Procedure]make-lexer-generator match-table [options] => generator
Returns a lex’er generator from the match table and options. The options are

#:ident-reader reader

Use the provided reader for reading identifiers. The default is a C lan-
guage ident reader, generated from

(make-ident-reader c:if c:ir)

#:num-reader reader

Use the provided number reader.

#:string-reader reader

Use the provided reader for string literals.

#:chlit-reader reader

Use the provide charater literal reader. The default is for C. So, for
example the letter ‘a’ is represented as ’a’.

#:comm-reader reader

Use the provided comment reader to pass comments to the parser.

Chapter 2: Parsing 14

#:comm-skipper reader

Use the provided comment reader, but throw the token away. The default
for this is #f.

space-chars string

not a reader but a string containing the whitespace characters (fix this)

(define gen-lexer (make-lexer-generator #:ident-reader my-id-rdr))

(with-input-from-file "foo" (parse (gen-lexer)))

(Minor note: The ident-reader will be used to read ident-like keywords from the
match table.)

[Procedure]make-space-skipper chset => proc
This routine will generate a reader to skip whitespace.

[Procedure]skip-c-space ch => #f|#t
If ch is C whitespace, skip all spaces, then return #t, else return #f.

[Procedure]make-ident-reader cs-first cs-rest => ch -> #f|string
For identifiers, given the char-set for first character and the char-set for following
characters, return a return a reader for identifiers. The reader takes a character as
input and returns #f or string. This will generate exception on #<eof>.

[Procedure]read-c-ident ch => #f|string
If ident pointer at following char, else (if #f) ch still last-read.

[Procedure]make-ident-like-p ident-reader
Generate a predicate, from a reader, that determines if a string qualifies as an iden-
tifier.

[Procedure]like-c-ident? ch
Determine if a string qualifies as a C identifier.

[Procedure]make-string-reader delim
Generate a reader that uses delim as delimiter for strings. TODO: need to handle
matlab-type strings. TODO: need to handle multiple delim’s (like python)

[Procedure]read-oct ch => "0123"|#f
Read octal number.

[Procedure]read-hex ch => "0x7f"|#f
Read octal number.

[Procedure]read-c-string ch => ($string . "foo")
Read a C-code string. Output to code is write not display. Return #f if ch is not
". This reader does not yet read trigraphs.

[Procedure]make-chlit-reader
Generate a reader for character literals. NOT DONE. For C, this reads ’c’ or ’\n’.

[Procedure]read-c-chlit ch
... ’c’ ... => (read-c-chlit #\’) => ’($ch-lit . #\c)

Chapter 2: Parsing 15

[Procedure]make-num-reader => (proc ch) => output
Generates a procedure to read C numbers where output is of the form #f, ($fixed .

"1") or ($float . "1.0") This routine will clean up floats by adding "0" before or
after dot.

[Procedure]cnumstr->scm C99-str => scm-str
Convert C number-string (e.g, 0x123LL) to Scheme numbers-string (e.g., #x123).

[Procedure]read-c-num ch => #f|string
Reader for unsigned numbers as used in C (or close to it).

[Procedure]make-chseq-reader strtab
Given alist of pairs (string, token) return a function that eats chars until (token .
string) is returned or #f if no match is found.

[Procedure]make-comm-reader comm-table [#:eat-newline #t] => \
ch bol -> (’$code-comm "..")|(’$lone-comm "..")|#f comm-table is list of cons for
(start . end) comment. e.g. ("–" . "\n") ("/*" . "*/") test with "/* hello **/"
If eat-newline is specified as true then for read comments ending with a newline a
newline swallowed with the comment. Note: assumes backslash is never part of the
end

Rolling Your Own Lex’er

The following routines are provided for rolling your own lexical analyzer generator. An
example is provided in the file examples/nyacc/lang/matlab.

[Procedure]filter-mt p? al => al
Filter match-table based on cars of al.

[Procedure]remove-mt p? al => al
Remove match-table based on cars of al.

[Procedure]map-mt f al => al
Map cars of al.

[Procedure]eval-reader reader string => result
For test and debug, this procedure will evaluate a reader on a string. A reader is
a procedure that accepts a single character argument intended to match a specific
character sequence. A reader will read more characters by evaluating read-char

until it matches or fails. If it fails, it will pushback all characters read via read-char

and return #f. If it succeeds the input pointer will be at the position following the
last matched character.

