The m17n Library
1.6.2

Generated by Doxygen 1.6.3

Wed Jan 12 15:50:12 2011

Copyright (C) 2001 Information-technology Promotion Agency (IPA)
Copyright (C) 2001-2011 National Institute of Advanced Industrial Science and Technology (AIST)

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Section, with no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
appendix entitled “GNU Free Documentation License”.

Contents

1 The m17n Library Documentation 1
1.1 Whatisthe m17nlibrary? e 1
1.2 Howtouseit? o e e e e e e 1
1.3 External librariesand data 1
14 Contact US: v v vt i e e e e 2
1.5 Acknowledgements e e 2

2 Module Documentation 5
2.1 Introduction e 5

2.1.1 Detailed Description e e e e e 6

2.1.2 Define Documentation L e 7
2.1.2.1 MI7NLIB_MAJOR_VERSION 7

2.1.22 MI7NLIB_MINOR_VERSION 7

2.1.23 MITNLIB_PATCH_LEVEL 7

2.1.24 MITNLIB_VERSION_NAME 7

2.1.25 MITN_INIT © .o oo 7

2.1.2.6 MITN_FINI o 8

2.1.3 Enumeration Type Documentation 8
2.1.3.1 0 MITNStatus o oot e e 8

2.1.4 Function Documentation 8
2,141 ml7n_status oL e e e e 8

22 CORE AP . . . 9
2.2.1 Detailed Description L 9

2.2.2 Define Documentationo 10
2221 MITN_FUNC e 10

2.2.3 Typedef Documentation e e e e 10
2231 MITNFunc. 10

2.3 Managed Object e e e 11
2.3.1 Detailed Description e e e 11

2.3.2 Function Documentation e e e e 11

ii CONTENTS
2321 ml7n_object e e e e 11

2.3.22 ml7n_object_ref 12
2.3.23 ml7n_object_unref 12

24 Symbol e 13
24.1 Detailed Description e e 14
2.4.2 Typedef Documentation 14
2421 MSymbol 14

2.4.3 Function Documentation L. L e 14
243.1 msymbol 14

2.4.3.2 msymbol_as_managing_ key 15
2.4.3.3 msymbol_is_managing_ key o 15

2434 msymbol_exist. L e 15

2435 msymbol_name 15
24.3.6 msymbol_put 16
2437 msymbol_get 16
24.3.8 msymbol_put_ func 16
2439 msymbol_get func 16

2.4.4 Variable Documentation L 17
2441 Mnil . ..o 17
2442 Mt .o e e 17
2443 MSUING . . . o o e e e e e e e e e e 17
2444 Msymbol. L e e e e 17

2.5 Property List e e e e e e e e 18
2.5.1 Detailed Description e 19
2.5.2 Typedef Documentation 19
2521 MPList 19

2.5.3 Function Documentation 20
2.53.1 mplist_deserialize 20

2532 mplist 20
2533 mplist_COPY e e 20
2534 mplist_put e e e 20
2535 mplist_get e e e e 21
2.53.6 mplist_put_func 21
2.5.3.7 mplist_get_func 21
2538 mplist_add 21
2.5.3.9 mplist_push L 22
25310 mpliSt_popo 22

2.5.3.11 mplist_find_by_key 22

CONTENTS iii
2.5.3.12 mplist_find_by_value 22
25313 mplist_next e e e e e e e e 22
2.5.3.14 mplist_set e 22
2.5.3.15 mplist_length 23
25316 mplist_ keyo 23
25317 mplist_value 23

2.5.4 Variable Documentation L L 23
2541 Minteger e 23

2542 Mplist e 23
2543 MeXt. . . . oo e 23

2.6 CharaCter i i e e e 24
2.6.1 Detailed Description e e e e e e 25
2.6.2 Define Documentation 25
2.6.2.1 MCHAR_MAX 25

2.6.3 Function Documentation 25
2.6.3.1 mchar_define_property 25

2.6.3.2 mchar_get_ prop 26
2633 mchar put_ prop 26
2.6.34 mchar_get prop_table L 26

2.6.4 Variable Documentation oL e 26
2.6.4.1 MSCTIpt. o i e e e e e 26
2,642 Mnameo 27
2,643 McCategOTY i e e e e e e 27
2.644 Mcombining_class 27
2.6.4.5 Mbidi_category e 27
2.6.4.6 Msimple_case_folding o 27
2.6.4.7 Mcomplicated_case_folding 27
2.648 Mecased. 28
2,649 Msoft_dotted. e 28
2.6.4.10 Mcase_mappingo i e e e e e e e e 28
2.64.11 Mblock. 28

2.7 Chartable L e e 29
2.7.1 Detailed Description e e e e e e e 29
2.7.2 Typedef Documentation e 30
2721 MCharTable 30

2.7.3 Function Documentation 30
2.773.1 mchartable L 30

2.7.3.2 mchartable min _char 30

iv CONTENTS
2.7.3.3 mchartable_max_char e 30

2.7.3.4 mchartable_lookup 30

2.7.3.5 mchartable_set e 31

2.7.3.6 mchartable_set_range 31

2.7.3.77 mchartable_range 31

27738 mchartable_map 31

2.7.4 Variable Documentation L e 32
2.7.4.1 Mchar_table e 32

2.8 M-eXt e e e 33
2.8.1 Detailed Description e e e e e 36
2.8.2 Typedef Documentation e e e e 36
2.82.1 MText i 36

2.8.3 Enumeration Type Documentation 36
2.8.3.1 MTextFormat 36

2.8.3.2 MTextLineBreakOption 37

2.8.4 Function Documentation 37
2.84.1 mtext_line break 37

2842 meXt e e e e e e 37

2843 mtext_from_data. 37

2844 mtext data 38

2845 mtext_len 38

2.84.6 mtext_ref char. 38

2.8477 mtext_set_char. e 39

2.84.8 mtext_cat_char 39

2.84.9 mtext_dup 39
2.8.4.10 mtext_cat e e 39
2.84.11 mtext ncat e e e e e e e e 40
2.84.12 mtext CPY e 40
2.84.13 mtext nCPYo e 40
2.8.4.14 mtext_duplicate 40
2.8.4.15 MEEXI_COPY .+ « v v v v e e e e e e e e e e e e e e 41
2.84.16 mtext_del 41
2.8.4.17 MEEXt_INS o e e e e 41
2.8.4.18 MEEXI_INSEIt o o o e e e e e e 42
2.8.4.19 mtext_ins_char e 42
2.84.20 mtext_replace 42
2.8.4.21 mtext_character e e 43

2.84.22 mtext_chr e e 43

CONTENTS v
2.84.23 mtext_rchr e 43
28424 MEEXI_CMP . . . o v v v e e e e e e e e e e e e e e e e e e 44
2.84.25 mEeXt_ NCMP o vt e e e e 44
2.8.4.26 mMIEXt_COMPArE v v v e e e e e e e e e e e e e 44
2.8427 MEEXI_SPN e e e e e e e e e e e e 45
28428 MEEXE_CSPN v v v i e e e e e e e e e e e e 45
2.8.429 mtext_pbrk. 45
2.8.430 mtexXt_tok e 45
2.84.31 mtext text e e 45
2.84.32 mtext search 46
2.8.4.33 mEeXt_CASECINP . .+« v v v v v e e e e e e e e e e e e e e e e 46
2.8.4.34 mMEEXt_NCASECINIP . .« v v v v v v e e e e e e e e e e e e e e e e e 46
2.8.4.35 mtext_case_COMPAre« ¢« v v v v vt e e e e 46
2.8.4.36 mtext_lowercase e e 47
2.8.4.37 mtext_titlecase e 47
2.8.4.38 MEEXI_UPPEICASE . . « .« ¢ v v v e e e e e e e e e e e e e e e e 47

2.8.5 Variable Documentation L L 48
2.8.5.1 MTEXT _FORMAT UTF_16 48

2.8.52 MTEXT FORMAT_UTF 32 48

2.853 Mlanguage e e e e e 48

2.9 TextProperty e e e e e e 49
2.9.1 Detailed Description e e e e e e e e 51
2.9.2 Typedef Documentation e e e e 51
29.2.1 MTextPropSerializeFunc L. 51

2.9.22 MTextPropDeserializeFunc 51

29.23 MTextProperty 51

2.9.3 Enumeration Type Documentation 51
29.3.1 MTextPropertyControl L L 51

2.9.4 Function Documentation L e 52
2941 mEeXt_GEL_PIOP . « « v v o e e e e e e e e e e e e e e e e 52

2.9.42 mtext_get_prop_values 52

2.9.43 mtext_get_prop_Keys e e 53

2.9.4.4 mMEEX_PUL_PIOP . .« v v v v e e e e e e e e e e e e e e 53

2945 mtext_put_prop_values 54

294.6 mtext_push prop 54

2947 mext_pop_Prop oi it e e 54

2948 mtext prop_rangeo e e e 55

2949 mtext property e e 55

vi CONTENTS
2.9.4.10 mtext_property_MmtexXt e e e e e e e e e 56

2.9.4.11 mtext_property_Key i e e e e e e e 56

2.9.4.12 mtext_property_value 56

2.9.4.13 mtext_property_start. e e 56

29.4.14 mtext property_end 56

2.9.4.15 mtext get_property e 56

2.9.4.16 mtext_get propertieso a e e e e 56

2.9.4.17 mtext_attach_property 57

2.9.4.18 mtext_detach_property 57

2.9.4.19 mtext_push_property 57

29420 mtext_serialize e e e 57

29421 mtext_deserialize e e 58

2.9.5 Variable Documentation 58
2.9.5.1 Mtext_prop_serializer 58

2.9.5.2 Mtext_prop_deserializer 59

2.10 Database e 60
2.10.1 Detailed Description oL e e e e 60
2.10.2 Typedef Documentation 61
2.10.2.1 MDatabase e e e e e e 61

2.10.3 Function Documentation L 61
2.10.3.1 mdatabase_find 61

2.10.3.2 mdatabase_list e e 61

2.10.3.3 mdatabase_define e e 61

2.10.3.4 mdatabase _load 62

2.103.5 mdatabase_tag e e 62

2.10.4 Variable Documentation 62
2.10.4.1 mdatabase dir 62

2.11 SHELL APIL 63
2.11.1 Detailed Description e e 63

2,12 Charset e e e e e 64
2.12.1 Detailed Description L e e e e 66
2.12.2 Define Documentation oL e e 66
2.12.2.1 MCHAR_INVALID_CODE 66

2.12.3 Function Documentation 66
2.12.3.1 mchar _define_charseto 66

2.12.3.2 mchar_resolve_charset 67

2.12.3.3 mchar list_charset 68

2.12.3.4 mchar decode e 68

CONTENTS vii
2.12.3.5 mchar_encode e e 68
2.12.3.6 mchar_map_charset e 68

2.12.4 Variable Documentation e 69
2.12.4.1 Mcharset_ascil v v i e e e e e e e e 69
2.12.4.2 Mcharset_iso_8859 1 69
2.12.4.3 Mcharset_unicode e 69
2.12.4.4 Mcharset_ml7n 69
2.12.4.5 Mcharset_binary e e e 69
2.124.6 Mmethod. 70
212477 Mdimension e e 70
21248 Mmin_range i e e e e e e e e e e e 70
21249 MMmax_Tange v v vt e e e e e e e e e e e e e e e e 70
2.12.4.10 Mmin_code e 70
2.12.4.11 Mmax_code e e 70
2.12.4.12 Mascii_compatible 70
2.12.4.13 Mfinal_byte 70
212414 Mrevisiono e e e e e 70
2.12.4.15 Mmin_char e 70
212416 Mmapfile L 70
212407 Mparentso e e e e e e e e e e 70
2.12.4.18 Msubset_offset e e 70
2.12.4.19 Mdefine_coding e e 70
212420 Maliases oo e e 70
212421 Moffset. 70
202422 MMAP .« . o o i e e e e e 70
212423 Munify e 70
212424 Msubset e e e e 71
212425 MSUPEISEt o e e 71
2.12.4.26 Mcharset e 71

2.13 Code Conversionottt e e e e e e e 72

2.13.1 Detailed Description e e e e e 76

2.13.2 Enumeration Type Documentation 76
2.13.2.1 MConversionResult L. 76
2.13.22 MCodingType o o o 76
2.13.2.3 MCodingFlaglSO2022 e 77

2.13.3 Function Documentation 77
2.13.3.1 mconv_define_coding 77

2.13.3.2 mconv_resolve_coding Lo 80

viii CONTENTS
2.13.3.3 mconv_list_codings e 80
2.13.3.4 mconv_buffer_converter 80
2.13.3.5 mconv_Stream_CONVEITEr v v v v v v e e e e e e e e e e e e 81
2.13.3.6 MCcoNV_IeSet_CONVEITEr v v v v v o e e e e e e e e 81
2.13.3.7 mconv_free convertero e e 81
2.13.3.8 mconv_rebind_buffer 81
2.13.3.9 mconv_rebind_stream L. e e e e 81
2.133.10 mconv_decode e 82
2.13.3.11 mconv_decode_buffero oo oo oo 82
2.13.3.12 mconv_decode_streamo 82
213313 meconv_encode e e e e 83
2.13.3.14 mconv_encode_rangeo e e e e e e e e e 83
2.13.3.15 mconv_encode_buffer 83
2.13.3.16 mconv_encode_Stream e e e e e e e e e 84
213317 meonv_geteo e e e e e 84
2.13.3.18 meonv_ungeteo L e e e e e e e 84
213319 meonv_putc e e e e e 85
213320 mConv_gets e e e e e e e 85

2.13.4 Variable Documentation L e 85
2.13.4.1 Mcoding_us_ascii i e e e e 85
2.13.4.2 Mecoding_iso_8859_1 86
2.1343 Mcoding_utf 8 86
2.1344 Mcoding_utf 8 full 86
2.13.45 Mcoding_utf_16 86
2.13.4.6 Mcoding_utf_16be 86
2.13.477 Mcoding_utf_16le 86
2.13.4.8 Mcoding_utf 32 86
2.13.49 Mecoding_utf_32be 86
2.13.4.10 Mcoding_utf_32le oL 87
2.13.4.11 Mcoding_Sjis . . . v v v e e e e e e e e e e 87
213402 MLYPE . . o o o e e e e e e e e e 87
2.134.13 Mcharsets e 87
2134014 Mflagso 87
2.13.4.15 Mdesignation Lo e e e 87
2.13.4.16 Minvocation e e e e e e e 87
2.13.4.17 Mcode_unit e 87
213408 MbOmo e 87

2.13.4.19 Mlittle_endian 87

CONTENTS ix
213420 Mutf . ..o 87
213421 Miso_2022o e 88
2.13.4.22 Mreset_at_eol e 88
2.13.4.23 Mreset_at_cntl e 88
2.13424 Meight bit e 88
2.13.425 Mlong_form 88
2.13.4.26 Mdesignation_g0 88
2.13.4.27 Mdesignation_gl 88
2.13.4.28 Mdesignation_ctext e 88
2.13.4.29 Mdesignation_CteXt_exXtt it e e e e e 88
2.13.4.30 Mlocking_shift L 88
2.13.4.31 Msingle_shift L 88
2.13.432 Msingle_shift 7 88
2.13433 Meuc_tw_shift L 88
213434 Miso_6429 88
2.13.4.35 Mrevision_number e 88
2.13.4.36 Mfull_support 88
2.13.437 Mmaybe 88
213438 Mcoding 88

214 Locale 89
2.14.1 Detailed Description oL e e e e e 89
2.14.2 Typedef Documentation ot it e e e e 89

2.14.2.1 MLocale e 89
2.14.3 Function Documentation 90
2.14.3.1 mlocale_set 90
2.143.2 mlocale_get_prop 90
2.14.3.3 mtext_ftime e 90
21434 mteXt_GEetenVo i e e e e e e e e e e e e 90
21435 mteXt_putenv oL e e e e e e e e e 91
2.143.6 mtext_coll 91
2.14.4 Variable Documentation 91
2.14.4.1 MIEITItOTY o v v v e e e e e e e e e e e e e 91
21442 Mmodifier 91
21443 Mcodeset. e e 91

2.15 Input Method (basic) e e 92
2.15.1 Detailed Description e e 95
2.15.2 Typedef Documentation 96

2.15.2.1 MinputCallbackFunc 96

CONTENTS

2.15.3

2.154

2.15.5

Enumeration Type Documentation 96
2.153.1 MlInputCandidatesChanged 96
Function Documentation o 96
2.15.4.1 minput_open_imo e e e e 96
2.154.2 minput_close_im 96
2.15.4.3 minput_create_iCo e e e 97
2.15.4.4 minput_destroy_iCo e e e e 97
2.15.4.5 minput_filtero Lo 97
2.154.6 minput_lookup. 97
21547 minput_Set_SPOt e e e e e e e e e e 98
2.15.4.8 minput_toggle L 98
2.15.4.9 minput_reset_iC e e e e e e 98
2.15.4.10 minput_get_title_icon L 98
2.15.4.11 minput_get_description 98
2.15.4.12 minput_get_command Lo 99
2.15.4.13 minput_config_command 100
2.15.4.14 minput_get_variable oL Lo 101
2.15.4.15 minput_config_variable o o 102
2.15.4.16 minput_config_file. L L 102
2.15.4.17 minput_save_config e 103
2.15.4.18 minput_get_variables L 103
2.15.4.19 minput_set_variable L 104
2.15.4.20 minput_get_commands Lo 104
2.15.4.21 minput_assign_command_keys oo 104
2.15.4.22 minput_callback 105
Variable Documentation 105
2.15.5.1 Minput_method 105
2.15.5.2 Minput_preedit_start L e 106
2.15.5.3 Minput_preedit_done L 106
2.15.5.4 Minput_preedit_draw 106
2.15.5.5 Minput_status_start e e e e 106
2.15.5.6 Minput_status_done e 106
2.15.5.7 Minput_status_draw e e e 106
2.15.5.8 Minput_candidates_start.o 106
2.15.59 Minput_candidates_done 106
2.15.5.10 Minput_candidates_drawo 106
2.15.5.11 Minput_set_Spot e e 106

2.15.5.12 Minput_toggle 106

CONTENTS xi

205513 MINPUL_TESEt .« . v v v v v o e e e e e e e e e e e e e e e e e e 106
2.15.5.14 Minput_get_surrounding_texto 106
2.15.5.15 Minput_delete_surrounding_text 106
2.15.5.16 Minput_focus_out e 106
2.15.5.17 Minput_focus_in. e 106
2.15.5.18 Minput_focus_move e 106
2.15.5.19 Minherited 106
2.15.5.20 Mcustomized 106
2.15.5.21 Mconfigured 106
2.15.5.22 minput_default_driver 106
2.15.5.23 minput_driver L e e e e e e 107
2.15.5.24 Minput_driver L. e e e e e 107

2,16 FLT APL 108
2.16.1 Detailed Description e 109
2.16.2 Typedef Documentation 109
2.16.2.1 MFELT e 109

2.16.3 Function Documentation L. Lo 109
2.16.3.1 mflt_get e 109
21632 mflt find 109
21633 mfltname 109
2.16.3.4 mflt_coverage e 110
21635 mfltruno 110
2.163.6 mdebug dump_flt L 110
2.163.7 mflt_dump_gstring 110

2.16.4 Variable Documentation L. 110
2.16.4.1 mfit_enable new feature 110
2.16.4.2 mflt_iterate_otf feature 111
2.164.3 mflt font id L 111
2.16.4.4 mflt_try_otf 111

217 GULAPL. . . . 112
2.17.1 Detailed Description e e e e e 112
218 Frame 113
2.18.1 Detailed Description e e e e e 114
2.18.2 Typedef Documentation e 114
2.18.2.1 MFrame e 114

2.18.3 Function Documentation 114
2.183.1 mframe. 114

2.18.3.2 mframe_get_prop e e 115

xii CONTENTS
2.18.4 Variable Documentation 116
2.184.1 Mdevice 116
21842 Mdisplayo 116
21843 MSCIEEN v v vt i i e e e e e e 116
2.184.4 Mdrawable 116
21845 Mdepth. o o 116
2.184.6 Mcolormap 116
2.184.7 Mwidget 116
2.184.8 Mgd 116
21849 Mfont 116
2.184.10 Mfont_width L 116
2.18.4.11 Mfont_ascent i i e e e e 116
2.18.4.12 Mfont_descent e e e e 116
2.18.4.13 mframe_default 116

2,19 Font e 117
2.19.1 Detailed Description 119
2.19.2 Typedef Documentation 121
2.19.2.1 MFont e e 121

2.19.3 Function Documentation oL 121
2.19.3.1 mfont. 121
2.19.3.2 mfont_parse_name i e e e e e e e 121
2.19.3.3 mfont_unparse_name e e e e e e e 122
2.19.3.4 mfont_copy e e e 122
2.193.5 mfont_get_prop e e 122
2.19.3.6 mfont_put_prop e e e 122
2.19.3.7 mfont_selection_priority 123
2.19.3.8 mfont_set_selection_priorityo 123
2.19.39 mfont find 123
2.19.3.10 mfont_set_encoding Lo 123
2.193.11 mfont name 123
2.19.3.12 mfont_from _nameo 123
2.19.3.13 mfont_resize_ratioo e e e e e e e e e e 124
219314 mfont_list 124
2.19.3.15 mfont_list_family_names oL 124
2.19.3.16 mfont_check 124
2.193.17 mfont_match_p 124
2.193.18 mfont_open e 125