2.6 The Parser-Lex’er Interface

Sometimes LALR(1) parsers must be equipped with methods to parse non-context free
grammars. With respect to typenames, C is not context free. Consider the following
example.

typedef int foo_t;

foo_t x;

Chapter 2: Parsing 16

The lexical analyzer must identify the first occurance of foo_t as an identifier and the
second occurance of foo_t as a typename. This can be accomplished by keeping a list of
typenames in the parent environment to the parser and lexical analyzer. In the parser,
when the first statement is parsed, an action could declare foo_t to now be a typename. In
the lexical analyzer, as tokens that look like identifers are parsed they are checked against
the list of typenames and if a match is found, ’typename is returned, otherwise $ident is
returned.

Another example of this handshaking is used in the JavaScript parser. The language
allows newline as a statement terminator, but it must be prevented in certain places, for
example between ++ and an expression in the post-increment operator. We handle this
using a mid-rule action to tell the lexer to skip newline if that is the next token.

(LeftHandSideExpression ($$ (NSI)) "++" ($$ ‘(post-inc $1)))

The procedure NSI in the lex’er is as follows:

(define (NSI) ;; no semicolon insertion

(fluid-set! *insert-semi* #f))

and the newline reader in the lex’er acts as follows:

...

((eqv? ch #\newline)

(if (fluid-ref *insert-semi*)

(cons semicolon ";")

(iter (read-char))))

...

2.7 Parser Tables

Note that generating a parser requires a machine argument. It is possible to export the
machine to a pair of files and later regenerate enough info to create a parser from the tables
saved in the machine.

For example, constant tables for a machine can be generated using NYACC procedures
as follows:

(write-lalr-actions calc-mach "calc-act.scm" #:prefix "calc-")

(write-lalr-tables calc-mach "calc-tab.scm" #:prefix "calc-")

This saves the variable definition for calc-act-v to the file calc-act.scm and variable
definitions for the following to the file calc-tab.scm:

calc-len-v

calc-pat-v

calc-rto-v

calc-mtab

calc-tables

The variable calc-act-v is a vector of procedures associated with each of the produc-
tion rules, to be executed as the associated production ruled is reduced in parsing. The
procedures can be modified without editing the grammar file and re-executing lalr-spec

and make-lalr-machine.

To create a parser from the generated tables, one can write the following code:

(include "calc-tab.scm")

Chapter 2: Parsing 17

(include "calc-act.scm")

(define raw-parser (make-lalr-parser (acons ’act-v calc-act-v calc-tables)))

See the example code in examples/nyacc/lang/calc/parser.scm for more detail.

2.8 Hashing and Compacting

The NYACC procedure compact-machine will compact the parse tables generated by
make-lalr-machine. That is, if multiple tokens generate the same transition, then these
will be combined into a single default transition. Ordinarily NYACC will expect sym-
bols to be emitted from the lexical analyzer. To use integers instead, use the procedure
hashify-machine. One can, of course, use both procedures:

(define calc-mach

(compact-machine

(hashify-machine

(make-lalr-machine calc-spec))))

[Procedure]machine-compacted? mach => #t|#f
Indicate if the machine has been compacted.

2.9 Exporting Parsers

NYACC provides routines for exporting NYACC grammar specifications to other LALR
parser generators.

The Bison exporter uses the following rules:

• Terminals expressed as strings which look like C identifiers are converted to symbols
of all capitals. For example "for" is converted to FOR.

• Strings which are not like C identifiers and are of length 1 are converted to characters.
For example, "+" is converted to ’+’.

• Characters are converted to C characters. For example, #\! is converted to ’!’.

• Multi-character strings that do not look like identifiers are converted to symbols of the
form ChSeq_i_j_k where i, j and k are decimal representations of the character code.
For example "+=" is converted to ChSeq_43_61.

• Terminals expressed as symbols are converted as-is but $ and - are replaced with _.

This functionality has not been worked for a while so I suspect there is a chance it does
not work anymore.

2.10 Debugging

The provided parsers are able to generate debugging information.

Human Readable Output

You can generate text files which provide human-readable forms of the grammar specifica-
tion and resulting automaton, akin to what you might get with bison using the ‘-r’ flag.