2.19.3.19 mfont_encapsulate 125

CONTENTS xiii
2.19.3.20 mfont_close e e e 125

2.19.4 Variable Documentation 125
2.19.4.1 Mfoundry 125
2.19.42 Mfamily L 126
2.19.43 Mweight L 126
21944 Mstyle 126
2.19.45 Mstretch oL 126
2.19.4.6 Madstyle L 126
21947 Mspacing e e e e 126
2.19.4.8 MIegistry o it e e e e e e 126
2.19.49 MSIzZeo 127
2.19.4.10 Motf L L e 127
2.194.11 Mfontfile oL 127
2.19.4.12 Mresolution e e 127
2.19.4.13 Mmax_advanceo e e e e 127
2.19.4.14 Mfontconfig 127
209415 MX . . o oo 127
2.19.4.16 Mfreetype 127
219417 Mxft L e 128
2.19.4.18 mfont_freetype_path 128

220 FOntset. o o vt e e e 129
2.20.1 Detailed Description e e e e e e e 129
2.20.2 Function Documentation L 129
2.20.2.1 mfontset e 129
2.20.2.2 mfontset_name e e e 130
2.20.2.3 mfontset_Copy o oo i e e e 130
2.20.2.4 mfontset_modify_entry 130
2.20.2.5 mfontset_lookup 130

221 Face e e e 132
2.21.1 Detailed Description L e e e e e 135
2.21.2 Typedef Documentation i e e e 135
221.2.1 MFaceo e 135
22122 MFaceHookFunc 135

2.21.3 Function Documentation 135
22131 mface 135
22132 mface_Copy oo i e 136
22133 mface_equal 136

22134 mface_merge e 136

xiv CONTENTS
2.21.3.5 mface_from_font 136
2.21.3.6 mface_get_prop e e 136
22137 mface_get_hook 137
2.21.3.8 mface_put_prop e e 137
22139 mface_put_hook 137
221.3.10 mface_update 137

2.21.4 Variable Documentation Lo 137
22141 Mforeground 137
22142 Mbackground 138
22143 Mvideomode 138
22144 Mratio e 138
22145 Mhline 138
221.4.6 MDOX oo 138
22147 Mfontset 139
221.4.8 Mhook_func 139
22149 Mhook arg. 139
221410 Mnormal 139
221411 MIeverse oo v v i e e 139
2.21.4.12 mface_normal_video 139
2.21.4.13 mface_reverse_video o oo 139
2.21.4.14 mface_underline e 139
2.21.4.15 mface_medium e e 140
2.21.4.16 mface_bold e 140
221.4.17 mface_italic e 140
2.21.4.18 mface_bold_italic 140
2.21.4.19 mface_xx_small 140
221420 mface_x_small 140
221421 mface_small 141
2.21.4.22 mface_normalsize e 141
221423 mface_large e 141
221424 mface_x_large e 141
2.21.4.25 mface_xx_large e 141
2.21.4.26 mface_black e 141
2.21.4.27 mface_white e 141
221428 mface_red e 142
221429 mface_green e e e 142
2.21.4.30 mface_blue 142

221431 mface_cyan 142

CONTENTS XV

221432 mface_yellow e 142

221433 mface_magentaol 142

221434 Mface 142

222 Drawing« o oo e e e e 143
2.22.1 Detailed Description e e 144
2.22.2 Typedef Documentation 144
2.22.2.1 MDrawWindow 144

22222 MDrawRegion 145

2.22.3 Function Documentation oL 145
22231 mdraw_text e 145

2.22.3.2 mdraw_image_teXt e e e e e e e e 146

2.22.3.3 mdraw_text_with_control e 146

22234 mdraw_text_exXtents e e e e e e e e e e e e e 146

2.22.3.5 mdraw_text_per_char_extentso 147

2.22.3.6 mdraw_coordinates_positiono 147

22237 mdraw_glyph_info o 148

2.22.3.8 mdraw_glyph_list 148

22239 mdraw_text_It€mMS e e e e e e e e e e e e e e e e e 148

2.22.3.10 mdraw_default_line_break 149

2.22.3.11 mdraw_per_char_extents i 149

2.223.12 mdraw_clear_cache 149

2.22.4 Variable Documentation 149
2.22.4.1 mdraw_line_break_option Lo 149

223 Input Method (GUI) e 150
2.23.1 Detailed Description e e 150
2.23.2 Function Documentation 150
2.23.2.1 minput_event_to_key 150

2.23.3 Variable Documentation L L 151
2.23.3.1 minput_gui_driver oL e e e e e 151

22332 MXIM e 151

224 MISCAPL . . . e 152
2.24.1 Detailed Description e e e e e 152

2.25 Error Handling e e e e 153
2.25.1 Detailed Description 154
2.25.2 Enumeration Type Documentation 154
22521 MErrorCode 154

2.25.3 Variable Documentation 155

2.25.3.1 merror_code L e e e 155

xvi CONTENTS
2.25.3.2 ml7n_memory_full_handler 155

2.26 Debugg@ing e e e e 156
2.26.1 Detailed Description L. 156
2.26.2 Function Documentation L Lo 157
2.26.2.1 mdebug_dump_chartab 157

22622 mdebug_dump_face 157

2.26.2.3 mdebug_dump_font L 157

2.26.2.4 mdebug_dump_fontset 158

2.26.2.5 mdebug dump_im 158

2.26.2.6 mdebug_hook 158

2.26.27 mdebug_dump_mtext 158

2.26.2.8 mdebug_dump_plist 158

2.26.2.9 mdebug_dump_symbol 159

2.26.2.10 mdebug_dump_all_symbols 159

3 Data Structure Documentation 161
3.1 MI17NObjectHead Struct Reference L 161
3.1.1 Detailed Description L 161

3.1.2 Field Documentation 161
3121 filler . ..o 161

3.2 MCodingInfoISO2022 Struct Reference 162
3.2.1 Detailed Description L e e e 162

322 Field Documentation 162
3.2.2.1 initial_invocation e e e e e e e 162

3222 designations L. 162

3223 flags 162

3.3 MCodingInfoUTF Struct Reference 163
3.3.1 Detailed Description e e e e e e 163

3.3.2 Field Documentation o 163
3321 code_unit_bits L 163

3322 bOM ... 163

3323 endian 163

3.4 MConverter Struct Reference 164
34.1 Detailed Descriptiono e 164

342 Field Documentation 164
3421 lenient 164

3422 last.block 164

3423 at MOSt e e e e e, 165

CONTENTS xvii
3424 nchars 165

3425 mbytes e e e e e e 165

3426 result 165

3427 Pt 165

3428 dbl ... 165

3429 oL 165
34200 status oL L e e 165
3.42.11 internal_info e 165

3.5 MDrawControl Struct Referenceo oo 166
3.5.1 Detailed Description e e e 166
3.5.2 Field Documentation 166
3521 as_ImMaZe e e e e e e e e e e e e e e 166

3.5.22 calign_head 166

3.523 two_dimensional e 167

3.5.2.4 orientation_reversed e 167

3.52.5 enable bidi 167

3.5.2.6 ignore_formatting_char Lo o oo 167

3527 fixed_width L 167

3528 anti_alias. 167

3.5.2.9 disable_overlapping_adjustment L. 167
3.52.10 min_line_ascent e e e e e e e e e 167
3.52.11 min_line_descent e e e e 167
3.52.12 max_line_ascent e e e e e e e 167
3.5.2.13 max_line_descent e 167
3.52.14 max_line_width 168
35215 tab_width 168
3.5.2.16 format 168
3.52.17 line_break e 168
3.5.2.18 WIth_cursor e e 168
352,19 CUISOT_POS . v v v v o o e e e e e e e e e e e e e e 168
35220 cursor_width L 169
3.52.21 cursor_bidi e e 169
3.5.2.22 partial_update L e e 169
3.5.2.23 disable_caching 169
3.5.224 clip_region 169

3.6 MDrawGlyph Struct Reference 170
3.6.1 Detailed Description 170

3.6.2 Field Documentation e e e e e e e e 170

xviii CONTENTS
3621 from 170

3622 0. .. 170

3.6.23 glyph_code 170

3.624 x advanCe e e 170

3,625 y_advance 170

3.6.2.6 x_off 170
3627 oy off .. 171
3.6.2.8 Ibearing 171

3.6.29 rbearing L. e e e 171
3.62.10 ascent 171
36211 descent 171
36212 font. 171
3.6.2.13 font_type 171
3.6.2.14 fontp 171

3.7 MDrawGlyphlnfo Struct Reference L 172
3.7.1 Detailed Description e 172
3.7.2 Field Documentation L e 172
3721 from ... e e e 172

3722 0. o o 172

3723 line_from 172

3724 HNE_tO e e 172

3725 X oo 172

3726 Y oo 173

37277 MEMriCS v oo e e e e 173

3728 font. 173

3729 prev_from 173
3.7.2.10 next to e, 173
372011 left fromo o 173
37212 left to e e e 173
3.7.2.13 right_fromo 173
37214 right to 173
37215 logical_width L 173

3.8 MDrawMetric Struct Reference L 174
3.8.1 Detailed Description L 174
3.8.2 Field Documentation 174
3821 X Lo 174

3822 ¥ Lo 174

3823 width. 174

CONTENTS xix

3.824 height 174

3.9 MbDrawTextltem Struct Reference L 175
39.1 Detailed Descriptiono 175

39.2 Field Documentationot e e 175
30201 mt ..o 175

3922 delta 175

3923 face 175

3.924 control e 175

3.10 MFaceBoxProp Struct Reference L 176
3.10.1 Detailed Description e e e e 176
3.10.2 Field Documentation it t eeee 176
31021 width . . . oL L 176

31022 color_top 176

3.10.2.3 color bottom e e 176

3.10.2.4 color_left. 176

3.10.2.5 color_right 176

3.10.2.6 inner_hmargin 176

3.10.2.7 inner_vmargin Lo e e e e e 176

3.10.2.8 outer_hmargin e 176

3.10.2.9 outer_vmargin e e e e e 176

3.11 MFaceHLineProp Struct Reference 177
3.11.1 Detailed Description o e e e e e e 177
3.11.2 Member Enumeration Documentationo 177
3.11.2.1 MFaceHLineType o 177

3.11.3 Field Documentationo i it it 177
30131 tYPe . o 177

3132 width . . . o L L 177

30133 color . . .o e e e 178

3.12 MFLTFont Struct Reference 179
3.12.1 Detailed Description e e e 179
3.12.2 Field Documentationt e e e 179
3.12.2.1 familyo 179

31222 X_PPEM . . . e e e e e e e e e e e 179

31223 y_ppem e 179

31224 get_glyph_id 179

301225 et MEtriCS oo e e e e e e e e e 180

3.12.2.6 check otf 180

31227 drive_otf 180

XX CONTENTS
3.12.2.8 internalo 180

3.13 MFLTGlyph Struct Reference e 181
3.13.1 Detailed Description oL e 181
3.13.2 Field Documentation 181
3321 € oo 181

313222 code ... 181

313223 from e e 181

31324 0. oo 181

31325 xadv ... e 182

31326 yadv 182

30327 ascent ... e 182

31328 descent 182

3.13.29 Ibearing o e 182

3.13.2.10 rbearing 182

33201 xoff . . o L 182

313202 yoff . . o o 182

3.13.2.13 encoded e 182

343214 measured L e e 182

313205 adjusted e e e e 182
3.132.0610nternalo 182

3.14 MFLTGlyphAdjustment Struct Reference 183
3.14.1 Detailed Description e e e e e 183
3.14.2 Field Documentation 183
31421 xadv ... 183

31422 yadv . ..o 183

31423 xoff L 183

31424 yoff . . . L L 183

31425 back 183

3.14.2.6 advance_is_absolute 183

3427 set ... 183

3.15 MFLTGlyphString Struct Reference 184
3.15.1 Detailed Description o e e e e 184
3.15.2 Field Documentation 184
3.15.2.1 glyph_size oL 184

31522 glyphs . . .o 184

3.1523 allocatedo 184

31524 used ... e 184

30525 121 Lo 184

CONTENTS xxi
3.16 MFLTOtfSpec Struct Reference e 185
3.16.1 Detailed Description e e e e e 185
3.16.2 Field Documentation 185
30621 SYM .« . oo e 185

3.16.2.2 SCIIPL « « o v v v e e e e 185

3.16.2.3 1angsyso .. e e e e 185

3.16.2.4 features L 185

3.17 MInputContext Struct Reference o o 186
3.17.1 Detailed Description e e e 186
3.17.2 Field Documentation 186
3721 Im .o 186

3.17.22 produced e e e 186

30723 arg . oo e 187

31724 active oo 187

3725 X oo oo 187

3726 Y o oo 187

30727 ascent e e 187

31728 descent 187

3.17.29 fontsize 187

317210 mt .. 187

37201 POS . v v o o e e e e 187

307212 8pOt . o o e e e e e e 187

317203 1Anfo 187

BAT2.04 Status o oo e e e e e e 187

3.17.2.15 status_changed 188

307216 preedit L 188

3.17.2.17 preedit_changed 188

307218 CUISOT_POS .+« v v o o e e e e e e e e e e e e e 188

3.17.2.19 cursor_pos_changed L L 188

3.17.2.20 candidate_list 188

3.17.2.21 candidate_index 188

3.17.2.22 candidate_from e e 188

3.17.223 candidate_to e e e e 188

3.17.2.24 candidate_show e 188

3.17.2.25 candidates_changed 188

307226 plisto e 189

3.18 MlinputDriver Struct Reference L 190
3.18.1 Detailed Description 190

xxii CONTENTS
3.18.2 Field Documentation 190
30821 open_im L. e e e e e e 190

3.182.2 close Im e e 190

31823 create_iC e e e 191

31824 destroy_iC 191

31825 filter 191

31826 lookup 191

3.18.2.7 callback_list 191

3.19 MInputGUIArgIC Struct Reference 192
3.19.1 Detailed Description L e e e 192
3.19.2 Field Documentation 192
31921 frameo 192

3.19.22 cliento 192

3.19.23 focus 192

3.20 MInputMethod Struct Reference L 193
3.20.1 Detailed Description 193
3.20.2 Field Documentation 193
3.220.2.1 language 193

32022 name e e 193

32023 driver. 193

32024 arg 193

32025 info. 193

3.21 MInputXIMArgIC Struct Reference 194
3.21.1 Detailed Description 194
3.21.2 Field Documentation 194
321.2.1 dnput_style 194

3.21.22 client_win e 194

3.21.23 fOoCUS_WIN o o e e e e e e 194

3.21.2.4 preedit_attrs L. e e e e e 194

32125 status_attrs e e e 194

3.22 MInputXIMArgIM Struct Reference Lo o 195
3.22.1 Detailed Description L e e e e e 195
3.22.2 Field Documentation 195
32221 displayo 195

32222 db ..o 195

32223 1es_ClasS 195

32224 TES_MNAME v v e e e e e e e e e e e 195

32225 locale. e 195

CONTENTS xxiii
3.22.2.6 modifier_list 195

A Print compile/link options of the m17n library 197
Al SYNOPSIS . . . 198
A2 DESCRIPTION e e e e 198

B Print information about the m17n database 199
B.1 SYNOPSIS . . . 200
B.2 DESCRIPTION e e e 200

C Sample Programs 201
C.1 ml7n-conv--convertfilecode 202
C.1.1 SYNOPSIS . . e 202

C.1.2 DESCRIPTION e e 202

C.2 ml7n-view —-view file 203
C.2.1 SYNOPSIS . . 203

C.2.2 DESCRIPTION 203

C.3 ml7n-date -- display dateand time 203
C.3.1 SYNOPSIS e 203

C.3.2 DESCRIPTION e e e 203

C.4 ml7n-dump --dump textimage e e e e e 203
C.4.1 SYNOPSIS . . e 203

C.4.2 DESCRIPTION e 204

C.5 ml7n-edit -- edit multilingual text L L 205
C.5.1 SYNOPSIS . . . e 205

C.5.2 DESCRIPTION e e e 205

C.6 mimx-anthy -- external module for the input method <ja,anthy>. 205
C.6.1 DESCRIPTION e e e 205

C.62 Seealso 206

C.7 mimx-ispell -- external module for the input method <en, ispell> 206
C.7.1 DESCRIPTION e e 206

C72 Seealso 206

D Data format of the m17n database 207
D.1 General Format 208
D.1.1 DESCRIPTION e e 208

D.1.2 SYNTAXNOTATION e e 209

D.1.3 EXAMPLE e e 209

D.2 Listof character setdefinitions L 210
D.2.1 DESCRIPTION 210

XXiv

CONTENTS

D3

D4

D5

D.6

D.7

D.8

D.9

E Data provided by the m17n database

E.1
E.2
E.3
E.4
E.S

F Tutorial for writing the m17n database

F.1

D.2.2 SEE ALSO
List of coding system definitions
D.3.1 DESCRIPTION
D.3.2 SEE ALSO
List of data in a database directory
D.4.1 DESCRIPTION
Font Layout Table
D.5.1 DESCRIPTION
D.5.2 SYNTAX and SEMANTICS
D.5.3 CONTEXT DEPENDENT BEHAVIOR
D.5.4 SEE ALSO

Font Encoding

D.6.1 DESCRIPTION
FontSize

D.7.1 DESCRIPTION

D.8.1 DESCRIPTION
D.8.2 EXAMPLE

Input Method

D.9.1 DESCRIPTION
D.9.2 SYNTAX and SEMANTICS
D.93 EXAMPLE 1
D94 EXAMPLE 2
D.9.5 EXAMPLE 3
D.9.6 SEE ALSO

Character Property

Input method

Tutorial of input method
F.1.1 Structure of an input method file
F.1.2 Simple example of capslock

F.1.3 Example of utilizing surrounding text support

CONTENTS XXV

G GNU Free Documentation License 261

Index 267

Chapter 1

The m17n Library Documentation

1.1 What is the m17n library?

The m17n library is a multilingual text processing library for the C language.

* Itis a free and open source software.
e Itis for any GNU/Linux and Unix applications/libraries.

* It realizes multilingualization of many aspects of applications/libraries.

The word "m17n" is an abbreviation of "multilingualization".

The m17n library provides following facilities to handle multilingual text.

e M-text: A data structure for a multilingual text. It is basically a string but with attributes called text
property, and is designed to substitute for the C string. It is the most important object of the m17n library.

* Functions for creating and processing M-texts.

 Functions for converting M-texts from/to strings encoded in various existing formats.

* A huge character space, which contains all the Unicode characters and more non-Unicode characters.
* Chartable: A data structure that contains per-character information efficiently.

* Functions for inputting and displaying M-texts on a window system.

1.2 How to use it?

Simply include <m17n.h> in your program, and link it with the m17n library by -Im17n. See Introduction
(p.5) for the detail.

1.3 External libraries and data

The m17n library utilizes these external libraries. They are not mandatory but many functions of the m17n
library depend on them.

2 The m17n Library Documentation

e ml7n-db -- http://www.ml7n.org/ml7n-lib-en/download/ml7n-db-1.5.0.tar.gz

Provide various information to the m17n library.

e libxml2 -- http://xmlsoft.org/

Used by the functions mtext_serialize() (p. 57) and mtext_deserialize() (p. 58). Those functions return
NULL when libxml?2 is not available,

e fribidi -- http://fribidi.sourceforge.net/

Used for BIDI processing. If it is not available, the rendering engine of the m17n library can’t handle such
script as Arabic and Hebrew correctly.

e freetype -- http://www.freetype.org/
Used for handling local fonts.

* fontconfig -- http://www.fontconfig.org/
Used for handling local fonts supported by the freetype library.

 fontconfig -- http://freedesktop.org/Software/fontconfig

Used for finding local fonts in combination with Xft.

e xft--http://freedesktop.org/Software/Xft

Used for drawing text with local fonts by X Render Extension of X server in combination with fontconfig.
* GD
Used for rendering text with local fonts on bitmap/pixmap.

e libotf -- http://www.ml7n.org/libotf/
Used for handling OpenTypee fonts in combination with freetype and Xft.

e anthy -- http://anthy.sourceforge. jp/

Used for the Japanese input method ja-anthy.mim.

e wordcut -- http://thaiwordseg.sourceforge.net/

Used for finding Thai word boundary in the example program example/linebreak.c.

1.4 Contact us:

Global IT Security Group

Information Technology Research Institute

National Institute of Advanced Industrial Science and Technology

Web: http://www.ml7n.org/ml7n-1lib-en/

Bug report: m17n-1ib-bug-XXXX@ml7n.org (Replace XXXX with current year in 4 digits.)

Mailing lists: http://www.ml7n.org/ml7n-lib-en/mailinglist.html

1.5 Acknowledgements

Special thanks to:

e Dimitri van Heesch <dimitri@stack.nl>

Author of Doxygen <http://www.stack.nl/~dimitri/doxygen/>. Without this tool, it
would have been impossible to create this documentation.

1.5 Acknowledgements

* Information-technology Promotion Agency (IPA), Japan

Writing this documentation was partially funded by Information-technology Promotion Agency (IPA)
<http://www.ipa.go.jp/about/english/index.html> in fiscal year 2001.

The m17n Library Documentation

Chapter 2

Module Documentation

2.1 Introduction

Introduction to the m17n library.

Defines

« #define M17NLIB_MAJOR_VERSION
#define M17NLIB_MINOR_VERSION
#define M17NLIB_PATCH_LEVEL
#define M17NLIB_VERSION_NAME
#define M17N_INIT()

Initialize the m17n library.

#define M17N_FINI()
Finalize the m17n library.

Enumerations

e enum M17NStatus {
M17N_NOT_INITIALIZED,
M17N_CORE_INITIALIZED,
M17N_SHELL_INITIALIZED,
M17N_GUI_INITIALIZED }

Enumeration for the status of the m17n library.

Functions

¢ enum M17NStatus m17n_status (void)

Report which part of the m17n library is initialized.

6 Module Documentation

2.1.1 Detailed Description

Introduction to the m17n library. API LEVELS
The API of the m17n library is divided into these five.

1. CORE API

It provides basic modules to handle M-texts. To use this API, an application program must include
<ml7n-core.h> and be linked with -Im17n-core.

2. SHELL API

It provides modules for character properties, character set handling, code conversion, etc. They load
various kinds of data from the database on demand. To use this API, an application program must include
<ml7n.h> and be linked with -Im17n-core -Im17n.

When you use this API, CORE API is also available.

3. FLT API

It provides modules for text shaping using Font Layout Table (p.211). To use this AP, an application
program must include <m17n.h> and be linked with -Im17n-core -lm17n-flt.

When you use this API, CORE API is also available.

4. GUI API

It provides GUI modules such as drawing and inputting M-texts on a graphic device. This API itself is
independent of graphic devices, but most functions require an argument MFrame that is created for a
specific type of graphic devices. The currently supported graphic devices are null device, the X Window
System, and image data (gdImagePtr) of the GD library.

On a frame of a null device, you cannot draw text nor use input methods. However, functions like
mdraw_glyph_list() (p. 148), etc. are available.

On a frame of the X Window System, you can use the whole GUI API.
On a frame of the GD library, you can use all drawing API but cannot use input methods.

To use this API, an application program must include <m17n-gui.h> and be linked with -Im17n-core
-lm17n -lm17n-gui.

When you use this API, CORE, SHELL, and FLT APIs are also available.

5. MISC API

It provides miscellaneous functions to support error handling and debugging. This API cannot be used
standalone; it must be used with one or more APIs listed above. To use this API, an application program
must include <m17n-misc.h> in addition to one of the header files described above.

See also the section m17n-config(1) (p. 197).
ENVIRONMENT VARIABLES

The m17n library pays attention to the following environment variables.

e MI17NDIR

The name of the directory that contains data of the m17n database. See Database (p. 60) for details.

¢ MDEBUG_XXX

Environment variables whose names start with "MIDEBUG_" control debug information output. See
Debugging (p. 156) for details.

2.1 Introduction 7

API NAMING CONVENTION

The m17n library exports functions, variables, macros, and types. All of them start with the letter ‘'m’ or "M’, and
are followed by an object name (e.g. "symbol", "plist") or a module name (e.g. draw, input). Note that the name
of M-text objects start with "mtext" and not with "mmtext".

* functions -- mobject() or mobject_xxx()

They start with *'m’ and are followed by an object name in lower case. Words are separated by ’_’. For
example, msymbol() (p. 14), mtext_ref_char() (p. 38), mdraw_text() (p. 145).

* non-symbol variables -- mobject, or mobject_xxx

The naming convention is the same as functions (e.g. mface_large).

* symbol variables -- Mname

Variables of the type MSymbol start with "M’ and are followed by their names. Words are separated by °_’.
For example, Mlanguage (the name is "language"), Miso_2022 (the name is "is0-2022").

e macros -- MOBJECT_XXX

They start with "M’ and are followed by an object name in upper case. Words are separated by *_’.

* types -- MObject or MObjectXxx

They start with "M’ and are followed by capitalized object names. Words are concatenated directly and no
’_ are used. For example, MConverter (p. 164), MInputDriver (p. 190).

2.1.2 Define Documentation
2.1.2.1 #define M17NLIB_MAJOR_VERSION

The M17NLIB_MAJOR_VERSION (p. 7) macro gives the major version number of the m17n library.

2.1.2.2 #define M17NLIB_MINOR_VERSION

The M17NLIB_MINOR_VERSION (p. 7) macro gives the minor version number of the m17n library.

2.1.2.3 #define M17NLIB_PATCH_LEVEL

The M17NLIB_PATCH_LEVEL (p. 7) macro gives the patch level number of the m17n library.

2.1.2.4 #define M17NLIB_VERSION_NAME

The M17NLIB_VERSION_NAME (p. 7) macro gives the version name of the m17n library as a string.

2.1.2.5 #define M17N_INIT()

Initialize the m17n library.

The macro M17N_INIT() (p. 7) initializes the m17n library. This macro must be called before any m17n
functions are used.

It is safe to call this macro multiple times, but in that case, the macro M17N_FINI() (p. 8) must be called the
same times to free the memory.

If the initialization was successful, the external variable merror_code (p. 155) is set to 0. Otherwise it is set to -1.

8 Module Documentation

See Also:
M17N_FINI() (p. 8), m17n_status() (p. 8)

2.1.2.6 #define M17N_FINI()

Finalize the m17n library.

The macro M17N_FINI() (p. 8) finalizes the m17n library. It frees all the memory area used by the m17n library.
Once this macro is called, no m17n functions should be used until the macro M17N_INIT() (p.7) is called again.

If the macro M17N_INIT() (p. 7) was called N times, the Nth call of this macro actually free the memory.

See Also:
M17N_INIT() (p. 7), m17n_status() (p. 8)

2.1.3 Enumeration Type Documentation
2.1.3.1 enum M17NStatus

Enumeration for the status of the m17n library.
The enum M17NStatus (p. 8) is used as a return value of the function m17n_status() (p. 8).

Enumerator:
MI17N_NOT_INITIALIZED No modules is initialized, and all modules are finalized.

MI17N_CORE_INITIALIZED Only the modules in CORE API are initialized.
M17N_SHELL _INITIALIZED Only the modules in CORE and SHELL APIs are initialized.
MI17N_GUI _INITIALIZED All modules are initialized.

2.1.4 Function Documentation
2.1.4.1 enum M17NStatus m17n_status (void)

Report which part of the m17n library is initialized.

The m17n_status() (p. 8) function returns one of these values depending on which part of the m17n library is
initialized:

M17N_NOT_INITTIALIZED (p. 8), M17N_CORE_INITIALIZED (p. 8), M17N_SHELL _INITIALIZED
(p- 8), M17N_GUI_INITIALIZED (p. 8)

2.2 CORE API

2.2 CORE API

API provided by libm17n-core.so.

Modules

¢ Managed Object

Objects managed by the reference count.

¢ Symbol
Symbol objects and API for them.

* Property List
Property List objects and API for them.

¢ Character

Character objects and API for them.

¢ Chartable
Chartable objects and API for them.

* M-text
M-text objects and API for them.

» Text Property

Function to handle text properties.

¢ Database

The m17n database and API for it.

Defines

¢ #define M17N_FUNC(func) (M17NFunc) (func))

Wrapper for a generic function type.

Typedefs

¢ typedef void(+* M17NFunc)(void)

Generic function type.

2.2.1 Detailed Description

API provided by libm17n-core.so.

10 Module Documentation

2.2.2 Define Documentation
2.2.2.1 #define M17N_FUNC(func) ((M17NFunc) (func))

Wrapper for a generic function type.

The macro M17N_FUNC() (p. 10) casts a function to the type M17NFunc (p. 10).

2.2.3 Typedef Documentation
2.2.3.1 typedef void(x M17NFunc)(void)

Generic function type.

M17NFunc (p. 10) is a generic function type for setting a function pointer as a value of MSymbol (p. 14)
property or MPlist (p. 19).

See Also:
msymbol_put_func() (p. 16), msymbol_get_func() (p. 16), mplist_put_func() (p.21), mplist_get_func()
(p-21).

2.3 Managed Object 11

2.3 Managed Object

Objects managed by the reference count.

Data Structures

¢ struct M17NObjectHead

The first member of a managed object.

Functions

* void * m17n_object (int size, void(xfreer)(void *))

Allocate a managed object.

* int m17n_object_ref (void *xobject)

Increment the reference count of a managed object.

* int m17n_object_unref (void xobject)

Decrement the reference count of a managed object.

2.3.1 Detailed Description

Objects managed by the reference count. Managed objects are objects managed by the reference count.

There are some types of m17n objects that are managed by their reference count. Those objects are called
managed objects. When created, the reference count of a managed object is initialized to one. The
m17n_object_ref() (p. 12) function increments the reference count of a managed object by one, and the
m17n_object_unref() (p. 12) function decrements by one. A managed object is automatically freed when its
reference count becomes zero.

A property whose key is a managing key can have only a managed object as its value. Some functions, for
instance msymbol_put() (p. 16) and mplist_put() (p. 20), pay special attention to such a property.

In addition to the predefined managed object types, users can define their own managed object types. See the
documentation of the m17n_object() (p. 11) for more details.

2.3.2 Function Documentation
2.3.2.1 void+ m17n_object (int size, void(x)(void x) freer)

Allocate a managed object.

The m17n_object() (p. 11) function allocates a new managed object of size bytes and sets its reference count to
1. freer is the function that is used to free the object when the reference count becomes 0. If freer is NULL, the
object is freed by the free() function.

The heading bytes of the allocated object is occupied by M17NObjectHead (p. 161). That area is reserved for
the m17n library and application programs should never touch it.

Return value:
This function returns a newly allocated object.

12 Module Documentation

Errors:
This function never fails.

Example:

typedef struct

{
M17NObjectHead head;
int meml;
char xmem2;

} MYStruct;

void

nmy_freer (void xobj)

{
free (((MYStruct) obj)->mem2);
free (obj);

}

void
my_func (MText *mt, MSymbol key, int num, char xstr)
{
MYStruct xst = ml7n_object (sizeof (MYStruct), my_freer);

st->meml = num;

st->mem2 = strdup (str);

/+ KEY must be a managing key. */

mtext_put_prop (mt, 0, mtext_len (mt), key, st);

/* This sets the reference count of ST back to 1. */

ml7n_object_unref (st);

2.3.2.2 int m17n_object_ref (void * object)

Increment the reference count of a managed object.
The m17n_object_ref() (p. 12) function increments the reference count of the managed object pointed to by
object.

Return value:
This function returns the resulting reference count if it fits in a 16-bit unsigned integer (i.e. less than
0x10000). Otherwise, it return -1.

Errors:
This function never fails.

2.3.2.3 int m17n_object_unref (void * object)

Decrement the reference count of a managed object.

The m17n_object_unref() (p. 12) function decrements the reference count of the managed object pointed to by
object. When the reference count becomes zero, the object is freed by its freer function.

Return value:
This function returns the resulting reference count if it fits in a 16-bit unsigned integer (i.e. less than
0x10000). Otherwise, it returns -1. Thus, the return value zero means that object is freed.

Errors:
This function never fails.

2.4 Symbol

13

2.4 Symbol

Symbol objects and API for them.

Typedefs

¢ typedef struct MSymbolStruct + MSymbol
Type of symbols.

Functions

¢ MSymbol msymbol (const char xname)

Get a symbol.

¢ MSymbol msymbol_as_managing Kkey (const char xname)

Create a managing key.

 int msymbol_is_managing_key (MSymbol symbol)
Check if a symbol is a managing key.

¢ MSymbol msymbol_exist (const char xname)

Search for a symbol that has a specified name.

* char * msymbol_name (MSymbol symbol)

Get symbol name.

¢ int msymbol_put (MSymbol symbol, MSymbol key, void xval)
Set the value of a symbol property.

* void * msymbol_get (MSymbol symbol, MSymbol key)
Get the value of a symbol property.

¢ int msymbol_put_func (MSymbol symbol, MSymbol key, M17NFunc func)

Set the value (function pointer) of a symbol property.

¢ M17NFunc msymbol_get_func (MSymbol symbol, MSymbol key)

Get the value (function pointer) of a symbol property.

Variables

* MSymbol Mnil

Symbol whose name is "nil".
y

¢ MSymbol Mt

Symbol whose name is "t".

¢ MSymbol Mstring

Symbol whose name is "string".

14 Module Documentation

¢ MSymbol Msymbol

Symbol whose name is "symbol".

2.4.1 Detailed Description

Symbol objects and API for them. The m17n library uses objects called symbols as unambiguous identifiers.
Symbols are similar to atoms in the X library, but a symbol can have zero or more symbol properties. A symbol
property consists of a key and a value, where key is also a symbol and value is anything that can be cast to
(void). "The symbol property that belongs to the symbol S and whose key is K" may be shortened to "K
property of S".

Symbols are used mainly in the following three ways.
* As keys of symbol properties and other properties.
» To represent various objects, e.g. charsets, coding systems, fontsets.
* As arguments of the m17n library functions to control their behavior.

There is a special kind of symbol, a managing key. The value of a property whose key is a managing key must be
a managed object. See Managed Object (p. 11) for the detail.

2.4.2 Typedef Documentation
2.4.2.1 typedef struct MSymbolStruct+x MSymbol

Type of symbols.

The type MSymbol (p. 14) is for a symbol object. Its internal structure is concealed from application programs.

2.4.3 Function Documentation
2.4.3.1 MSymbol msymbol (const char x name)

Get a symbol.

The msymbol() (p. 14) function returns the canonical symbol whose name is name. If there is none, one is
created. The created one is not a managing key.

Symbols whose name starts by two spaces are reserved by the m17n library, and are used by the library only
internally.

Return value:
This function returns the found or created symbol.

Errors:
This function never fails.

See Also:
msymbol_as_managing key() (p. 15), msymbol_name() (p. 15), msymbol_exist() (p. 15)

2.4 Symbol 15

2.4.3.2 MSymbol msymbol_as_managing_key (const char x name)

Create a managing key.

The msymbol_as_managing key() (p. 15) function returns a newly created managing key whose name is name.
It there already exists a symbol of name name, it returns Mnil (p. 17).

Symbols whose name starts by two spaces are reserved by the m17n library, and are used by the library only
internally.

Return value:
If the operation was successful, this function returns the created symbol. Otherwise, it returns Mnil (p. 17).

Errors:
MERROR_SYMBOL

See Also:
msymbol() (p. 14), msymbol_exist() (p. 15)

2.4.3.3 int msymbol_is_managing_key (MSymbol symbol)

Check if a symbol is a managing key.

The msymbol_is_managing_key() (p. 15) function checks if the symbol symbol is a managing key or not.

Return value:
Return 1 if the symbol is a managing key. Otherwise, return 0.

2.4.3.4 MSymbol msymbol_exist (const char x name)

Search for a symbol that has a specified name.

The msymbol_exist() (p. 15) function searches for the symbol whose name is name.

Return value:
If such a symbol exists, msymbol_exist() (p. 15) returns that symbol. Otherwise it returns the predefined
symbol Mnil (p. 17).

Errors:
This function never fails.

See Also:
msymbol_name() (p. 15), msymbol() (p. 14)

2.4.3.5 charx msymbol_name (MSymbol symbol)

Get symbol name.

The msymbol_name() (p. 15) function returns a pointer to a string containing the name of symbol.

Errors:
This function never fails.

See Also:
msymbol() (p. 14), msymbol_exist() (p. 15)

16 Module Documentation

2.4.3.6 int msymbol_put (MSymbol symbol, MSymbol key, void * val)

Set the value of a symbol property.

The msymbol_put() (p. 16) function assigns val to the value of the symbol property that belongs to symbol and
whose key is key. If the symbol property already has a value, val overwrites the old one. Both symbol and key
must not be Mnil (p. 17).

If key is a managing key, val must be a managed object. In this case, the reference count of the old value, if not
NULL, is decremented by one, and that of val is incremented by one.

Return value:
If the operation was successful, msymbol_put() (p. 16) returns 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_SYMBOL

See Also:
msymbol_get() (p. 16)

2.4.3.7 voidx msymbol_get (MSymbol symbol, MSymbol key)

Get the value of a symbol property.

The msymbol_get() (p. 16) function searches for the value of the symbol property that belongs to symbol and
whose key is key. If symbol has such a symbol property, its value is returned. Otherwise NULL is returned.

Return value:
If an error is detected, msymbol_get() (p. 16) returns NULL and assigns an error code to the external variable
merror_code (p. 155).

Errors:
MERROR_SYMBOL

See Also:
msymbol_put() (p. 16)

2.4.3.8 int msymbol_put_func (MSymbol symbol, MSymbol key, M17NFunc func)

Set the value (function pointer) of a symbol property.

The msymbol_put_func() (p. 16) function is similar to msymbol_put() (p. 16) but for setting function pointer
func as the property value of symbol for key key.

See Also:
msymbol_put() (p. 16), M17N_FUNC() (p. 10)

2.4.3.9 M17NFunc msymbol_get_func (MSymbol symbol, MSymbol key)

Get the value (function pointer) of a symbol property.

The msymbol_get_func() (p. 16) function is similar to msymbol_get() (p. 16) but for getting a function pointer
form the property of symbol symbol.

See Also:
msymbol_get() (p. 16)

2.4 Symbol

17

2.4.4 Variable Documentation
24.4.1 MSymbol Mnil

Symbol whose name is "nil".

The symbol Mnil (p. 17) has the name "nil" and, in general, represents false or no. When coerced to "int", its

value is zero. Mnil (p. 17) can’t have any symbol property.

2.4.4.2 MSymbol Mt

Symbol whose name is "t".

The symbol Mt (p. 17) has the name "t " and, in general, represents true or yes.
2.4.4.3 MSymbol Mstring

Symbol whose name is "string".

The symbol Mstring (p. 17) has the name "string" and is used as an argument of the functions
mchar_define_property() (p.25), etc.

2.4.44 MSymbol Msymbol

Symbol whose name is "symbol".

The symbol Msymbol (p. 17) has the name "symbol" and is used as an argument of the functions
mchar_define_property() (p.25), etc.

18

Module Documentation

2.5 Property List

Property List objects and API for them.

Typedefs

* typedef struct MPlist MPlist
Type of property list objects.

Functions

* MPIist « mplist_deserialize (MText xmt)

Generate a property list by deserializing an M-text.

¢ MPlist *« mplist (void)

Create a property list object.

* MPIist + mplist_copy (MPlist *plist)
Copy a property list.

* MPIlist x mplist_put (MPlist «plist, MSymbol key, void *val)
Set the value of a property in a property list.

* void * mplist_get (MPlist *plist, MSymbol key)
Get the value of a property in a property list.

* MPIlist + mplist_put_func (MPlist *plist, MSymbol key, M17NFunc func)

Set the value (function pointer) of a property in a property list.

¢ M17NFunc mplist_get_func (MPlist xplist, MSymbol key)

Get the value (function pointer) of a property in a property list.

¢ MPIlist « mplist_add (MPlist *plist, MSymbol key, void *val)
Add a property at the end of a property list.

* MPIlist + mplist_push (MPlist +plist, MSymbol key, void *val)
Add a property at the beginning of a property list.

* void * mplist_pop (MPlist *plist)
Remove a property at the beginning of a property list.

* MPIlist + mplist_find_by_key (MPlist *plist, MSymbol key)
Find a property of a specific key in a property list.

e MPIlist +« mplist_find_by_value (MPlist *plist, void xval)
Find a property of a specific value in a property list.

¢ MPIlist +« mplist_next (MPlist *plist)

Return the next sublist of a property list.

2.5 Property List 19

* MPIist + mplist_set (MPlist «plist, MSymbol key, void *val)
Set the first property in a property list.

« int mplist_length (MPlist *plist)
Return the length of a property list.

* MSymbol mplist_key (MPlist «plist)
Return the key of the first property in a property list.

¢ void * mplist_value (MPlist xplist)

Return the value of the first property in a property list.

Variables

* MSymbol Minteger

Symbol whose name is "integer".

* MSymbol Mplist

Symbol whose name is "plist".

* MSymbol Mtext

Symbol whose name is "mtext".

2.5.1 Detailed Description

Property List objects and API for them. A property list (or plist for short) is a list of zero or more properties. A
property consists of a key and a value, where key is a symbol and value is anything that can be cast to (void).

If the key of a property is a managing key, its value is a managed object. A property list itself is a managed
objects.

If each key of a plist is one of Msymbol (p. 17), Mtext (p.23), Minteger (p.23), and Mplist (p. 23), the plist is
called as well-formed and represented by the following notation in the documentation.

PLIST ::= ' (’ ELEMENT = ')’
ELEMENT ::= INTEGER | SYMBOL | M-TEXT | PLIST
M-TEXT ::= '"’ text data ... "’

For instance, if a plist has four elements; integer -20, symbol of name "sym", M-text of contents "abc", and plist
of integer 10 and symbol of name "another-symbol", it is represented as this:

(-20 sym "abc" (10 another-symbol))
2.5.2 Typedef Documentation

2.5.2.1 typedef struct MPlist MPlist

Type of property list objects.

The type MPlist (p. 19) is for a property list object. Its internal structure is concealed from application programs.

20 Module Documentation

2.5.3 Function Documentation
2.5.3.1 MPIlist «+ mplist_deserialize (MText x mt)

Generate a property list by deserializing an M-text.

The mplist_deserialize() (p. 20) function parses M-text mt and returns a property list.
The syntax of mt is as follows.