(with-output-to-file "calc.out"

(lambda ()

(pp-lalr-grammar calc1-mach)

Chapter 2: Parsing 18

(pp-lalr-machine calc1-mach)))

The above code will generate something that looks like

0 $start => prog

1 prog => stmt-list

2 stmt-list => stmt

3 stmt-list => stmt-list stmt

4 stmt => "\n"

5 stmt => expr "\n"

6 stmt => assn "\n"

7 expr => expr "+" expr

8 expr => expr "-" expr

9 expr => expr "*" expr

10 expr => expr "/" expr

11 expr => ’$fixed

12 expr => ’$float

13 expr => ’$ident

14 expr => "(" expr ")"

15 assn => ’$ident "=" expr

0: $start => . prog

prog => . stmt-list

stmt-list => . stmt

stmt-list => . stmt-list stmt

stmt => . "\n"

stmt => . expr "\n"

stmt => . assn "\n"

expr => . expr "+" expr

expr => . expr "-" expr

expr => . expr "*" expr

expr => . expr "/" expr

expr => . ’$fixed

expr => . ’$float

expr => . ’$ident

expr => . "(" expr ")"

assn => . ’$ident "=" expr

"(" => shift 1

’$ident => shift 2

’$float => shift 3

’$fixed => shift 4

assn => shift 5

expr => shift 6

"\n" => shift 7

stmt => shift 8

stmt-list => shift 9

prog => shift 10

Chapter 2: Parsing 19

...

26: expr => expr . "/" expr

expr => expr . "*" expr

expr => expr . "-" expr

expr => expr . "+" expr

expr => expr "+" expr .

"*" => shift 15

"/" => shift 16

$default => reduce 7

["+" => shift 13] REMOVED by associativity

["-" => shift 14] REMOVED by associativity

["*" => reduce 7] REMOVED by precedence

["/" => reduce 7] REMOVED by precedence

Tracing Parsing at Run-Time

The parsers generted by NYACC accept an optional keyword argument #:debug. When
#t is passed to this argument then the parser will display shift and reduce actions as it
executes. The calculator demo under the examples directory has an option (in calc.scm)
to do this. Here is what the output looks like (with the displayed result edited out).

> 1 + 2

state 0, token "1" => shift, goto 4

state 4, token "+" => reduce 11

state 0, token expr => shift, goto 6

state 6, token "+" => shift, goto 11

state 11, token "2" => shift, goto 4

state 4, token "\n" => reduce 11

state 11, token expr => shift, goto 23

state 23, token "\n" => reduce 7

state 0, token expr => shift, goto 6

state 6, token "\n" => reduce 5

state 0, token stmt => shift, goto 7

state 7, token "\n" => reduce 2

state 0, token stmt-list => shift, goto 8

state 8, token "\n" => shift, goto 10

Currently, when parsers are hashed (using hashify-machine the non-terminals (e.g.,
expr above) are reported as integers.

20

3 Translation

In this chapter we present procedures for generating syntax trees in a uniform form. This
format, based on SXML, may use more cons cells than other formats but upon use you will
see that it is easy to produce code in the parser, and one can use all the processing tools
that have been written for SXML (e.g., (sxml match) (sxml fold).

The syntax of SXML trees is simple:

expr => (tag item ...) | (tag (@ attr ...) item ...)

item => string | expr

attr => (tag . string)

where tag names cannot contain the characters

() " ’ ‘ , ; ? > < [] ~ = ! # $ % & * + / \ @ ^ | { }

and cannot begin with -, . or a numeric digit.

For example our Javascript parser given the input

function foo(x, y) {

return x + y;

}

will produce the following syntax tree:

(Program

(SourceElements

(FunctionDeclaration

(Identifier "foo")

(FormalParameterList

(Identifier "x")

(Identifier "y"))

(SourceElements

(EmptyStatement)

(ReturnStatement

(add (PrimaryExpression (Identifier "x"))

(PrimaryExpression (Identifier "y"))))

(EmptyStatement)))

(EmptyStatement)))

And by the way, put through our tree-il compiler, which uses foldts*-values from the
module (sxml fold) we get

(begin

(define foo

(lambda ((name . foo))

(lambda-case

((() #f @args #f () (JS~5575))

(prompt

(const return)

(begin

(abort (const return)

((apply (@@ (nyacc lang javascript jslib) JS:+)

Chapter 3: Translation 21

(apply (toplevel list-ref)

(lexical @args JS~5575)

(const 0))

(apply (toplevel list-ref)

(lexical @args JS~5575)

(const 1))))

(const ())))

(lambda-case

(((tag val) #f #f #f () (JS~5576 JS~5577))

(lexical val JS~5577)))))))))

3.1 Tagged Lists

Paring actions in NYACC can use tagged-lists from the module (nyacc lang util) to help
build SXML trees efficiently. Building a statement list for a program might go as follows:

(program

(stmt-list ($$ ‘(program ,(tl->list $1)))))

(stmt-list

(stmt ($$ (make-tl ’stmt-list $1)))

(stmt-list stmt ($$ (tl-append $1 $2))))

The sequence of calls to the tl- routines goes as follows:

(make-tl ’stmt-list)

Generate a tagged list with tag ’stmt-list.