MT ::="(ELEMENT x)’

ELEMENT ::= SYMBOL | INTEGER | M-TEXT | PLIST

SYMBOL ::= ascii-character-sequence

INTEGER ::="-? [0’ | .. |’9’]+ |’0x’[’0" | .. | 'Y’

7A9‘ |’F’|’a5

P+
M-TEXT ::=""" character-sequence '’
Each alternatives of ELEMENT is assigned one of these keys: Msymbol, Minteger, Mtext, Mplist

In an ascii-character-sequence, a backslash (\) is used as the escape character, which means that, for instance,
abc\ def produces a symbol whose name is of length seven with the fourth character being a space.

2.5.3.2 MPIlist+ mplist (void)

Create a property list object.
The mplist() (p. 20) function returns a newly created property list object of length zero.

Return value:
This function returns a newly created property list.

Errors:
This function never fails.

2.5.3.3 MPlist+ mplist_copy (MPlist x plist)

Copy a property list.
The mplist_copy() (p. 20) function copies property list plist. In the copy, the values are the same as those of plist.

Return value:
This function returns a newly created plist which is a copy of plist.

Errors:
This function never fails.

2.5.3.4 MPlistx mplist_put (MPlist « plist, MSymbol key, void * val)

Set the value of a property in a property list.

The mplist_put() (p. 20) function searches property list plist from the beginning for a property whose key is key.
If such a property is found, its value is changed to value. Otherwise, a new property whose key is key and value

is value is appended at the end of plist. See the documentation of mplist_add() (p. 21) for the restriction on key
and val.

If key is a managing key, val must be a managed object. In this case, the reference count of the old value, if not
NULL, is decremented by one, and that of val is incremented by one.

2.5 Property List 21

Return value:
If the operation was successful, mplist_put() (p. 20) returns a sublist of plist whose first element is the just
modified or added one. Otherwise, it returns NULL.

2.5.3.5 voidx mplist_get (MPlist * plist, MSymbol key)

Get the value of a property in a property list.

The mplist_get() (p. 21) function searches property list plist from the beginning for a property whose key is key.
If such a property is found, its value is returned as the type of (void). If not found, NULL is returned.

When NULL is returned, there are two possibilities: one is the case where no property is found (see above); the
other is the case where a property is found and its value is NULL. In case that these two cases must be
distinguished, use the mplist_find_by_key() (p.22) function.

See Also:
mplist_find_by_key() (p.22)

2.5.3.6 MPlistx mplist_put_func (MPlist * plist, MSymbol key, M17NFunc func)

Set the value (function pointer) of a property in a property list.

The mplist_put_func() (p.21) function is similar to mplist_put() (p. 20) but for setting function pointer func in
property list plist for key key. key must not be a managing key.

See Also:
mplist_put() (p. 20), M17N_FUNC() (p. 10)

2.5.3.7 M17NFunc mplist_get_func (MPlist * plist, MSymbol key)

Get the value (function pointer) of a property in a property list.
The mplist_get_func() (p. 21) function is similar to mplist_get() (p.21) but for getting a function pointer from
property list plist by key key.

See Also:
mplist_get() (p.21)

2.5.3.8 MPIlist+ mplist_add (MPlist x plist, MSymbol key, void * val)

Add a property at the end of a property list.

The mplist_add() (p.21) function appends at the end of property list plist a property whose key is key and value
is val. key can be any symbol other than Mni1l.

If key is a managing key, val must be a managed object. In this case, the reference count of val is incremented by
one.

Return value:
If the operation was successful, mplist_add() (p.21) returns a sublist of plist whose first element is the just
added one. Otherwise, it returns NULL.

22 Module Documentation

2.5.3.9 MPlistx mplist_push (MPlist plist, MSymbol key, void * val)

Add a property at the beginning of a property list.

The mplist_push() (p. 22) function inserts at the beginning of property list plist a property whose key is key and
value is val.

If key is a managing key, val must be a managed object. In this case, the reference count of val is incremented by

one.

Return value:
If the operation was successful, this function returns plist. Otherwise, it returns NULL.

2.5.3.10 voidx mplist_pop (MPlist x plist)

Remove a property at the beginning of a property list.

The mplist_pop() (p.22) function removes a property at the beginning of property list plist. As a result, the
second key and value of the plist become the first ones.

Return value:
If the operation was successful, this function return the value of the just popped property. Otherwise, it
returns NULL.

2.5.3.11 MPIlist+ mplist_find_by_key (MPlist * plist, MSymbol key)

Find a property of a specific key in a property list.

The mplist_find_by_key() (p. 22) function searches property list plist from the beginning for a property whose
key is key. If such a property is found, a sublist of plist whose first element is the found one is returned.
Otherwise, NULL is returned.

If key is Mn1i 1, it returns a sublist of plist whose first element is the last one of plist.

2.5.3.12 MPlist+ mplist_find_by_value (MPlist x plist, void * val)

Find a property of a specific value in a property list.

The mplist_find_by_value() (p.22) function searches property list plist from the beginning for a property whose
value is val. If such a property is found, a sublist of plist whose first element is the found one is returned.
Otherwise, NULL is returned.

2.5.3.13 MPlist+ mplist_next (MPlist x plist)

Return the next sublist of a property list.

The mplist_next() (p. 22) function returns a pointer to the sublist of property list plist, which begins at the
second element in plist. If the length of plist is zero, it returns NULL.

2.5.3.14 MPIlist+ mplist_set (MPlist plist, MSymbol key, void * val)

Set the first property in a property list.

The mplist_set() (p. 22) function sets the key and the value of the first property in property list plist to key and
value, respectively. See the documentation of mplist_add() (p.21) for the restriction on key and val.

2.5 Property List 23

Return value:
If the operation was successful, mplist_set() (p. 22) returns plist. Otherwise, it returns NULL.

2.5.3.15 int mplist_length (MPlist * plist)

Return the length of a property list.

The mplist_length() (p. 23) function returns the number of properties in property list plist.
2.5.3.16 MSymbol mplist_key (MPlist plist)

Return the key of the first property in a property list.

The mplist_key() (p. 23) function returns the key of the first property in property list plist. If the length of plist is
zero, it returns Mnil.

2.5.3.17 voidx mplist_value (MPlist * plist)

Return the value of the first property in a property list.

The mplist_value() (p. 23) function returns the value of the first property in property list plist. If the length of
plist is zero, it returns NULL.

2.5.4 Variable Documentation
2.5.4.1 MSymbol Minteger

Symbol whose name is "integer".

The symbol Minteger has the name "integer". The value of a property whose key is Minteger must be
an integer.

2.54.2 MSymbol Mplist

Symbol whose name is "plist".

The symbol Mplist has the name "plist". Itis a managing key. A value of a property whose key is Mplist
must be a plist.

2.5.4.3 MSymbol Mtext

Symbol whose name is "mtext".

The symbol Mt ext has the name "mtext". It is a managing key. A value of a property whose key is Mtext
must be an M-text.

24 Module Documentation

2.6 Character

Character objects and API for them.

Defines

¢ #define MCHAR_MAX

Maximum character code.

Functions

¢ MSymbol mchar_define_property (const char xname, MSymbol type)

Define a character property.

* void * mchar_get_prop (int c, MSymbol key)

Get the value of a character property.

« int mchar_put_prop (int c, MSymbol key, void *val)

Set the value of a character property.

¢ MCharTable x mchar_get_prop_table (MSymbol key, MSymbol xtype)

Get the char-table for a character property.

Variables: Keys of character properties

These symbols are used as keys of character properties.

¢ MSymbol Mscript
Key for script.

¢ MSymbol Mname

Key for character name.

MSymbol Mcategory
Key for general category.

¢ MSymbol Mcombining_class

Key for canonical combining class.

¢ MSymbol Mbidi_category
Key for bidi category.

MSymbol Msimple_case_folding

Key for corresponding single lowercase character.

MSymbol Mcomplicated_case_folding

Key for corresponding multiple lowercase characters.

2.6 Character 25

MSymbol Mcased

Key for values used in case operation.

* MSymbol Msoft_dotted

Key for values used in case operation.

¢ MSymbol Mcase_mapping

Key for values used in case operation.

¢ MSymbol Mblock

Key for script block name.

2.6.1 Detailed Description

Character objects and API for them. The m17n library represents a character by a character code (an integer).
The minimum character code is 0. The maximum character code is defined by the macro MCHAR_MAX
(p.25). It is assured that MCHAR_MAX (p. 25) is not smaller than 0x3FFFFF (22 bits).

Characters 0 to 0x10FFFF are equivalent to the Unicode characters of the same code values.

A character can have zero or more properties called character properties. A character property consists of a key
and a value, where key is a symbol and value is anything that can be cast to (void x). "The character property
that belongs to character C and whose key is K" may be shortened to "the K property of C".

2.6.2 Define Documentation
2.6.2.1 #define MCHAR _MAX

Maximum character code.

The macro MCHAR_MAX (p. 25) gives the maximum character code.

2.6.3 Function Documentation
2.6.3.1 MSymbol mchar_define_property (const char x name, MSymbol type)

Define a character property.

The mchar_define_property() (p.25) function searches the m17n database for a data whose tags are
<Mchar_table (p. 32), type, sym >. Here, sym is a symbol whose name is name. type must be Mstring
(p. 17), Mtext (p. 23), Msymbol (p. 17), Minteger (p. 23), or Mplist (p. 23).

Return value:
If the operation was successful, mchar_define_property() (p.25) returns sym. Otherwise it returns Mnil

(p. 17).

Errors:
MERROR_DB

See Also:
mchar_get_prop() (p.26), mchar_put_prop() (p. 26)

26 Module Documentation

2.6.3.2 voidx mchar_get_prop (int c, MSymbol key)

Get the value of a character property.

The mchar_get_prop() (p. 26) function searches character ¢ for the character property whose key is key.

Return value:
If the operation was successful, mchar_get_prop() (p. 26) returns the value of the character property.
Otherwise it returns NULL.

Errors:
MERROR_SYMBOL, MERROR_DB

See Also:
mchar_define_property() (p. 25), mchar_put_prop() (p. 26)

2.6.3.3 int mchar_put_prop (int c, MSymbol key, void * val)

Set the value of a character property.

The mchar_put_prop() (p.26) function searches character ¢ for the character property whose key is key and
assigns val to the value of the found property.

Return value:
If the operation was successful, mchar_put_prop() (p. 26) returns 0. Otherwise, it returns -1.

Errors:
MERROR_SYMBOL, MERROR_DB

See Also:
mchar_define_property() (p.25), mchar_get_prop() (p.26)

2.6.3.4 MCharTablex mchar_get_prop_table (MSymbol key, MSymbol x* type)

Get the char-table for a character property.

The mchar_get_prop_table() (p. 26) function returns a char-table that contains the character property whose key
is key. If type is not NULL, this function stores the type of the property in the place pointed by type. See
mchar_define_property() (p. 25) for types of character property.

Return value:
If key is a valid character property key, this function returns a char-table. Otherwise NULL is retuned.

2.6.4 Variable Documentation

2.6.4.1 MSymbol Mscript

Key for script.

The symbol Msecript (p. 26) has the name "script" and is used as the key of a character property. The value
of such a property is a symbol representing the script to which the character belongs.

Each symbol that represents a script has one of the names listed in the Unicode Technical Report #24.

2.6 Character 27

2.6.4.2 MSymbol Mname

Key for character name.

The symbol Mname (p. 27) has the name "name" and is used as the key of a character property. The value of
such a property is a C-string representing the name of the character.

2.6.4.3 MSymbol Mcategory

Key for general category.

The symbol Mcategory (p.27) has the name "category" and is used as the key of a character property. The
value of such a property is a symbol representing the general category of the character.

Each symbol that represents a general category has one of the names listed as abbreviations for General Category
in Unicode.

2.6.4.4 MSymbol Mcombining_class

Key for canonical combining class.

The symbol Mcombining_class (p. 27) has the name "combining-class" and is used as the key of a
character property. The value of such a property is an integer that represents the canonical combining class of the
character.

The meaning of each integer that represents a canonical combining class is identical to the one defined in
Unicode.

2.6.4.5 MSymbol Mbidi_category

Key for bidi category.

The symbol Mbidi_category (p.27) has the name "bidi-category" and is used as the key of a character
property. The value of such a property is a symbol that represents the bidirectional category of the character.

Each symbol that represents a bidirectional category has one of the names listed as types of Bidirectional
Category in Unicode.

2.6.4.6 MSymbol Msimple_case_folding

Key for corresponding single lowercase character.

The symbol Msimple_case_folding (p. 27) has the name "simple-case-folding" and is used as the key
of a character property. The value of such a property is the corresponding single lowercase character that is used
when comparing M-texts ignoring cases.

If a character requires a complicated comparison (i.e. cannot be compared by simply mapping to another single
character), the value of such a property is OxFFFF. In this case, the character has another property whose key is
Mcomplicated_case_folding (p.27).

2.6.4.7 MSymbol Mcomplicated_case_folding

Key for corresponding multiple lowercase characters.

The symbol Mcomplicated_case_folding (p.27) has the name "complicated-case-folding" and is
used as the key of a character property. The value of such a property is the corresponding M-text that contains a
sequence of lowercase characters to be used for comparing M-texts ignoring case.

28 Module Documentation

2.6.4.8 MSymbol Mcased

Key for values used in case operation.

The symbol Mcased (p. 28) has the name "cased" and is used as the key of charater property. The value of
such a property is an integer value 1, 2, or 3 representing "cased", "case-ignorable", and both of them respective.
See the Unicode Standard 5.0 (Section 3.13 Default Case Algorithm) for the detail.

2.6.4.9 MSymbol Msoft_dotted

Key for values used in case operation.

The symbol Msoft_dotted (p.28) has the name "soft—-dotted" and is used as the key of charater property.
The value of such a property is Mt (p. 17) if a character has "Soft_Dotted" property, and Mnil (p. 17) otherwise.
See the Unicode Standard 5.0 (Section 3.13 Default Case Algorithm) for the detail.

2.6.4.10 MSymbol Mcase_mapping

Key for values used in case operation.

The symbol Mcase_mapping (p. 28) has the name "case-mapping" and is used as the key of charater
property. The value of such a property is a plist of three M-Texts; lower, title, and upper of the corresponding
character. See the Unicode Standard 5.0 (Section 5.18 Case Mappings) for the detail.

2.6.4.11 MSymbol Mblock

Key for script block name.

The symbol Mblock (p. 28) the name "block" and is used as the key of charater property. The value of such a
property is a symbol representing a script block of the corresponding character.

2.7 Chartable 29

2.7 Chartable

Chartable objects and API for them.

Typedefs

* typedef struct MCharTable MCharTable
Type of chartables.

Functions

* MCharTable x mchartable (MSymbol key, void xdefault_value)

Create a new chartable.

¢ int mchartable_min_char (MCharTable «table)

Return the minimum character whose value is set in a chartabe.

¢ int mchartable_max_char (MCharTable xtable)

Return the maximum character whose value is set in a chartabe.

¢ void * mchartable_lookup (MCharTable xtable, int c)

Return the assigned value of a character in a chartable.

¢ int mchartable_set (MCharTable xtable, int c, void *val)

Assign a value to a character in a chartable.

 int mchartable_set_range (MCharTable xtable, int from, int to, void xval)

Assign a value to the characters in the specified range.

* void mchartable_range (MCharTable xtable, int *from, int *to)

Search for characters that have non-default value.

¢ int mchartable_map (MCharTable xtable, void xignore, void(xfunc)(int, int, void *, void %), void
+func_arg)

Call a function for characters in a chartable.

Variables

¢ MSymbol Mchar_table

Symbol whose name is "char-table".

2.7.1 Detailed Description

Chartable objects and API for them. The m17n library supports enormous number of characters. Thus, if
attributes of each character are to be stored in a simple array, such an array would be impractically big. The
attributes usually used, however, are often assigned only to a range of characters. Even when all characters have
attributes, characters of consecutive character code tend to have the same attribute values.

30 Module Documentation

The m17n library utilizes this tendency to store characters and their attribute values efficiently in an object called
Chartable. Although a chartable object is not a simple array, application programs can handle a chartable as if it
is an array. Attribute values of a character can be obtained by accessing a Chartable for the attribute with the
character code of the specified character.

A chartable is a managed object.

2.7.2 Typedef Documentation
2.7.2.1 typedef struct MCharTable MCharTable

Type of chartables.

The type MCharTable (p. 30) is for a chartable objects. Its internal structure is concealed from application
programs.

2.7.3 Function Documentation
2.7.3.1 MCharTablex mchartable (MSymbol key, void * default_value)

Create a new chartable.

The mchartable() (p. 30) function creates a new chartable object with symbol key and the default value
default_value. If key is a managing key, the elements of the table (including the default value) are managed
objects or NULL.

Return value:
If the operation was successful, mchartable() (p. 30) returns a pointer to the created chartable. Otherwise it
returns NULL and assigns an error code to the external variable merror_code (p. 155).

2.7.3.2 int mchartable_min_char (MCharTable * table)

Return the minimum character whose value is set in a chartabe.

The mchartable_min_char() (p. 30) function return the minimum character whose value is set in chartable
table. No character is set its value, the function returns -1.

2.7.3.3 int mchartable_max_char (MCharTable * table)

Return the maximum character whose value is set in a chartabe.

The mchartable_max_char() (p. 30) function return the maximum character whose value is set in chartable
table. No character is set its value, the function returns -1.

2.7.3.4 void+ mchartable_lookup (MCharTable * table, int c)

Return the assigned value of a character in a chartable.

The mchartable_lookup() (p. 30) function returns the value assigned to character ¢ in chartable table. If no
value has been set for ¢ explicitly, the default value of table is returned. If ¢ is not a valid character,
mchartable_lookup() (p. 30) returns NULL and assigns an error code to the external variable merror_code

(p. 155).

Errors:
MERROR_CHAR

2.7 Chartable 31

See Also:
mchartable_set() (p.31)

2.7.3.5 int mchartable_set (MCharTable x table, int c, void * val)

Assign a value to a character in a chartable.

The mchartable_set() (p. 31) function sets the value of character ¢ in chartable table to val.

Return value:
If the operation was successful, mchartable_set() (p. 31) returns 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_CHAR

See Also:
mchartable_lookup() (p. 30), mchartable_set_range() (p.31)

2.7.3.6 int mchartable_set_range (MCharTable « fable, int from, int to, void * val)

Assign a value to the characters in the specified range.

The mchartable_set_range() (p. 31) function assigns value val to the characters from from to to (both inclusive)
in chartable table.

Return value:
If the operation was successful, mchartable_set_range() (p.31) returns 0. Otherwise it returns -1 and
assigns an error code to the external variable merror_code (p. 155). If from is greater than to,
mchartable_set_range() (p. 31) returns immediately without an error.

Errors:
MERROR_CHAR

See Also:
mchartable_set() (p.31)

2.7.3.7 void mchartable_range (MCharTable « table, int * from, int * to)

Search for characters that have non-default value.

The mchartable_range() (p. 31) function searches chartable table for the first and the last character codes that
do not have the default value of table, and set from and to to them, respectively. If all characters have the default
value, both from and to are set to -1.

2.7.3.8 int mchartable_map (MCharTable x table, void * ignore, void(x)(int, int, void *, void *) func,
void * func_arg)

Call a function for characters in a chartable.

The mchartable_map() (p.31) function calls function func for characters in chartable table. No function call
occurs for characters that have value ignore in table. Comparison of ignore and character value is done with the
operator ==. Be careful when you use string literals or pointers.

32 Module Documentation

Instead of calling func for each character, mchartable_map() (p. 31) tries to optimize the number of function
calls, i.e. it makes a single function call for a chunk of characters when those consecutive characters have the
same value.

No matter how long the character chunk is, func is called with four arguments; from, to, val, and arg. from and
to (both inclusive) defines the range of characters that have value val. arg is the same as func_arg.

Return value:
This function always returns 0.

2.7.4 Variable Documentation
2.7.4.1 MSymbol Mchar_table

Symbol whose name is "char-table".

The symbol Mchar_table has the name "char-table".

2.8 M-text

2.8 M-text

M-text objects and API for them.

Typedefs

¢ typedef struct MText MText
Type of M-texts.

Enumerations

¢ enum MTextFormat {
MTEXT_FORMAT_US_ASCII,
MTEXT_FORMAT_UTF_S8,
MTEXT_FORMAT_UTF_16LE,
MTEXT_FORMAT_UTF_16BE,
MTEXT_FORMAT_UTF_32LE,
MTEXT_FORMAT_UTF_32BE,
MTEXT_FORMAT_MAX }

Enumeration for specifying the format of an M-text.

e enum MTextLineBreakOption {
MTEXT_LBO_SP_CM =1,
MTEXT_LBO_KOREAN_SP =2,
MTEXT_LBO_AI_AS_ID =4,
MTEXT_LBO_MAX }

Enumeration for specifying a set of line breaking option.

Functions

* int mtext_line_break (MText xmt, int pos, int option, int *after)

Find a linebreak postion of an M-text.

¢ MText x mtext ()

Allocate a new M-text.

¢ MText * mtext_from_data (const void xdata, int nitems, enum MTextFormat format)

Allocate a new M-text with specified data.

* void * mtext_data (MText xmt, enum MTextFormat «fmt, int xnunits, int *pos_idx, int sunit_idx)

Get information about the text data in M-text.

¢ int mtext_len (MText xmt)

Number of characters in M-text.

 int mtext_ref_char (MText «mt, int pos)

34

Module Documentation

Return the character at the specified position in an M-text.

int mtext_set_char (MText «mt, int pos, int c)

Store a character into an M-text.

MText «+ mtext_cat_char (MText xmit, int c)

Append a character to an M-text.

MText « mtext_dup (MText xmt)

Create a copy of an M-text.

MText « mtext_cat (MText «mtl, MText xmt2)
Append an M-text to another.

MText * mtext_ncat (MText xmtl, MText *mt2, int n)
Append a part of an M-text to another.

MText + mtext_cpy (MText xmtl, MText xmt2)

Copy an M-text to another.

MText « mtext_ncpy (MText «xmtl, MText xmt2, int n)

Copy the first some characters in an M-text to another.

MText + mtext_duplicate (MText «mt, int from, int to)

Create a new M-text from a part of an existing M-text.

MText « mtext_copy (MText «xmtl, int pos, MText «xmt2, int from, int to)

Copy characters in the specified range into an M-text.

int mtext_del (MText xmt, int from, int to)

Delete characters in the specified range destructively.

int mtext_ins (MText «mtl, int pos, MText «mt2)

Insert an M-text into another M-text.

int mtext_insert (MText xmtl, int pos, MText «mt2, int from, int to)

Insert sub-text of an M-text into another M-text.

int mtext_ins_char (MText «mt, int pos, int c, int n)

Insert a character into an M-text.

int mtext_replace (MText xmtl, int froml, int tol, MText xmt2, int from2, int to2)

Replace sub-text of M-text with another.

int mtext_character (MText xmt, int from, int to, int ¢)

Search a character in an M-text.

int mtext_chr (MText xmt, int c)

Return the position of the first occurrence of a character in an M-text.

int mtext_rchr (MText xmt, int c)

Return the position of the last occurrence of a character in an M-text.

2.8 M-text

35

¢ int mtext_cmp (MText +mt1, MText +mt2)

Compare two M-texts character-by-character.

¢ int mtext_ncmp (MText «mt1, MText «mt2, int n)

Compare initial parts of two M-texts character-by-character.

* int mtext_compare (MText xmtl, int froml, int tol, MText xmt2, int from2, int to2)

Compare specified regions of two M-texts.

* int mtext_spn (MText +xmt, MText xaccept)

Search an M-text for a set of characters.

* int mtext_cspn (MText «xmt, MText xreject)

Search an M-text for the complement of a set of characters.

¢ int mtext_pbrk (MText «mt, MText xaccept)

Search an M-text for any of a set of characters.

¢ MText « mtext_tok (MText «xmt, MText xdelim, int *pos)

Look for a token in an M-text.

* int mtext_text (MText xmtl, int pos, MText xmt2)

Locate an M-text in another.

¢ int mtext_search (MText xmtl, int from, int to, MText *xmt2)

Locate an M-text in a specific range of another.

* int mtext_casecmp (MText xmtl, MText xmt2)

Compare two M-texts ignoring cases.

* int mtext_ncasecmp (MText xmtl, MText xmt2, int n)

Compare initial parts of two M-texts ignoring cases.

* int mtext_case_compare (MText xmtl, int from1, int tol, MText «mt2, int from2, int t02)

Compare specified regions of two M-texts ignoring cases.

¢ int mtext_lowercase (MText xmt)

Lowercase an M-text.

¢ int mtext_titlecase (MText xmt)

Titlecase an M-text.

* int mtext_uppercase (MText xmt)

Uppercase an M-text.

Variables

* MSymbol Mlanguage

36 Module Documentation

Variables: Default Endian of UTF-16 and UTF-32

e enum MTextFormat MTEXT_FORMAT_UTF_16
Variable of value MTEXT _FORMAT _UTF_I6LE or MTEXT _FORMAT UTF_I16BE.

¢ const int MTEXT_FORMAT_UTF_32
Variable of value MTEXT FORMAT _UTF_32LE or MTEXT FORMAT UTF_32BE.

2.8.1 Detailed Description

M-text objects and API for them. In the m17n library, text is represented as an object called M-text rather than as
a C-string (char *orunsigned char *). An M-textis a sequence of characters whose length is equals to
or more than 0, and can be coined from various character sources, e.g. C-strings, files, character codes, etc.

M-texts are more useful than C-strings in the following points.

* M-texts can handle mixture of characters of various scripts, including all Unicode characters and more.
This is an indispensable facility when handling multilingual text.

 Each character in an M-text can have properties called text properties. Text properties store various kinds
of information attached to parts of an M-text to provide application programs with a unified view of those
information. As rich information can be stored in M-texts in the form of text properties, functions in
application programs can be simple.

In addition, the library provides many functions to manipulate an M-text just the same way as a C-string.

2.8.2 Typedef Documentation
2.8.2.1 typedef struct MText MText

Type of M-texts.

The type MText (p. 36) is for an M-text object. Its internal structure is concealed from application programs.

2.8.3 Enumeration Type Documentation
2.8.3.1 enum MTextFormat

Enumeration for specifying the format of an M-text.

The enum MTextFormat (p. 36) is used as an argument of the mtext_from_data() (p. 37) function to specify the
format of data from which an M-text is created.

Enumerator:
MTEXT _FORMAT _US_ASCII US-ASCII encoding

MTEXT FORMAT UTF_8 UTF-8 encoding
MTEXT FORMAT UTF_16LE UTF-16LE encoding
MTEXT FORMAT UTF_16BE UTF-16BE encoding
MTEXT _FORMAT UTF_32LE UTF-32LE encoding
MTEXT FORMAT UTF_32BE UTF-32BE encoding
MTEXT FORMAT MAX

2.8 M-text 37

2.8.3.2 enum MTextLineBreakOption

Enumeration for specifying a set of line breaking option.
The enum MTextLineBreakOption (p. 37) is to control the line breaking algorithm of the function
mtext_line_break() (p. 37) by specifying logical-or of the members in the arg option.

Enumerator:
MTEXT _LBO_SP_CM Specify the legacy support for space character as base for combining marks. See
the section 8.3 of UAX#14.

MTEXT _LBO_KOREAN_SP Specify to use space characters for line breaking Korean text.

MTEXT LBO_AI_AS_ID Specify to treat characters of ambiguous line-breaking class as of ideographic
line-breaking class.

MTEXT LBO_MAX

2.8.4 Function Documentation
2.8.4.1 int mtext_line_break (MText x mt, int pos, int option, int x after)

Find a linebreak postion of an M-text.

The mtext_line_break() (p. 37) function checks if position pos is a proper linebreak position of an M-text mt
according to the algorithm of The Unicode Standard 4.0 UAX#14. It so, it returns pos. Otherwise, it returns a
proper linebreak position before pos.

If option is nonzero, it controls the algorithm by logical-or of the members of MTextLineBreakOption (p. 37).

If after is not NULL, a proper linebreak position after pos is stored there.

2.8.4.2 MTextx mtext ()

Allocate a new M-text.

The mtext() (p.37) function allocates a new M-text of length 0 and returns a pointer to it. The allocated M-text
will not be freed unless the user explicitly does so with the m17n_object_unref() (p. 12) function.

See Also:
m17n_object_unref() (p. 12)

2.8.4.3 MText+ mtext_from_data (const void * data, int nitems, enum MTextFormat format)

Allocate a new M-text with specified data.

The mtext_from_data() (p. 37) function allocates a new M-text whose character sequence is specified by array
data of nitems elements. format specifies the format of data.

When format is either MTEXT_FORMAT_US_ASCII (p. 36) or MTEXT_FORMAT_UTF_8 (p. 36), the
contents of data must be of the type unsigned char, and nitems counts by byte.

When format is either MTEXT_FORMAT_UTF_16LE (p. 36) or MTEXT_FORMAT_UTF_16BE (p. 36),
the contents of data must be of the type unsigned short, and nitems counts by unsigned short.

When format is either MTEXT_FORMAT_UTF_32LE (p. 36) or MTEXT_FORMAT _UTF_32BE (p. 36),
the contents of data must be of the type unsigned, and nitems counts by unsigned.

The character sequence of the M-text is not modifiable. The contents of data must not be modified while the
M-text is alive.

38 Module Documentation

The allocated M-text will not be freed unless the user explicitly does so with the m17n_object_unref() (p. 12)
function. Even in that case, data is not freed.

Return value:
If the operation was successful, mtext_from_data() (p. 37) returns a pointer to the allocated M-text.
Otherwise it returns NULL and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_MTEXT

2.8.4.4 void+ mtext_data (MText « m¢, enum MTextFormat * fmt, int * nunits, int * pos_idx, int x
unit_idx)
Get information about the text data in M-text.

The mtext_data() (p. 38) function returns a pointer to the text data of M-text mt. If fmt is not NULL, the format
of the text data is stored in it. If nunits is not NULL, the number of units of the text data is stored in it.

If pos_idx is not NULL and it points to a non-negative number, what it points to is a character position. In this
case, the return value is a pointer to the text data of a character at that position.

Otherwise, if unit_idx is not NULL, it points to a unit position. In this case, the return value is a pointer to the
text data of a character containing that unit.

The character position and unit position of the return value are stored in pos_idx and unit_dix respectively if
they are not NULL.

¢ If the format of the text data is MTEXT_FORMAT_US_ASCII or MTEXT_FORMAT_UTF_8, one unit is
unsigned char.

o If the format is MTEXT_FORMAT_UTF_16LE or MTEXT_FORMAT_UTF_16BE, one unit is unsigned
short.

e If the format is MTEXT_FORMAT_UTF_32LE or MTEXT_FORMAT_UTF_32BE, one unit is unsigned
int.

2.8.4.5 int mtext_len (MText * mt)

Number of characters in M-text.

The mtext_len() (p. 38) function returns the number of characters in M-text mt.

2.8.4.6 int mtext_ref_char (MText x mt, int pos)

Return the character at the specified position in an M-text.

The mtext_ref_char() (p. 38) function returns the character at pos in M-text mt. If an error is detected, it returns
-1 and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

2.8 M-text 39

2.8.4.7 int mtext_set_char (MText « m¢, int pos, int c)

Store a character into an M-text.

The mtext_set_char() (p. 39) function sets character ¢, which has no text properties, at pos in M-text mt.

Return value:
If the operation was successful, mtext_set_char() (p. 39) returns 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

2.8.4.8 MTextx mtext_cat_char (MText « mt, int c)

Append a character to an M-text.

The mtext_cat_char() (p. 39) function appends character ¢, which has no text properties, to the end of M-text mt.

Return value:
This function returns a pointer to the resulting M-text mt. If ¢ is an invalid character, it returns NULL.

See Also:
mtext_cat() (p. 39), mtext_ncat() (p. 40)

2.8.4.9 MText+ mtext_dup (MText « mt)

Create a copy of an M-text.

The mtext_dup() (p. 39) function creates a copy of M-text mt while inheriting all the text properties of mt.

Return value:
This function returns a pointer to the created copy.

See Also:
mtext_duplicate() (p. 40)

2.8.4.10 MText+ mtext_cat (MText x mtl, MText x mt2)

Append an M-text to another.

The mtext_cat() (p. 39) function appends M-text mt2 to the end of M-text mtl while inheriting all the text
properties. mt2 itself is not modified.

Return value:
This function returns a pointer to the resulting M-text mt1.

See Also:
mtext_ncat() (p.40), mtext_cat_char() (p.39)

40 Module Documentation

2.8.4.11 MTextx mtext_ncat (MText x mt1, MText « mt2, int n)

Append a part of an M-text to another.
The mtext_ncat() (p.40) function appends the first n characters of M-text mt2 to the end of M-text mt1 while

inheriting all the text properties. If the length of mt2 is less than n, all characters are copied. mt2 is not modified.

Return value:
If the operation was successful, mtext_ncat() (p. 40) returns a pointer to the resulting M-text mt1. If an error
is detected, it returns NULL and assigns an error code to the global variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_cat() (p. 39), mtext_cat_char() (p.39)

2.8.4.12 MTextx mtext_cpy (MText mtl, MText « mt2)

Copy an M-text to another.
The mtext_cpy() (p. 40) function copies M-text mt2 to M-text mt1 while inheriting all the text properties. The

old text in mtl is overwritten and the length of mtl is extended if necessary. mt2 is not modified.

Return value:
This function returns a pointer to the resulting M-text mt1.

See Also:
mtext_ncpy() (p.40), mtext_copy() (p.41)

2.8.4.13 MText+ mtext_ncpy (MText « mtl, MText « mt2, int n)

Copy the first some characters in an M-text to another.

The mtext_ncpy() (p.40) function copies the first n characters of M-text mt2 to M-text mt1 while inheriting all
the text properties. If the length of mt2 is less than n, all characters of mt2 are copied. The old text in mt1 is
overwritten and the length of mt1 is extended if necessary. mt2 is not modified.

Return value:
If the operation was successful, mtext_ncpy() (p.40) returns a pointer to the resulting M-text mt1. If an
error is detected, it returns NULL and assigns an error code to the global variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_cpy() (p. 40), mtext_copy() (p.41)

2.8.4.14 MText+ mtext_duplicate (MText x m¢, int from, int to)

Create a new M-text from a part of an existing M-text.

The mtext_duplicate() (p. 40) function creates a copy of sub-text of M-text mt, starting at from (inclusive) and
ending at to (exclusive) while inheriting all the text properties of mt. mt itself is not modified.

2.8 M-text 41

Return value:
If the operation was successful, mtext_duplicate() (p. 40) returns a pointer to the created M-text. If an error
is detected, it returns NULL and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_dup() (p. 39)

2.8.4.15 MTextx mtext_copy (MText x mt1, int pos, MText x mt2, int from, int to)

Copy characters in the specified range into an M-text.

The mtext_copy() (p.41) function copies the text between from (inclusive) and to (exclusive) in M-text mt2 to
the region starting at pos in M-text mt1 while inheriting the text properties. The old text in mt1 is overwritten
and the length of mtl is extended if necessary. mt2 is not modified.

Return value:
If the operation was successful, mtext_copy() (p.41) returns a pointer to the modified mt1. Otherwise, it
returns NULL and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_cpy() (p. 40), mtext_ncpy() (p.40)

2.8.4.16 int mtext_del (MText x mt, int from, int to)

Delete characters in the specified range destructively.

The mtext_del() (p.41) function deletes the characters in the range from (inclusive) and to (exclusive) from
M-text mt destructively. As a result, the length of mt shrinks by (to - from) characters.

Return value:
If the operation was successful, mtext_del() (p.41) returns 0. Otherwise, it returns -1 and assigns an error
code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_ins() (p.41)

2.8.4.17 int mtext_ins (MText * mtl, int pos, MText x m¢2)

Insert an M-text into another M-text.

The mtext_ins() (p.41) function inserts M-text mt2 into M-text mt1, at position pos. As a result, mtl is lengthen
by the length of mt2. On insertion, all the text properties of mt2 are inherited. The original mt2 is not modified.

42 Module Documentation

Return value:
If the operation was successful, mtext_ins() (p.41) returns 0. Otherwise, it returns -1 and assigns an error
code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE , MERROR_MTEXT

See Also:
mtext_del() (p.41) , mtext_insert() (p.42)

2.8.4.18 int mtext_insert (MText « mtl, int pos, MText x mt2, int from, int to)

Insert sub-text of an M-text into another M-text.

The mtext_insert() (p. 42) function inserts sub-text of M-text mt2 between from (inclusive) and to (exclusive)
into M-text mtl, at position pos. As a result, mtl is lengthen by (to - from). On insertion, all the text properties
of the sub-text of mt2 are inherited.

Return value:
If the operation was successful, mtext_insert() (p. 42) returns 0. Otherwise, it returns -1 and assigns an error
code to the external variable merror_code (p. 155).

Errors:
MERROR_MTEXT , MERROR_RANGE

See Also:
mtext_ins() (p.41)

2.8.4.19 int mtext_ins_char (MText x m¢, int pos, int ¢, int n)

Insert a character into an M-text.

The mtext_ins_char() (p. 42) function inserts n copies of character ¢ into M-text mt at position pos. As a result,
mt is lengthen by n.

Return value:
If the operation was successful, mtext_ins() (p. 41) returns 0. Otherwise, it returns -1 and assigns an error
code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_ins, mtext_del() (p.41)

2.8.4.20 int mtext_replace (MText x mtl, int froml, int tol, MText « mt2, int from2, int t02)

Replace sub-text of M-text with another.

The mtext_replace() (p.42) function replaces sub-text of M-text mtl between from1 (inclusive) and tol
(exclusive) with the sub-text of M-text mt2 between from2 (inclusive) and to2 (exclusive). The new sub-text
inherits text properties of the old sub-text.

2.8 M-text 43

Return value:
If the operation was successful, mtext_replace() (p.42) returns 0. Otherwise, it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_MTEXT , MERROR_RANGE

See Also:
mtext_insert() (p.42)

2.8.4.21 int mtext_character (MText x m¢, int from, int to, int c)

Search a character in an M-text.

The mtext_character() (p. 43) function searches M-text mt for character c. If from is less than to, the search
begins at position from and goes forward but does not exceed (to - 1). Otherwise, the search begins at position
(from - 1) and goes backward but does not exceed to. An invalid position specification is regarded as both from
and to being 0.

Return value:
If ¢ is found, mtext_character() (p.43) returns the position of its first occurrence. Otherwise it returns -1
without changing the external variable merror_code (p. 155). If an error is detected, it returns -1 and assigns
an error code to the external variable merror_code (p. 155).

See Also:
mtext_chr() (p.43), mtext_rchr() (p.43)

2.8.4.22 int mtext_chr (MText *« mt, int c)

Return the position of the first occurrence of a character in an M-text.
The mtext_chr() (p.43) function searches M-text mt for character c¢. The search starts from the beginning of mt

and goes toward the end.

Return value:
If ¢ is found, mtext_chr() (p.43) returns its position; otherwise it returns -1.

Errors:
MERROR_RANGE

See Also:
mtext_rchr() (p.43), mtext_character() (p.43)

2.8.4.23 int mtext_rchr (MText x mt, int c)

Return the position of the last occurrence of a character in an M-text.

The mtext_rchr() (p.43) function searches M-text mt for character c¢. The search starts from the end of mt and
goes backwardly toward the beginning.

Return value:
If ¢ is found, mtext_rchr() (p. 43) returns its position; otherwise it returns -1.

44 Module Documentation

Errors:
MERROR_RANGE

See Also:
mtext_chr() (p.43), mtext_character() (p.43)

2.8.4.24 int mtext_cmp (MText x mt1, MText x m¢2)

Compare two M-texts character-by-character.

The mtext_cmp() (p.44) function compares M-texts mt1 and mt2 character by character.

Return value:
This function returns 1, 0, or -1 if mt1 is found greater than, equal to, or less than mt2, respectively.
Comparison is based on character codes.

See Also:
mtext_ncmp() (p. 44), mtext_casecmp() (p. 46), mtext_ncasecmp() (p. 46), mtext_compare() (p.44),
mtext_case_compare() (p.46)

2.8.4.25 int mtext_ncmp (MText « mt1, MText x mt2, int n)

Compare initial parts of two M-texts character-by-character.

The mtext_ncmp() (p. 44) function is similar to mtext_cmp() (p. 44), but compares at most n characters from
the beginning.

Return value:
This function returns 1, 0, or -1 if mt1 is found greater than, equal to, or less than mt2, respectively.

See Also:
mtext_cmp() (p. 44), mtext_casecmp() (p. 46), mtext_ncasecmp() (p. 46) mtext_compare() (p.44),
mtext_case_compare() (p.46)

2.8.4.26 int mtext_compare (MText x mtl, int froml, int tol, MText x mt2, int from2, int t0o2)

Compare specified regions of two M-texts.

The mtext_compare() (p. 44) function compares two M-texts mtl and mt2, character-by-character. The
compared regions are between from1 and tol in mt1 and from?2 to to2 in MT2. from1 and from?2 are inclusive,
tol and to2 are exclusive. from1 being equal to tol (or from2 being equal to to2) means an M-text of length
zero. An invalid region specification is regarded as both from1 and tol (or from?2 and to2) being 0.

Return value:
This function returns 1, 0, or -1 if mt1 is found greater than, equal to, or less than mt2, respectively.
Comparison is based on character codes.

See Also:
mtext_cmp() (p. 44), mtext_ncmp() (p. 44), mtext_casecmp() (p. 46), mtext_ncasecmp() (p. 46),
mtext_case_compare() (p.46)

2.8 M-text 45

2.8.4.27 int mtext_spn (MText x mt, MText x accept)

Search an M-text for a set of characters.

The mtext_spn() (p.45) function returns the length of the initial segment of M-text mt1 that consists entirely of
characters in M-text mt2.

See Also:
mtext_cspn() (p.45)

2.8.4.28 int mtext_cspn (MText « mt, MText * reject)

Search an M-text for the complement of a set of characters.
The mtext_cspn() (p. 45) returns the length of the initial segment of M-text mt1 that consists entirely of
characters not in M-text mt2.

See Also:
mtext_spn() (p.45)

2.8.4.29 int mtext_pbrk (MText « mt, MText * accept)

Search an M-text for any of a set of characters.
The mtext_pbrk() (p.45) function locates the first occurrence in M-text mtl of any of the characters in M-text
mt2.