(tl-append $1 $2)

Append item $2 (not a list) to the tagged-list $1.

(tl->list $1)

Convert the tagged-list $1 to a list. It will be of the form

’(stmt-list (stmt ...) (stmt ...) ...)

The first element of the list will be the tag ’stmt-list. If attributes were
added, the list of attributes will be the second element of the list.

The following procedures are provided by the module (nyacc lang util):

[Procedure]make-tl tag [item item ...]
Create a tagged-list structure for tag tag. Any number of additional items can be
added.

[Procedure]tl->list tl
Convert a tagged list structure to a list. This collects added attributes and puts them
right after the (leading) tag, resulting in something like

(<tag> (@ <attr>) <item> ...)

[Procedure]tl-insert tl item
Insert item at front of tagged list (but after tag).

[Procedure]tl-append tl item ...
Append items at end of tagged list.

Chapter 3: Translation 22

[Procedure]tl-extend tl item-l
Extend with a list of items.

[Procedure]tl-extend! tl item-l
Extend with a list of items. Uses set-cdr!.

[Procedure]tl+attr tl key val)
Add an attribute to a tagged list. Return the tl.

(tl+attr tl ’type "int")

[Procedure]tl-merge tl tl1
Merge guts of phony-tl tl1 into tl.

3.2 Working with SXML Based Parse Trees

To work with the trees described in the last section use

(sx-ref tree 1)

(sx-attr tree)

(sx-attr-ref tree ’item)

(sx-tail tree 2)

[Procedure]sx-ref sx ix => item
Reference the ix-th element of the list, not counting the optional attributes item. If
the list is shorter than the index, return #f.

(sx-ref ’(abc "def") 1) => "def"

(sx-ref ’(abc (@ (foo "1")) "def") 1) => "def"

[Procedure]sx-tag sx => tag
Return the tag for a tree

[Procedure]sx-cons* tag (attr|#f)? ... => sx
[Procedure]sx-list tag (attr|#f)? ... => sx

Generate the tag and the attr list if it exists. Note that

[Procedure]sx-tail sx [ix] => (list)
Return the ix-th tail starting after the tag and attribut list, where ix must be positive.
For example,

(sx-tail ’(tag (@ (abc . "123")) (foo) (bar)) 1) => ((foo) (bar))

Without second argument ix is 1.

[Procedure]sx-has-attr? sx
A predicate to determine if sx has attributes.

[Procedure]sx-attr sx => ’(@ ...)|#f
(sx-attr ’(abc (@ (foo "1")) def) 1) => ’(@ (foo "1"))

should change this to

(sx-attr sx) => ’((a . 1) (b . 2) ...)

[Procedure]sx-attr-ref sx key => val
Return an attribute value given the key, or #f.

23

[Procedure]sx-set-attr! sx key val
Set attribute for sx. If no attributes exist, if key does not exist, add it, if it does exist,
replace it.

[Procedure]sx-set-attr* sx key val [key val [key ...]]
Generate sx with added or changed attributes.

[Procedure]sx+attr* sx key val [key val [. . .]] => sx
Add key-val pairs. key must be a symbol and val must be a string. Return a new sx.

[Procedure]sx-find tag sx => ((tag ...) (tag ...))
Find the first matching element (in the first level).

This illustrates translation with foldts*-values and sxml-match.

24

4 Coding to the Compiler Tower

(define-module (language javascript spec)

#:export (javascript)

#:use-module (nyacc lang javascript separser)

#:use-module (nyacc lang javascript compile-tree-il)

#:use-module (nyacc lang javascript pprint)

#:use-module (system base language))

(define-language javascript

#:title "javascript"

#:reader js-reader

#:compilers ‘((tree-il . ,compile-tree-il))

#:printer pretty-print-js)

(define-module (nyacc lang javascript compile-tree-il)

#:export (compile-tree-il)

#:use-module (nyacc lang javascript jslib)

#:use-module ((sxml match) #:select (sxml-match))

#:use-module ((sxml fold) #:select (foldts*-values))

#:use-module ((srfi srfi-1) #:select (fold))

#:use-module (language tree-il))

...