Return value:
This function returns the position in mt1 of the found character. If no such character is found, it returns -1.

2.8.4.30 MTextx mtext_tok (MText x mt, MText x delim, int * pos)

Look for a token in an M-text.

The mtext_tok() (p.45) function searches a token that firstly occurs after position pos in M-text mt. Here, a
token means a substring each of which does not appear in M-text delim. Note that the type of pos is not int but
pointer to int.

Return value:
If a token is found, mtext_tok() (p. 45) copies the corresponding part of mt and returns a pointer to the copy.
In this case, pos is set to the end of the found token. If no token is found, it returns NULL without changing
the external variable merror_code (p. 155). If an error is detected, it returns NULL and assigns an error code
to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

2.8.4.31 int mtext_text (MText « mtl, int pos, MText x mt2)

Locate an M-text in another.

The mtext_text() (p.45) function finds the first occurrence of M-text mt2 in M-text mtl1 after the position pos
while ignoring difference of the text properties.

46 Module Documentation

Return value:
If mt2 is found in mt1, mtext_text() (p.45) returns the position of it first occurrence. Otherwise it returns
-1. If mt2 is empty, it returns 0.

2.8.4.32 int mtext_search (MText x mt1, int from, int to, MText x mt2)

Locate an M-text in a specific range of another.

The mtext_search() (p.46) function searches for the first occurrence of M-text mt2 in M-text mtl in the region
from and to while ignoring difference of the text properties. If from is less than to, the forward search starts
from from, otherwise the backward search starts from to.

Return value:
If mt2 is found in mt1, mtext_search() (p.46) returns the position of the first occurrence. Otherwise it
returns -1. If mt2 is empty, it returns 0.

2.8.4.33 int mtext_casecmp (MText « mtl, MText x mt2)

Compare two M-texts ignoring cases.

The mtext_casecmp() (p. 46) function is similar to mtext_cmp() (p.44), but ignores cases on comparison.

Return value:
This function returns 1, 0, or -1 if mtl is found greater than, equal to, or less than mt2, respectively.

See Also:
mtext_cmp() (p.44), mtext_ncmp() (p. 44), mtext_ncasecmp() (p. 46) mtext_compare() (p. 44),
mtext_case_compare() (p. 46)

2.8.4.34 int mtext_ncasecmp (MText x mt1, MText x mt2, int n)

Compare initial parts of two M-texts ignoring cases.

The mtext_ncasecmp() (p. 46) function is similar to mtext_casecmp() (p. 46), but compares at most n characters
from the beginning.

Return value:
This function returns 1, 0, or -1 if mt1 is found greater than, equal to, or less than mt2, respectively.

See Also:
mtext_cmp() (p.44), mtext_casecmp() (p.46), mtext_casecmp() (p. 46) mtext_compare() (p.44),
mtext_case_compare() (p. 46)

2.8.4.35 int mtext_case_compare (MText x mt1, int froml, int tol, MText x m¢2, int from2, int to2)

Compare specified regions of two M-texts ignoring cases.

The mtext_case_compare() (p. 46) function compares two M-texts mt1l and mt2, character-by-character,
ignoring cases. The compared regions are between from1 and tol in mt1 and from?2 to to2 in MT2. from1 and
from2 are inclusive, tol and to2 are exclusive. from1 being equal to tol (or from2 being equal to to2) means an
M-text of length zero. An invalid region specification is regarded as both from1 and tol (or from2 and to2)
being 0.

2.8 M-text 47

Return value:
This function returns 1, 0, or -1 if mt1 is found greater than, equal to, or less than mt2, respectively.
Comparison is based on character codes.

See Also:
mtext_cmp() (p. 44), mtext_ncmp() (p. 44), mtext_casecmp() (p. 46), mtext_ncasecmp() (p. 46),
mtext_compare() (p.44)

2.8.4.36 int mtext_lowercase (MText * mt)

Lowercase an M-text.

The mtext_lowercase() (p.47) function destructively converts each character in M-text mt to lowercase.
Adjacent characters in mt may affect the case conversion. If the Mlanguage text property is attached to mt, it
may also affect the conversion. The length of mt may change. Characters that cannot be converted to lowercase
is left unchanged. All the text properties are inherited.

Return value:
This function returns the length of the updated mt.

See Also:
mtext_titlecase() (p.47), mtext_uppercase() (p.47)

2.8.4.37 int mtext_titlecase (MText x mt)

Titlecase an M-text.

The mtext_titlecase() (p.47) function destructively converts the first character with the cased property in M-text
mt to titlecase and the others to lowercase. The length of mt may change. If the character cannot be converted to
titlecase, it is left unchanged. All the text properties are inherited.

Return value:
This function returns the length of the updated mt.

See Also:
mtext_lowercase() (p.47), mtext_uppercase() (p.47)

2.8.4.38 int mtext_uppercase (MText x mft)

Uppercase an M-text.

The mtext_uppercase() (p.47) function destructively converts each character in M-text mt to uppercase.
Adjacent characters in mt may affect the case conversion. If the Mlanguage text property is attached to mt, it
may also affect the conversion. The length of mt may change. Characters that cannot be converted to uppercase
is left unchanged. All the text properties are inherited.

Return value:
This function returns the length of the updated mt.

See Also:
mtext_lowercase() (p. 47), mtext_titlecase() (p.47)

48 Module Documentation

2.8.5 Variable Documentation
2.8.5.1 enum MTextFormat MTEXT _FORMAT_UTF_16

Variable of value MTEXT_FORMAT_UTF_16LE or MTEXT_FORMAT_UTF_16BE.

The global variable MTEXT_FORMAT_UTF_16 (p. 48) is initialized to MTEXT_FORMAT_UTF_16LE
(p-36) on a "Little Endian" system (storing words with the least significant byte first), and to
MTEXT_FORMAT_UTF_16BE (p. 36) on a "Big Endian" system (storing words with the most significant byte
first).

See Also:
mtext_from_data() (p.37)

2.8.5.2 constint MTEXT FORMAT_UTF_32

Variable of value MTEXT_FORMAT_UTF_32LE or MTEXT_FORMAT_UTF_32BE.

The global variable MTEXT_FORMAT_UTF_32 (p. 48) is initialized to MTEXT_FORMAT_UTF_32LE
(p-36) on a "Little Endian" system (storing words with the least significant byte first), and to
MTEXT_FORMAT_UTF_32BE (p. 36) on a "Big Endian" system (storing words with the most significant byte
first).

See Also:
mtext_from_data() (p.37)

2.8.5.3 MSymbol Mlanguage

The symbol whose name is "language".

2.9 Text Property

49

2.9 Text Property

Function to handle text properties.

Typedefs

¢ typedef MPlist x(x MTextPropSerializeFunc)(void *val)

Type of serializer functions.

* typedef void *(x MTextPropDeserializeFunc)(MPlist *plist)

Type of deserializer functions.

* typedef struct MTextProperty MTextProperty
Type of text properties.

Enumerations

¢ enum MTextPropertyControl {
MTEXTPROP_FRONT_STICKY = 0x01,
MTEXTPROP_REAR_STICKY = 0x02,
MTEXTPROP_VOLATILE_WEAK = 0x04,
MTEXTPROP_VOLATILE_STRONG = 0x08,
MTEXTPROP_NO_MERGE = 0x10,
MTEXTPROP_CONTROL_MAX = 0x1F }

Flag bits to control text property.

Functions

* void * mtext_get_prop (MText xmt, int pos, MSymbol key)

Get the value of the topmost text property.

* int mtext_get_prop_values (MText «mt, int pos, MSymbol key, void *xvalues, int num)

Get multiple values of a text property.

* int mtext_get_prop_keys (MText +mt, int pos, MSymbol xxkeys)

Get a list of text property keys at a position of an M-text.

* int mtext_put_prop (MText xmt, int from, int to, MSymbol key, void *val)

Set a text property.

* int mtext_put_prop_values (MText xmt, int from, int to, MSymbol key, void *xvalues, int num)

Set multiple text properties with the same key.

* int mtext_push_prop (MText xmt, int from, int to, MSymbol key, void «xval)
Push a text property.

* int mtext_pop_prop (MText xmt, int from, int to, MSymbol key)

50 Module Documentation

Pop a text property.

* int mtext_prop_range (MText «mt, MSymbol key, int pos, int *from, int *to, int deeper)

Find the range where the value of a text property is the same.

¢ MTextProperty « mtext_property (MSymbol key, void *val, int control_bits)

Create a text property.

* MText + mtext_property_mtext (MTextProperty *prop)
Return the M-text of a text property.

¢ MSymbol mtext_property_key (MTextProperty xprop)
Return the key of a text property.

* void * mtext_property_value (MTextProperty xprop)

Return the value of a text property.

* int mtext_property_start (MTextProperty xprop)

Return the start position of a text property.

* int mtext_property_end (MTextProperty xprop)

Return the end position of a text property.

* MTextProperty + mtext_get_property (MText xmt, int pos, MSymbol key)
Get the topmost text property.

 int mtext_get_properties (MText «mt, int pos, MSymbol key, MTextProperty *xprops, int num)

Get multiple text properties.

* int mtext_attach_property (MText «mt, int from, int to, MTextProperty *prop)
Attach a text property to an M-text.

* int mtext_detach_property (MTextProperty *xprop)
Detach a text property from an M-text.

* int mtext_push_property (MText «mt, int from, int to, MTextProperty *prop)
Push a text property onto an M-text.

¢ MText « mtext_serialize (MText «mt, int from, int to, MPlist xproperty_list)

Serialize text properties in an M-text.

¢ MText * mtext_deserialize (MText +mt)

Deserialize text properties in an M-text.

Variables

* MSymbol Mtext_prop_serializer

Symbol for specifying serializer functions.

* MSymbol Mtext_prop_deserializer

Symbol for specifying deserializer functions.

2.9 Text Property 51

2.9.1 Detailed Description

Function to handle text properties. Each character in an M-text can have properties called text properties. Text
properties store various kinds of information attached to parts of an M-text to provide application programs with
a unified view of those information. As rich information can be stored in M-texts in the form of text properties,
functions in application programs can be simple.

A text property consists of a key and values, where key is a symbol and values are anything that can be cast to
(void x*) . Unlike other types of properties, a text property can have multiple values. "The text property
whose key is K" may be shortened to "K property".

2.9.2 Typedef Documentation
2.9.2.1 typedef MPlist+(x MTextPropSerializeFunc)(void *val)

Type of serializer functions.
This is the type of serializer functions. If the key of a symbol property is Mtext_prop_serializer (p. 58), the
value must be of this type.

See Also:
mtext_serialize() (p. 57), Mtext_prop_serializer (p. 58)

2.9.2.2 typedef void«(x MTextPropDeserializeFunc)(MPlist «plist)

Type of deserializer functions.
This is the type of deserializer functions. If the key of a symbol property is Mtext_prop_deserializer (p. 59), the

value must be of this type.

See Also:
mtext_deserialize() (p. 58), Mtext_prop_deserializer (p. 59)

2.9.2.3 typedef struct MTextProperty MTextProperty

Type of text properties.

The type MTextProperty (p.51) is for a text property objects. Its internal structure is concealed from application
programs.

2.9.3 Enumeration Type Documentation
2.9.3.1 enum MTextPropertyControl

Flag bits to control text property.

The mtext_property() (p.55) function accepts logical OR of these flag bits as an argument. They control the
behaviour of the created text property as described in the documentation of each flag bit.

Enumerator:
MTEXTPROP_FRONT _STICKY If this flag bit is on, an M-text inserted at the start position or at the
middle of the text property inherits the text property.

MTEXTPROP_REAR_STICKY If this flag bit is on, an M-text inserted at the end position or at the middle
of the text property inherits the text property.

52 Module Documentation

MTEXTPROP_VOLATILE_WEAK If this flag bit is on, the text property is removed if a text in its region
is modified.

MTEXTPROP_VOLATILE_STRONG 1If this flag bit is on, the text property is removed if a text or the
other text property in its region is modified.

MTEXTPROP_NO_MERGE If this flag bit is on, the text property is not automatically merged with the
others.

MTEXTPROP_CONTROL_MAX

2.9.4 Function Documentation
2.9.4.1 void+ mtext_get_prop (MText « mt, int pos, MSymbol key)

Get the value of the topmost text property.

The mtext_get_prop() (p. 52) function searches the character at pos in M-text mt for the text property whose key
is key.

Return value:
If a text property is found, mtext_get_prop() (p. 52) returns the value of the property. If the property has
multiple values, it returns the topmost one. If no such property is found, it returns NULL without changing
the external variable merror_code (p. 155).

If an error is detected, mtext_get_prop() (p. 52) returns NULL and assigns an error code to the external variable
merror_code (p. 155).

Note
If NULL is returned without an error, there are two possibilities:

* the character at pos does not have a property whose key is key, or
* the character does have such a property and its value is NULL.

If you need to distinguish these two cases, use the mtext_get_prop_values() (p. 52) function instead.

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_get_prop_values() (p. 52), mtext_put_prop() (p. 53), mtext_put_prop_values() (p. 54),
mtext_push_prop() (p. 54), mtext_pop_prop() (p. 54), mtext_prop_range() (p.55)

2.9.4.2 int mtext_get_prop_values (MText x mt, int pos, MSymbol key, void ** values, int num)

Get multiple values of a text property.

The mtext_get_prop_values() (p. 52) function searches the character at pos in M-text mt for the property whose
key is key. If such a property is found, its values are stored in the memory area pointed to by values. num limits
the maximum number of stored values.

Return value:
If the operation was successful, mtext_get_prop_values() (p. 52) returns the number of actually stored
values. If the character at pos does not have a property whose key is key, the return value is 0. If an error is
detected, mtext_get_prop_values() (p. 52) returns -1 and assigns an error code to the external variable
merror_code (p. 155).

2.9 Text Property 53

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_get_prop() (p.52), mtext_put_prop() (p. 53), mtext_put_prop_values() (p. 54),
mtext_push_prop() (p. 54), mtext_pop_prop() (p. 54), mtext_prop_range() (p.55)

2.9.4.3 int mtext_get_prop_keys (MText x mt, int pos, MSymbol xx keys)

Get a list of text property keys at a position of an M-text.

The mtext_get_prop_keys() (p. 53) function creates an array whose elements are the keys of text properties
found at position pos in M-text mt, and sets xkeys to the address of the created array. The user is responsible to
free the memory allocated for the array.

Return value:
If the operation was successful, mtext_get_prop_keys() (p. 53) returns the length of the key list. Otherwise
it returns -1 and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mtext_get_prop() (p.52), mtext_put_prop() (p.53), mtext_put_prop_values() (p.54),
mtext_get_prop_values() (p. 52), mtext_push_prop() (p. 54), mtext_pop_prop() (p.54)

2.9.4.4 int mtext_put_prop (MText x mt, int from, int to, MSymbol key, void * val)

Set a text property.

The mtext_put_prop() (p. 53) function sets a text property to the characters between from (inclusive) and to
(exclusive) in M-text mt. key and val specify the key and the value of the text property. With this function,

FROM TO
M-text: |<-——————————— [———————— MT ————————— |- >
PROP : <—————————————————— OLD_VAL ———————————————————— >
becomes

FROM TO
M-text: |<-——————————— [———————— MT ————————— [———— >
PROP : <-- OLD_VAL-><-——————— VAL ——————— ><-- OLD_VAL-->

Return value:
If the operation was successful, mtext_put_prop() (p.53) returns 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_put_prop_values() (p. 54), mtext_get_prop() (p. 52), mtext_get_prop_values() (p. 52),
mtext_push_prop() (p. 54), mtext_pop_prop() (p. 54), mtext_prop_range() (p.55)

54 Module Documentation

2.9.4.5 int mtext_put_prop_values (MText x mt, int from, int fo, MSymbol key, void *x values, int num)

Set multiple text properties with the same key.

The mtext_put_prop_values() (p. 54) function sets a text property to the characters between from (inclusive)
and to (exclusive) in M-text mt. key and values specify the key and the values of the text property. num
specifies the number of property values to be set.

Return value:
If the operation was successful, mtext_put_prop_values() (p. 54) returns 0. Otherwise it returns -1 and
assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_put_prop() (p.53), mtext_get_prop() (p.52), mtext_get_prop_values() (p.52),
mtext_push_prop() (p. 54), mtext_pop_prop() (p. 54), mtext_prop_range() (p.55)

2.9.4.6 int mtext_push_prop (MText « m¢, int from, int to, MSymbol key, void x val)

Push a text property.

The mtext_push_prop() (p. 54) function pushes a text property whose key is key and value is val to the
characters between from (inclusive) and to (exclusive) in M-text mt. With this function,

FROM TO
M-text: |<-——————————— [———————— MT ————————— [———— >
PROP : <———————m—mm—m—m OLD_VAL —————m e e >
becomes

FROM TO
M-text: |<-——————————- [———————— MT ————————— [———— >
PROP : <—————————m—m——— OLD_VAL —————m e >
PROP : P VAL ——————- >

Return value:
If the operation was successful, mtext_push_prop() (p. 54) returns 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_put_prop() (p. 53), mtext_put_prop_values() (p. 54), mtext_get_prop() (p.52),
mtext_get_prop_values() (p. 52), mtext_pop_prop() (p. 54), mtext_prop_range() (p.55)

2.9.4.7 int mtext_pop_prop (MText x mt, int from, int fo, MSymbol key)

Pop a text property.

The mtext_pop_prop() (p. 54) function removes the topmost text property whose key is key from the characters
between from (inclusive) and and to (exclusive) in mt.

This function does nothing if characters in the region have no such text property. With this function,

2.9 Text Property 55

FROM TO
M-text: |[<-———————————— [———————— MT ————————— | === >
PROP K OLD_VAL ——————m——mm e >
becomes

FROM TO
M-text: |[<-——————————- | ———————— MT ————————— |- >
PROP : <--OLD_VAL-->]| | <=—OLD_VAL-—> |

Return value:
If the operation was successful, mtext_pop_prop() (p. 54) return 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_put_prop() (p.53), mtext_put_prop_values() (p. 54), mtext_get_prop() (p.52),
mtext_get_prop_values() (p. 52), mtext_push_prop() (p. 54), mtext_prop_range() (p.55)

2.9.4.8 int mtext_prop_range (MText x mt, MSymbol key, int pos, int x from, int x to, int deeper)

Find the range where the value of a text property is the same.

The mtext_prop_range() (p. 55) function investigates the extent where all characters have the same value for a
text property. It first finds the value of the property specified by key of the character at pos in M-text mt. Then it
checks if adjacent characters have the same value for the property key. The beginning and the end of the found
range are stored to the variable pointed to by from and to. The character position stored in from is inclusive but
that in to is exclusive; this fashion is compatible with the range specification in the mtext_put_prop() (p. 53)
function, etc.

If deeper is not 0, not only the topmost but also all the stacked properties whose key is key are compared.

If from is NULL, the beginning of range is not searched for. If to is NULL, the end of range is not searched for.

Return value:

If the operation was successful, mtext_prop_range() (p. 55) returns the number of values the property key has at
pos. Otherwise it returns -1 and assigns an error code to the external variable merror_code.

Errors:
MERROR_RANGE, MERROR_SYMBOL

See Also:
mtext_put_prop() (p. 53), mtext_put_prop_values() (p. 54), mtext_get_prop() (p.52),
mtext_get_prop_values() (p. 52), mtext_pop_prop() (p. 54), mtext_push_prop() (p. 54)

2.9.4.9 MTextProperty* mtext_property (MSymbol key, void * val, int control_bits)

Create a text property.

The mtext_property() (p. 55) function returns a newly allocated text property whose key is key and value is val.
The created text property is not attached to any M-text, i.e. it is detached.

control_bits must be 0 or logical OR of enum MTextPropertyControl.

56 Module Documentation

2.9.4.10 MTextx mtext_property_mtext (MTextProperty * prop)

Return the M-text of a text property.

The mtext_property_mtext() (p. 56) function returns the M-text to which text property prop is attached. If prop
is currently detached, NULL is returned.

2.9.4.11 MSymbol mtext_property_key (MTextProperty * prop)

Return the key of a text property.

The mtext_property_key() (p. 56) function returns the key (symbol) of text property prop.

2.9.4.12 voidx mtext_property_value (MTextProperty * prop)

Return the value of a text property.

The mtext_property_value() (p. 56) function returns the value of text property prop.

2.9.4.13 int mtext_property_start (MTextProperty * prop)

Return the start position of a text property.

The mtext_property_start() (p. 56) function returns the start position of text property prop. The start position is
a character position of an M-text where prop begins. If prop is detached, it returns -1.

2.9.4.14 int mtext_property_end (MTextProperty * prop)

Return the end position of a text property.

The mtext_property_end() (p. 56) function returns the end position of text property prop. The end position is a
character position of an M-text where prop ends. If prop is detached, it returns -1.

2.9.4.15 MTextProperty+ mtext_get_property (MText * mt, int pos, MSymbol key)

Get the topmost text property.

The mtext_get_property() (p. 56) function searches the character at position pos in M-text mt for a text property
whose key is key.

Return value:
If a text property is found, mtext_get_property() (p. 56) returns it. If there are multiple text properties, it
returns the topmost one. If no such property is found, it returns NULL without changing the external variable
merror_code (p. 155).

If an error is detected, mtext_get_property() (p. 56) returns NULL and assigns an error code to the external
variable merror_code (p. 155).

2.9.4.16 int mtext_get_properties (MText x mt, int pos, MSymbol key, MTextProperty *x props, int
num)

Get multiple text properties.

The mtext_get_properties() (p. 56) function searches the character at pos in M-text mt for properties whose key
is key. If such properties are found, they are stored in the memory area pointed to by props. num limits the
maximum number of stored properties.

2.9 Text Property 57

Return value:
If the operation was successful, mtext_get_properties() (p. 56) returns the number of actually stored
properties. If the character at pos does not have a property whose key is key, the return value is 0. If an error
is detected, mtext_get_properties() (p. 56) returns -1 and assigns an error code to the external variable
merror_code (p. 155).

2.9.4.17 int mtext_attach_property (MText x mt, int from, int to, MTextProperty * prop)

Attach a text property to an M-text.

The mtext_attach_property() (p. 57) function attaches text property prop to the range between from and to in
M-text mt. If prop is already attached to an M-text, it is detached before attached to mt.

Return value:
If the operation was successful, mtext_attach_property() (p.57) returns 0. Otherwise it returns -1 and
assigns an error code to the external variable merror_code (p. 155).

2.9.4.18 int mtext detach_property (MTextProperty * prop)

Detach a text property from an M-text.
The mtext_detach_property() (p. 57) function makes text property prop detached.

Return value:
This function always returns 0.

2.9.4.19 int mtext_push_property (MText * mt, int from, int to, MTextProperty * prop)

Push a text property onto an M-text.

The mtext_push_property() (p. 57) function pushes text property prop to the characters between from
(inclusive) and to (exclusive) in M-text mt.

Return value:
If the operation was successful, mtext_push_property() (p.57) returns 0. Otherwise it returns -1 and
assigns an error code to the external variable merror_code (p. 155).

2.9.4.20 MTextx mtext_serialize (MText x m¢, int from, int to, MPlist x property_list)

Serialize text properties in an M-text.

The mtext_serialize() (p. 57) function serializes the text between from and to in M-text mt. The serialized result
is an M-text in a form of XML. property_list limits the text properties to be serialized. Only those text
properties whose key

e appears as the value of an element in property_list, and

* has the symbol property Mtext_prop_serializer (p.58)

are serialized as a "property" element in the resulting XML representation.

The DTD of the generated XML is as follows:

58 Module Documentation

<!DOCTYPE mtext [
<!ELEMENT mtext (propertyx,body+)>
<!ELEMENT property EMPTY>
<!ELEMENT body (#PCDATA)>
<!ATTLIST property key CDATA #REQUIRED>
<!ATTLIST property value CDATA #REQUIRED>
<!ATTLIST property from CDATA #REQUIRED>
<!ATTLIST property to CDATA #REQUIRED>
<!ATTLIST property control CDATA #REQUIRED>
1>

This function depends on the libxml2 library. If the m17n library is configured without libxml2, this function
always fails.

Return value:
If the operation was successful, mtext_serialize() (p. 57) returns an M-text in the form of XML. Otherwise it
returns NULL and assigns an error code to the external variable merror_code (p. 155).

See Also:
mtext_deserialize() (p. 58), Mtext_prop_serializer (p. 58)

2.9.4.21 MText+ mtext_deserialize (MText x mt)

Deserialize text properties in an M-text.

The mtext_deserialize() (p. 58) function deserializes M-text mt. mt must be an XML having the following DTD.

<!DOCTYPE mtext [
<!ELEMENT mtext (propertyx,body+)>
<!ELEMENT property EMPTY>
<!ELEMENT body (#PCDATA)>
<!ATTLIST property key CDATA #REQUIRED>
<!ATTLIST property value CDATA #REQUIRED>
<!ATTLIST property from CDATA #REQUIRED>
<!ATTLIST property to CDATA #REQUIRED>
<!ATTLIST property control CDATA #REQUIRED>
1>

This function depends on the libxml2 library. If the m17n library is configured without libxml2, this function
always fail.

Return value:
If the operation was successful, mtext_deserialize() (p. 58) returns the resulting M-text. Otherwise it returns
NULL and assigns an error code to the external variable merror_code (p. 155).

See Also:
mtext_serialize() (p. 57), Mtext_prop_deserializer (p. 59)

2.9.5 Variable Documentation
2.9.5.1 MSymbol Mtext_prop_serializer

Symbol for specifying serializer functions.

To serialize a text property, the user must supply a serializer function for that text property. This is done by
giving a symbol property whose key is Mtext_prop_serializer (p. 58) and value is a pointer to an appropriate
serializer function.

See Also:
mtext_serialize() (p. 57), MTextPropSerializeFunc (p.51)

2.9 Text Property 59

2.9.5.2 MSymbol Mtext_prop_deserializer

Symbol for specifying deserializer functions.

To deserialize a text property, the user must supply a deserializer function for that text property. This is done by
giving a symbol property whose key is Mtext_prop_deserializer (p.59) and value is a pointer to an appropriate
deserializer function.

See Also:
mtext_deserialize() (p. 58), MTextPropSerializeFunc (p.51)

60 Module Documentation

2.10 Database

The m17n database and API for it.

Typedefs

* typedef struct MDatabase MDatabase
Type of database.

Functions

* MDatabase « mdatabase_find (MSymbol tag0, MSymbol tagl, MSymbol tag2, MSymbol tag3)

Look for a data in the database.

MPIist « mdatabase_list (MSymbol tag0, MSymbol tagl, MSymbol tag2, MSymbol tag3)

Return a data list of the m17n database.

¢ MDatabase + mdatabase_define (MSymbol tag0, MSymbol tagl, MSymbol tag2, MSymbol tag3, void
x(xloader)(MSymbol x, void %), void xextra_info)

Define a data of the m17n database.

¢ void * mdatabase_load (MDatabase xmdb)

Load a data from the database.

¢ MSymbol x mdatabase_tag (MDatabase xmdb)

Get tags of a data.

Variables

¢ char x mdatabase_dir

Directory for application specific data.

2.10.1 Detailed Description

The m17n database and API for it. The m17n library acquires various kinds of information from data in the m17n
database on demand. Application programs can also add/load their original data to/from the m17n database by
setting the variable mdatabase_dir (p. 62) to an application-specific directory and storing data in it. Users can
overwrite those data by storing preferable data in the directory specified by the environment variable
"MI17NDIR", or if it is not set, in the directory "~/.m17n.d".

The m17n database contains multiple heterogeneous data, and each data is identified by four tags; TAGO, TAGI,
TAG2, TAG3. Each tag must be a symbol.

TAGO specifies the type of data stored in the database as below.

* If TAGO is Mchar_table (p. 32), the data is of the chartable type and provides information about each
character. In this case, TAG1 specifies the type of the information and must be Msymbol (p. 17), Minteger
(p- 23), Mistring (p. 17), Mtext (p.23), or Mplist (p. 23). TAG2 and TAG3 can be any symbols.

2.10 Database 61

* If TAGO is Mcharset (p. 71), the data is of the charset type and provides a decode/encode mapping table
for a charset. In this case, TAG1 must be a symbol representing a charset. TAG2 and TAG3 can be any
symbols.

 If TAGO is neither Mchar_table (p. 32) nor Mcharset (p. 71), the data is of the plist type. See the
documentation of the mdatabase_load() (p. 62) function for the details. In this case, TAG1, TAG2, and
TAG3 can be any symbols.

The notation <TAGO, TAG1, TAG2, TAG3> means a data with those tags.

Application programs first calls the mdatabase_find() (p. 61) function to get a pointer to an object of the type
MDatabase (p. 61). That object holds information about the specified data. When it is successfully returned, the
mdatabase_load() (p. 62) function loads the data. The implementation of the structure MDatabase (p. 61) is
concealed from application programs.

2.10.2 Typedef Documentation
2.10.2.1 typedef struct MDatabase MDatabase

Type of database.

The type MDatabase (p. 61) is for a database object. Its internal structure is concealed from an application
program.

2.10.3 Function Documentation
2.10.3.1 MDatabasex mdatabase_find (MSymbol tag0, MSymbol fagl, MSymbol tag2, MSymbol tag3)

Look for a data in the database.

The mdatabase_find() (p. 61) function searches the m17n database for a data who has tags tag0 through tag3,
and returns a pointer to the data. If such a data is not found, it returns NULL.

2.10.3.2 MPIlist+ mdatabase_list (MSymbol tag0, MSymbol tagl, MSymbol tag2, MSymbol tag3)

Return a data list of the m17n database.

The mdatabase_list() (p. 61) function searches the m17n database for data who have tags tag0 through tag3, and
returns their list by a plist. The value Mnil (p. 17) in tagn means a wild card that matches any tag. Each element
of the plist has key Mt (p. 17) and value a pointer to type MDatabase (p.61).

2.10.3.3 MDatabasex mdatabase_define (MSymbol fag0, MSymbol fagl, MSymbol ftag2, MSymbol
tag3, void x(x)(MSymbol %, void *) loader, void * extra_info)

Define a data of the m17n database.

The mdatabase_define() (p. 61) function defines a data that has tags tag0 through tag3 and additional
information extra_info.

loader is a pointer to a function that loads the data from the database. This function is called from the
mdatabase_load() (p. 62) function with the two arguments tags and extra_info. Here, tags is the array of tag0
through tag3.

If loader is NULL, the default loader of the m17n library is used. In this case, extra_info must be a string
specifying a filename that contains the data.

62 Module Documentation

Return value:
If the operation was successful, mdatabase_define() (p. 61) returns a pointer to the defined data, which can
be used as an argument to mdatabase_load() (p. 62). Otherwise, it returns NULL.

See Also:
mdatabase_load() (p. 62), mdatabase_define() (p.61)

2.10.3.4 void+ mdatabase_load (MDatabase x mdb)

Load a data from the database.

The mdatabase_load() (p. 62) function loads a data specified in mdb and returns the contents. The type of
contents depends on the type of the data.

If the data is of the plist type, this function returns a pointer to plist.

If the database is of the chartable type, it returns a chartable. The default value of the chartable is set according to
the second tag of the data as below:

* If the tag is Msymbol (p. 17), the default value is Mnil (p. 17).
« If the tag is Minteger (p. 23), the default value is -1.
¢ Otherwise, the default value is NULL.
If the data is of the charset type, it returns a plist of length 2 (keys are both Mt (p. 17)). The value of the first

element is an array of integers that maps code points to the corresponding character codes. The value of the
second element is a chartable of integers that does the reverse mapping. The charset must be defined in advance.

See Also:
mdatabase_load() (p. 62), mdatabase_define() (p.61)

2.10.3.5 MSymbolx mdatabase_tag (MDatabase x mdb)

Get tags of a data.

The mdatabase_tag() (p. 62) function returns an array of tags (symbols) that identify the data in mdb. The
length of the array is four.

2.10.4 Variable Documentation
2.10.4.1 charx mdatabase_dir

Directory for application specific data.

If an application program wants to provide a data specific to the program or a data overriding what supplied by
the m17n database, it must set this variable to a name of directory that contains the data files before it calls the
macro M17N_INIT() (p. 7). The directory may contain a file "mdb.dir" which contains a list of data definitions
in the format described in mdbDir(5) (p.211).

The default value is NULL.

2.11 SHELL API

63

2.11 SHELL API

API provided by libm17n.so.

Modules

* Charset
Charset objects and API for them.

¢ Code Conversion

Coding system objects and API for them.

* Locale
Locale objects and API for them.

* Input Method (basic)
API for Input method.

2.11.1 Detailed Description

API provided by libm17n.so.

64 Module Documentation

2.12 Charset

Charset objects and API for them.

Defines

¢ #define MCHAR_INVALID_CODE

Invalid code-point.

Functions

* MSymbol mchar_define_charset (const char xname, MPlist splist)

Define a charset.

¢ MSymbol mchar_resolve_charset (MSymbol symbol)

Resolve charset name.

« int mchar_list_charset (MSymbol #xsymbols)

List symbols representing charsets.

¢ int mchar_decode (MSymbol charset_name, unsigned code)

Decode a code-point.

¢ unsigned mchar_encode (MSymbol charset_name, int c)

Encode a character code.

¢ int mchar_map_charset (MSymbol charset_name, void(xfunc)(int from, int to, void *arg), void
+func_arg)

Call a function for all the characters in a specified charset.

Variables

* MSymbol Mcharset
The symbol Mcharset.

Variables: Symbols representing a charset.
Each of the following symbols represents a predefined charset.

¢ MSymbol Mcharset_ascii
Symbol representing the charset ASCII.

¢ MSymbol Mcharset_iso_8859_1
Symbol representing the charset ISO/IEC 8859/1.

¢ MSymbol Mcharset_unicode

Symbol representing the charset Unicode.

2.12 Charset 65

¢ MSymbol Mcharset_m17n

Symbol representing the largest charset.

e MSymbol Mcharset_binary

Symbol representing the charset for ill-decoded characters.

Variables: Parameter keys for mchar_define_charset().

These are the predefined symbols to use as parameter keys for the function mchar_define_charset() (p. 66)
(which see).

* MSymbol Mmethod

¢ MSymbol Mdimension

* MSymbol Mmin_range

¢ MSymbol Mmax_range

* MSymbol Mmin_code

¢ MSymbol Mmax_code

* MSymbol Mascii_compatible
¢ MSymbol Mfinal_byte

* MSymbol Mrevision

¢ MSymbol Mmin_char

* MSymbol Mmapfile

¢ MSymbol Mparents

* MSymbol Msubset_offset
¢ MSymbol Mdefine_coding
* MSymbol Maliases

Variables: Symbols representing charset methods.
These are the predefined symbols that can be a value of the Mmethod parameter of a charset used in an argument
to the mchar_define_charset() (p. 66) function.

A method specifies how code-points and character codes are converted. See the documentation of the
mchar_define_charset() (p. 66) function for the details.

MSymbol Moffset
Symbol for the offset type method of charset.

MSymbol Mmap
Symbol for the map type method of charset.

MSymbol Munify
Symbol for the unify type method of charset.

MSymbol Msubset
Symbol for the subset type method of charset.

MSymbol Msuperset
Symbol for the superset type method of charset.

66 Module Documentation

2.12.1 Detailed Description

Charset objects and API for them. The m17n library uses charset objects to represent a coded character sets
(CCS). The m17n library supports many predefined coded character sets. Moreover, application programs can
add other charsets. A character can belong to multiple charsets.

The m17n library distinguishes the following three concepts:

* A code-point is a number assigned by the CCS to each character. Code-points may or may not be
continuous. The type unsigned is used to represent a code-point. An invalid code-point is represented
by the macro MCHAR_INVALID_CODE.

e A character index is the canonical index of a character in a CCS. The character that has the character index
N occupies the Nth position when all the characters in the current CCS are sorted by their code-points.
Character indices in a CCS are continuous and start with 0.

* A character code is the internal representation in the m17n library of a character. A character code is a
signed integer of 21 bits or longer.

Each charset object defines how characters are converted between code-points and character codes. To encode
means converting code-points to character codes and to decode means converting character codes to code-points.

2.12.2 Define Documentation
2.12.2.1 #define MCHAR_INVALID CODE

Invalid code-point.

The macro MCHAR_INVALID_CODE (p. 66) gives the invalid code-point.

2.12.3 Function Documentation
2.12.3.1 MSymbol mchar_define_charset (const char x name, MPlist x plist)

Define a charset.

The mchar_define_charset() (p. 66) function defines a new charset and makes it accessible via a symbol whose
name is name. plist specifies parameters of the charset as below:

* Key is Mmethod, value is a symbol.
The value specifies the method for decoding/encoding code-points in the charset. It must be Moffset
(p- 70), Mmap (p. 70) (default), Munify (p. 70), Msubset (p. 71), or Msuperset (p. 71).

* Key is Mdimension, value is an integer

The value specifies the dimension of code-points of the charset. It must be 1 (default), 2, 3, or 4.

* Key is Mmin_range, value is an unsigned integer
The value specifies the minimum range of a code-point, which means that the Nth byte of the value is the
minimum Nth byte of code-points of the charset. The default value is 0.

* Key is Mmax_range, value is an unsigned integer

The value specifies the maximum range of a code-point, which means that the Nth byte of the value is the
maximum Nth byte of code-points of the charset. The default value is OxFF, OxFFFF, OxFFFFFF, or
OxFFFFFFFF if the dimension is 1, 2, 3, or 4 respectively.

2.12 Charset 67

* Key is Mmin_code, value is an unsigned integer

The value specifies the minimum code-point of the charset. The default value is the minimum range.

* Key is Mmax_code, value is an unsigned integer

The value specifies the maximum code-point of the charset. The default value is the maximum range.

* Key is Mascii_compatible, value is a symbol
The value specifies whether the charset is ASCII compatible or not. If the value is Mnil (p. 17) (default), it
is not ASCII compatible, else compatible.

* Key is Mfinal_byte, value is an integer
The value specifies the final byte of the charset registered in The International Registry. It must be 0
(default) or 32..127. The value 0 means that the charset is not in the registry.

» Key is Mrevision, value is an integer
The value specifies the revision number of the charset registered in The International Registry. It must be
0..127. If the charset is not in The International Registry, the value is ignored. The value 0 means that the
charset has no revision number.

¢ Key is Mmin_char, value is an integer

The value specifies the minimum character code of the charset. The default value is 0.

* Key is Mmapfile, value is an M-text

If the method is Mmap (p. 70) or Munify (p. 70), a data that contains mapping information is added to the
m17n database by calling the function mdatabase_define() (p. 61) with the value as an argument
extra_info, i.e. the value is used as a file name of the data.

Otherwise, this parameter is ignored.

* Key is Mparents, value is a plist

If the method is Msubset (p. 71), the value must is a plist of length 1, and the value of the plist must be a
symbol representing a parent charset.

If the method is Msuperset (p. 71), the value must be a plist of length less than 9, and the values of the
plist must be symbols representing subset charsets.

Otherwise, this parameter is ignored.

» Key is Mdefine_coding, value is a symbol

If the dimension of the charset is 1, the value specifies whether or not to define a coding system of the
same name whose type is Mcharset (p. 71). A coding system is defined if the value is not Mnil (p. 17).

Otherwise, this parameter is ignored.

Return value:
If the operation was successful, mchar_define_charset() (p. 66) returns a symbol whose name is name.
Otherwise it returns Mnil (p. 17) and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_CHARSET

2.12.3.2 MSymbol mchar_resolve_charset (MSymbol symbol)

Resolve charset name.

The mchar_resolve_charset() (p. 67) function returns symbol if it represents a charset. Otherwise, canonicalize
symbol as to a charset name, and if the canonicalized name represents a charset, return it. Otherwise, return Mnil

(. 17).

68 Module Documentation

2.12.3.3 int mchar_list_charset (MSymbol sxx symbols)

List symbols representing charsets.

The mchar_list_charsets() function makes an array of symbols representing a charset, stores the pointer to the
array in a place pointed to by symbols, and returns the length of the array.

2.12.3.4 int mchar_decode (MSymbol charset_name, unsigned code)

Decode a code-point.

The mchar_decode() (p. 68) function decodes code-point code in the charset represented by the symbol
charset_name to get a character code.

Return value:
If decoding was successful, mchar_decode() (p. 68) returns the decoded character code. Otherwise it returns
-1.

See Also:
mchar_encode() (p. 68)

2.12.3.5 unsigned mchar_encode (MSymbol charset_name, int c)

Encode a character code.

The mchar_encode() (p. 68) function encodes character code ¢ to get a code-point in the charset represented by
the symbol charset_name.

Return value:
If encoding was successful, mchar_encode() (p. 68) returns the encoded code-point. Otherwise it returns
MCHAR_INVALID_CODE (p. 66).

See Also:
mchar_decode() (p. 68)

2.12.3.6 int mchar_map_charset (MSymbol charset_name, void(x)(int from, int to, void xarg) func, void
* func_arg)

Call a function for all the characters in a specified charset.

The mcharset_map_chars() function calls func for all the characters in the charset named charset_name. A call
is done for a chunk of consecutive characters rather than character by character.

func receives three arguments: from, to, and arg. from and to specify the range of character codes in charset.
arg is the same as func_arg.

Return value:
If the operation was successful, mcharset_map_chars() returns 0. Otherwise, it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

Errors:
MERROR_CHARSET

2.12 Charset 69

2.12.4 Variable Documentation

2.12.4.1 MSymbol Mcharset_ascii

Symbol representing the charset ASCIIL.

The symbol Mcharset_ascii (p. 69) has name "ascii" and represents the charset ISO 646, USA Version
X3.4-1968 (ISO-IR-6).

2.12.4.2 MSymbol Mcharset_iso_8859_1

Symbol representing the charset ISO/IEC 8859/1.

The symbol Mcharset_iso_8859_1 (p. 69) has name "is0o-8859-1" and represents the charset ISO/IEC
8859-1:1998.

2.12.4.3 MSymbol Mcharset_unicode

Symbol representing the charset Unicode.

The symbol Mcharset_unicode (p. 69) has name "unicode" and represents the charset Unicode.

2.12.4.4 MSymbol Mcharset_m17n

Symbol representing the largest charset.

The symbol Mcharset_m17n (p. 69) has name "m17n" and represents the charset that contains all characters
supported by the m17n library.

2.12.4.5 MSymbol Mcharset_binary

Symbol representing the charset for ill-decoded characters.