(define (compile-tree-il exp env opts)

(let* ((xrep (js-sxml->tree-il-ext exp env opts))

(code (parse-tree-il xrep)))

(values code env env)))

4.1 Pretty Print

[Procedure]make-pp-formatter [port] [#:per-line-prefix ""] => fmtr
(fmtr ’push) ;; push indent level

(fmtr ’pop) ;; pop indent level

(fmtr "fmt" arg1 arg2 ...)

25

5 Administrative Notes

5.1 Installation

Installation instructions are included in the top-level file INSTALL of the source distribution.
If you have an installed Guile then the basic steps are

$./configure

$ make install

Help with alternative usage is available with

$./configure --help

If Guile is not installed it is possible to install source only:

$./configure --site-scm-dir=/path/to/dest --site-scm-go-dir=/dummy

$ make install-srcs

5.2 Reporting Bugs

Please report bugs by navigating with your browser to ‘https://savannah.nongnu.org/projects/nyacc’
and select the “Submit New” item under the “Bugs” menu. Alternatively, ask on the Guile
user’s mailing list guile-user@gnu.org.

5.3 The Free Documentation License

The Free Documentation License is included in the Guile Reference Manual. It is included
with the NYACC source as the file COPYING.DOC.

mailto:guile-user@gnu.org

26

6 TODOs, Notes, Ideas

Todo/Notes/Ideas:

16 add error handling (lalr-spec will now return #f for fatal error)

3 support other target languages: (write-lalr-parser pgen "foo.py" #:lang
’python)

6 export functions to allow user to control the flow i.e., something like: (parse-1
state) => state

9 macros - gotta be scheme macros but how to deal with other stuff

(macro ($? val ...) () (val ...))

(macro ($* val ...) () (_ val ...))

(macro ($+ val ...) (val ...) (_ val ...))

10 support semantic forms: (1) attribute grammars, (2) translational semantics,
(3) operational semantics, (4) denotational semantics

13 add ($abort) and ($accept)

19 add a location stack to the parser/lexer

26 Fix lexical analyzer to return tval, sval pairs using cons-source instead of
cons. This will then allow support of location info.

27

7 References

[bison] Donnely, C., and Stallman, R., “Bison: The Yacc Compatible Parser Genera-
tor,” https://www.gnu.org/software/bison/manual.

[DB] Aho, A.V., Sethi, R., and Ullman, J. D., “Compilers: Principles, Techniques
and Tools,” Addison-Wesley, 1985 (aka the Dragon Book)

[DP] DeRemer, F., and Pennello, T., “Efficient Computation of LALR(1) Look-
Ahead Sets.” ACM Trans. Prog. Lang. and Systems, Vol. 4, No. 4., Oct.
1982, pp. 615-649.

[RPC] R. P. Corbett, “Static Semantics and Compiler Error Recovery,” Ph.D. Thesis,
UC Berkeley, 1985.

[VM] https: / / www . gnu . org / software / guile / manual / html_node /

Compiling-to-the-Virtual-Machine.html#Compiling-to-the-Virtual-Machine

https://www.gnu.org/software/bison/manual
https://www.gnu.org/software/guile/manual/html_node/Compiling-to-the-Virtual-Machine.html#Compiling-to-the-Virtual-Machine
https://www.gnu.org/software/guile/manual/html_node/Compiling-to-the-Virtual-Machine.html#Compiling-to-the-Virtual-Machine

	Demonstration
	A Simple Batch Calculator
	Generating a Language to Run in Guile
	Debugging Output

	Parsing
	The Specification
	Parsing a Sublanguage of a Specification
	Generating the Machine
	The Match Table
	Constructing Lexical Analyzers
	The Parser-Lex'er Interface
	Parser Tables
	Hashing and Compacting
	Exporting Parsers
	Debugging

	Translation
	Tagged Lists
	Working with SXML Based Parse Trees

	Coding to the Compiler Tower
	Pretty Print

	Administrative Notes
	Installation
	Reporting Bugs
	The Free Documentation License

	TODOs, Notes, Ideas
	References