The symbol Mcharset_binary (p. 69) has name "binary" and represents the fake charset which the decoding
functions put to an M-text as a text property when they encounter an invalid byte (sequence).

See Code Conversion (p. 72) for more details.

70 Module Documentation

2.12.4.6 MSymbol Mmethod
2.12.4.7 MSymbol Mdimension
2.12.4.8 MSymbol Mmin_range
2.12.4.9 MSymbol Mmax_range
2.12.4.10 MSymbol Mmin_code
2.12.4.11 MSymbol Mmax_code
2.12.4.12 MSymbol Mascii_compatible
2.12.4.13 MSymbol Mfinal_byte
2.12.4.14 MSymbol Mrevision
2.12.4.15 MSymbol Mmin_char
2.12.4.16 MSymbol Mmapfile
2.12.4.17 MSymbol Mparents
2.12.4.18 MSymbol Msubset_offset
2.12.4.19 MSymbol Mdefine_coding
2.12.4.20 MSymbol Maliases
2.12.4.21 MSymbol Moffset

Symbol for the offset type method of charset.

The symbol Moffset (p. 70) has the name "offset" and, when used as a value of Mmethod parameter of a
charset, it means that the conversion of code-points and character codes of the charset is done by this calculation:

CHARACTER-CODE = CODE-POINT - MIN-CODE + MIN-CHAR

where, MIN-CODE is a value of Mmin_code parameter of the charset, and MIN-CHAR is a value of
Mmin_char parameter.

2.12.4.22 MSymbol Mmap

Symbol for the map type method of charset.

The symbol Mmap (p. 70) has the name "map" and, when used as a value of Mmethod parameter of a charset,
it means that the conversion of code-points and character codes of the charset is done by map looking up. The
map must be given by Mmapfile parameter.

2.12.4.23 MSymbol Munify

Symbol for the unify type method of charset.

2.12 Charset 71

The symbol Munify (p. 70) has the name "unify" and, when used as a value of Mmethod parameter of a
charset, it means that the conversion of code-points and character codes of the charset is done by map looking up
and offsetting. The map must be given by Mmapfile parameter. For this kind of charset, a unique continuous
character code space for all characters is assigned.

If the map has an entry for a code-point, the conversion is done by looking up the map. Otherwise, the conversion

is done by this calculation:

CHARACTER-CODE = CODE-POINT - MIN-CODE + LOWEST-CHAR-CODE

where, MIN-CODE is a value of Mmin_code parameter of the charset, and LOWEST-CHAR-CODE is the
lowest character code of the assigned code space.

2.12.4.24 MSymbol Msubset

Symbol for the subset type method of charset.

The symbol Msubset (p. 71) has the name "subset" and, when used as a value of Mmethod parameter of a
charset, it means that the charset is a subset of a parent charset. The parent charset must be given by Mparents
parameter. The conversion of code-points and character codes of the charset is done conceptually by this
calculation:

CHARACTER-CODE = PARENT-CODE (CODE-POINT) + SUBSET-OFFSET

where, PARENT-CODE is a pseudo function that returns a character code of CODE-POINT in the parent charset,
and SUBSET-OFFSET is a value given by Msubset_offset parameter.

2.12.4.25 MSymbol Msuperset

Symbol for the superset type method of charset.

The symbol Msuperset (p.71) has the name "superset" and, when used as a value of Mmethod parameter
of a charset, it means that the charset is a superset of parent charsets. The parent charsets must be given by
Mparents parameter.

2.12.4.26 MSymbol Mcharset

The symbol Mcharset.

Any decoded M-text has a text property whose key is the predefined symbol Mcharset. The name of
Mcharset is "charset".

72 Module Documentation

2.13 Code Conversion

Coding system objects and API for them.

Data Structures

¢ struct MConverter

Structure to be used in code conversion.

¢ struct MCodingInfoIS02022
Structure for a coding system of type MCODING_TYPE _ISO_2022 (p. 76).

¢ struct MCodingInfoUTF
Structure for extra information about a coding system of type MCODING_TYPE_UTF (p.76).

Enumerations

¢ enum MConversionResult {
MCONVERSION_RESULT_SUCCESS,
MCONVERSION_RESULT_INVALID_BYTE,
MCONVERSION_RESULT_INVALID_CHAR,
MCONVERSION_RESULT_INSUFFICIENT_SRC,
MCONVERSION_RESULT_INSUFFICIENT_DST,
MCONVERSION_RESULT_IO_ERROR }

Codes that represent the result of code conversion.

* enum MCodingType {
MCODING_TYPE_CHARSET,
MCODING_TYPE_UTF,
MCODING_TYPE_ISO_2022,
MCODING_TYPE_MISC }

Types of coding system.

* enum MCodingFlagIS02022 {
MCODING_ISO_RESET_AT_EOL = 0x1,
MCODING_ISO_RESET_AT_CNTL = 0x2,
MCODING_ISO_EIGHT_BIT = 0x4,
MCODING_ISO_LONG_FORM = 0x8,
MCODING_ISO_DESIGNATION_GO = 0x10,
MCODING_ISO_DESIGNATION_G1 = 0x20,
MCODING_ISO_DESIGNATION_CTEXT = 0x40,
MCODING_ISO_DESIGNATION_CTEXT_EXT = 0x80,
MCODING_ISO_LOCKING_SHIFT = 0x100,
MCODING_ISO_SINGLE_SHIFT = 0x200,
MCODING_ISO_SINGLE_SHIFT_7 = 0x400,

2.13 Code Conversion

MCODING_ISO_EUC_TW_SHIFT = 0x800,
MCODING_ISO_IS06429 = 0x1000,
MCODING_ISO_REVISION_NUMBER = 0x2000,
MCODING_ISO_FULL_SUPPORT = 0x3000,
MCODING_ISO_FLAG_MAX }
Bit-masks to specify the detail of coding system whose type is MCODING_TYPE_ISO_2022.

Functions

* MSymbol mconv_define_coding (const char xname, MPlist *plist, int(xresetter)(MConverter x),
int(xdecoder)(const unsigned char *, int, MText x, MConverter), int(xencoder)(MText =, int, int,
unsigned char *, int, MConverter x), void xextra_info)

Define a coding system.

¢ MSymbol mconv_resolve_coding (MSymbol symbol)

Resolve coding system name.

* int meonv_list_codings (MSymbol *xsymbols)

List symbols representing coding systems.

* MConverter x mconv_buffer_converter (MSymbol name, const unsigned char xbuf, int n)

Create a code converter bound to a buffer.

* MConverter x mconv_stream_converter (MSymbol name, FILE xfp)

Create a code converter bound to a stream.

¢ int mconv_reset_converter (MConverter xconverter)

Reset a code converter.

¢ void mconv_free_converter (MConverter xconverter)

Free a code converter.

¢ MConverter * mconv_rebind_buffer (MConverter xconverter, const unsigned char *buf, int n)

Bind a buffer to a code converter.

¢ MConverter * mconv_rebind_stream (MConverter xconverter, FILE *fp)

Bind a stream to a code converter.

¢ MText « mconv_decode (MConverter xconverter, MText xmt)

Decode a byte sequence into an M-text.

¢ MText « mconv_decode_buffer (MSymbol name, const unsigned char xbuf, int n)

Decode a buffer area based on a coding system.

¢ MText « mconv_decode_stream (MSymbol name, FILE xfp)

Decode a stream input based on a coding system.

¢ int mconv_encode (MConverter xconverter, MText xmt)

Encode an M-text into a byte sequence.

74

Module Documentation

Variables: Symbols representing coding systems

int mconv_encode_range (MConverter xconverter, MText «mt, int from, int to)

Encode a part of an M-text.

int mconv_encode_buffer (MSymbol name, MText xmt, unsigned char xbuf, int n)

Encode an M-text into a buffer area.

int mconv_encode_stream (MSymbol name, MText «mt, FILE «fp)

Encode an M-text to write to a stream.

int mconv_getc (MConverter xconverter)

Read a character via a code converter.

int mconv_ungetc (MConverter xconverter, int ¢)

Push a character back to a code converter.

int mconv_putc (MConverter xconverter, int c)

Write a character via a code converter.

MText « mconv_gets (MConverter xconverter, MText +xmt)

Read a line using a code converter.

MSymbol Mcoding_us_ascii
Symbol for the coding system US-ASCII.

MSymbol Mcoding_iso_8859_1
Symbol for the coding system ISO-8859-1.

MSymbol Mcoding_utf 8
Symbol for the coding system UTF-8.

MSymbol Mcoding_utf_8_full

Symbol for the coding system UTF-8-FULL.

MSymbol Mcoding_utf_16
Symbol for the coding system UTF-16.

MSymbol Mcoding_utf 16be
Symbol for the coding system UTF-16BE.

MSymbol Mcoding_utf_16le
Symbol for the coding system UTF-16LE.

MSymbol Mcoding_utf 32
Symbol for the coding system UTF-32.

MSymbol Mcoding_utf _32be
Symbol for the coding system UTF-32BE.

2.13 Code Conversion 75

* MSymbol Mcoding_utf_32le
Symbol for the coding system UTF-32LE.

* MSymbol Mcoding_sjis
Symbol for the coding system SJIS.

Variables: Parameter keys for mconv_define_coding().

* MSymbol Mtype

¢ MSymbol Mcharsets

* MSymbol Mflags

* MSymbol Mdesignation
¢ MSymbol Minvocation

¢ MSymbol Mcode_unit

¢ MSymbol Mbom

¢ MSymbol Mlittle_endian

Variables: Symbols representing coding system types.

* MSymbol Mutf
¢ MSymbol Miso_2022

Variables: Symbols appearing in the value of Mflags parameter.

Symbols that can be a value of the Mflags parameter of a coding system used in an argument to the
mconv_define_coding() (p. 77) function (which see).

* MSymbol Mreset_at_eol

¢ MSymbol Mreset_at_cntl

* MSymbol Meight_bit

¢ MSymbol Mlong_form

* MSymbol Mdesignation_g0

* MSymbol Mdesignation_g1

* MSymbol Mdesignation_ctext
¢ MSymbol Mdesignation_ctext_ext
¢ MSymbol Mlocking_shift

* MSymbol Msingle_shift

¢ MSymbol Msingle_shift_7

¢ MSymbol Meuc_tw_shift

¢ MSymbol Miso_6429

¢ MSymbol Mrevision_number
¢ MSymbol Mfull_support

Variables: Others

Remaining variables.

¢ MSymbol Mmaybe

Symbol whose name is "maybe".

76 Module Documentation

¢ MSymbol Mcoding
The symbol Mcoding.

2.13.1 Detailed Description

Coding system objects and API for them. The m17n library represents a character encoding scheme (CES) of
coded character sets (CCS) as an object called coding system. Application programs can add original coding
systems.

To encode means converting code-points to character codes and to decode means converting character codes back
to code-points.

Application programs can decode a byte sequence with a specified coding system into an M-text, and inversely,
can encode an M-text into a byte sequence.

2.13.2 Enumeration Type Documentation
2.13.2.1 enum MConversionResult

Codes that represent the result of code conversion.

One of these values is set in MConverter—>result.

Enumerator:
MCONVERSION_RESULT_SUCCESS Code conversion is successful.

MCONVERSION_RESULT_INVALID_BYTE On decoding, the source contains an invalid byte.

MCONVERSION_RESULT_INVALID_CHAR On encoding, the source contains a character that cannot
be encoded by the specified coding system.

MCONVERSION_RESULT_INSUFFICIENT_SRC On decoding, the source ends with an incomplete
byte sequence.

MCONVERSION_RESULT_INSUFFICIENT_DST On encoding, the destination is too short to store the
result.

MCONVERSION_RESULT_IO_ERROR An I/O error occurred in the conversion.

2.13.2.2 enum MCodingType

Types of coding system.

Enumerator:

MCODING_TYPE_CHARSET A coding system of this type supports charsets directly. The dimension of
each charset defines the length of bytes to represent a single character of the charset, and a byte
sequence directly represents the code-point of a character. The m17n library provides the default
decoding and encoding routines of this type.

MCODING_TYPE_UTF A coding system of this type supports byte sequences of a UTF (UTF-8,
UTF-16, UTF-32) like structure. The m17n library provides the default decoding and encoding
routines of this type.

MCODING_TYPE_1S0_2022 A coding system of this type supports byte sequences of an [ISO-2022 like
structure. The details of each structure are specified by MCodingInfoIS02022 (p.162) . The
m17n library provides decoding and encoding routines of this type.

2.13 Code Conversion 77

MCODING_TYPE_MISC A coding system of this type is for byte sequences of miscellaneous structures.
The m17n library does not provide decoding and encoding routines of this type. They must be provided
by the application program.

2.13.2.3 enum MCodingFlagIS02022
Bit-masks to specify the detail of coding system whose type is MCODING_TYPE_ISO_2022.

Enumerator:
MCODING_ISO_RESET _AT_EOL On encoding, reset the invocation and designation status to initial at
end of line.

MCODING_ISO_RESET _AT_CNTL On encoding, reset the invocation and designation status to initial
before any control codes.

MCODING_ISO_EIGHT_BIT Use the right graphic plane.

MCODING_ISO_LONG_FORM Use the non-standard 4 bytes format for designation sequence for
charsets JISX0208-1978, GB2312, and JISX0208-1983.

MCODING_ISO_DESIGNATION_GO On encoding, unless explicitly specified, designate charsets to GO.

MCODING_ISO_DESIGNATION_GI On encoding, unless explicitly specified, designate charsets except
for ASCII to G1.

MCODING_ISO_DESIGNATION_CTEXT On encoding, unless explicitly specified, designate 94-chars
charsets to GO, 96-chars charsets to G1.

MCODING_ISO_DESIGNATION_CTEXT_EXT On encoding, encode such charsets not conforming to
1SO-2022 by ESC % / ..., and encode non-supported Unicode characters by ESC % G ... ESC % @ .
On decoding, handle those escape sequences.

MCODING_ISO_LOCKING_SHIFT Use locking shift.

MCODING_ISO_SINGLE_SHIFT Use single shift (SS2 (0x8E or ESC N), SS3 (0x8F or ESC 0)).
MCODING _ISO_SINGLE _SHIFT 7 Use 7-bit single shift 2 (SS2 (0x19)).
MCODING_ISO_EUC_TW_SHIFT Use EUC-TW like special shifting.

MCODING_ISO_1IS06429 Use ISO-6429 escape sequences to indicate direction. Not yet implemented.

MCODING_ISO_REVISION_NUMBER On encoding, if a charset has revision number, produce escape
sequences to specify the number.

MCODING_ISO_FULL_SUPPORT Support all ISO-2022 charsets.
MCODING_ISO_FLAG_MAX

2.13.3 Function Documentation

2.13.3.1 MSymbol mconv_define_coding (const char * name, MPlist x plist, int(x)(MConverter x)
resetter, int(x)(const unsigned char x, int, MText x, MConverter *) decoder, int(x)(MText x, int,
int, unsigned char x, int, MConverter x) encoder, void * extra_info)

Define a coding system.

The mconv_define_coding() (p. 77) function defines a new coding system and makes it accessible via a symbol
whose name is name. plist specifies parameters of the coding system as below:

» Key is Mtype, value is a symbol
The value specifies the type of the coding system. It must be Mcharset, Mutf, Miso_2022, or Mnil.

If the type is Mcharset, extra_info is ignored.

78

Module Documentation

If the type is Mutf, extra_info must be a pointer to MCodingInfoUTF (p. 163).
If the type is Miso_2022, extra_info must be a pointer to MCodingInfoIS02022 (p. 162).

If the type is Mnil (p. 17), the argument resetter, decoder, and encoder must be supplied. extra_info is
ignored. Otherwise, they can be NULL and the m17n library provides proper defaults.

Key is Mcharsets, value is a plist

The value specifies a list charsets supported by the coding system. The keys of the plist must be Msymbol
(p. 17), and the values must be symbols representing charsets.

Key is Mflags, value is a plist

If the type is Miso_2022, the values specifies flags to control the ISO 2022 interpreter. The keys of the plist
must e Msymbol (p. 17), and values must be one of the following.

— Mreset_at_eol
If this flag exists, designation and invocation status is reset to the initial state at the end of line.
— Mreset_at_cntl
If this flag exists, designation and invocation status is reset to the initial state at a control character.
— Meight_bit
If this flag exists, the graphic plane right is used.
— Milong_form
If this flag exists, the over-long escape sequences (ESC ’$’ *(* <final_byte>) are used for designating
the CCS JISX0208.1978, GB2312, and JISX0208.
— Mdesignation_g0
If this flag and Mfull_support exists, designates charsets not listed in the charset list to the graphic
register GO.
— Mdesignation_g1
If this flag and Mfull_support exists, designates charsets not listed in the charset list to the graphic
register G1.
— Mdesignation_ctext
If this flag and Mfull_support exists, designates charsets not listed in the charset list to a graphic
register GO or G1 based on the criteria of the Compound Text.
— Mdesignation_ctext_ext

If this flag and Mfull_support exists, designates charsets not listed in the charset list to a graphic
register GO or G1, or use extended segment for such charsets based on the criteria of the Compound
Text.

— Mlocking_shift

If this flag exists, use locking shift.
— Msingle_shift

If this flag exists, use single shift.
— Msingle_shift_7

If this flag exists, use 7-bit single shift code (0x19).
— Meuc_tw_shift

If this flag exists, use a special shifting according to EUC-TW.
— Miso_6429

This flag is currently ignored.
— Mrevision_number

If this flag exists, use a revision number escape sequence to designate a charset that has a revision
number.

2.13 Code Conversion 79

— Mfull_support
If this flag exists, support all charsets registered in the International Registry.

» Key is Mdesignation, value is a plist

If the type is Miso_2022, the value specifies how to designate each supported characters. The keys of the
plist must be Minteger (p.23), and the values must be numbers indicating a graphic registers. The Nth
element value is for the Nth charset of the charset list. The value 0..3 means that it is assumed that a
charset is already designated to the graphic register 0..3. The negative value G (-4..-1) means that a charset
is not designated to any register at first, and if necessary, is designated to the (G+4) graphic register.

* Key is Minvocation, value is a plist

If the type is Miso_2022, the value specifies how to invocate each graphic registers. The plist length must
be one or two. The keys of the plist must be Minteger (p.23), and the values must be numbers indicating a
graphic register. The value of the first element specifies which graphic register is invocated to the graphic
plane left. If the length is one, no graphic register is invocated to the graphic plane right. Otherwise, the
value of the second element specifies which graphic register is invocated to the graphic plane right.

* Key is Mcode_unit, value is an integer

If the type is Mutf, the value specifies the bit length of a code-unit. It must be 8, 16, or 32.

¢ Key is Mbom, value is a symbol

If the type is Mutf and the code-unit bit length is 16 or 32, it specifies whether or not to use BOM (Byte
Order Mark). If the value is Mnil (p. 17) (default), BOM is not used, else if the value is Mmaybe (p. 88),
the existence of BOM is detected at decoding time, else BOM is used.

* Key is Mlittle_endian, value is a symbol

If the type is Mutf and the code-unit bit length is 16 or 32, it specifies whether or not the encoding is little
endian. If the value is Mnil (p. 17) (default), it is big endian, else it is little endian.

resetter is a pointer to a function that resets a converter for the coding system to the initial status. The pointed
function is called with one argument, a pointer to a converter object.

decoder is a pointer to a function that decodes a byte sequence according to the coding system. The pointed
function is called with four arguments:

* A pointer to the byte sequence to decode.
¢ The number of bytes to decode.
* A pointer to an M-text to which the decoded characters are appended.

* A pointer to a converter object.

decoder must return O if it succeeds. Otherwise it must return -1.

encoder is a pointer to a function that encodes an M-text according to the coding system. The pointed function is
called with six arguments:

* A pointer to the M-text to encode.

* The starting position of the encoding.

* The ending position of the encoding.

* A pointer to a memory area where the produced bytes are stored.

* The size of the memory area.

80 Module Documentation

* A pointer to a converter object.

encoder must return O if it succeeds. Otherwise it must return -1.

extra_info is a pointer to a data structure that contains extra information about the coding system. The type of
the data structure depends on type.

Return value:

If the operation was successful, mconv_define_coding() (p. 77) returns a symbol whose name is name. If an
error is detected, it returns Mnil (p. 17) and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_CODING

2.13.3.2 MSymbol mconv_resolve_coding (MSymbol symbol)

Resolve coding system name.

The mconv_resolve_coding() (p. 80) function returns symbol if it represents a coding system. Otherwise,
canonicalize symbol as to a coding system name, and if the canonicalized name represents a coding system,
return it. Otherwise, return Mnil (p. 17).

2.13.3.3 int mconv_list_codings (MSymbol xx symbols)

List symbols representing coding systems.

The mconv_list_codings() (p. 80) function makes an array of symbols representing a coding system, stores the
pointer to the array in a place pointed to by symbols, and returns the length of the array.

2.13.3.4 MConverterx mconv_buffer_converter (MSymbol name, const unsigned char * buf, int n)

Create a code converter bound to a buffer.

The mconv_buffer_converter() (p. 80) function creates a pointer to a code converter for coding system name.
The code converter is bound to buffer area of n bytes pointed to by buf. Subsequent decodings and encodings are
done to/from this buffer area.

name can be Mnil (p. 17). In this case, a coding system associated with the current locale (LC_CTYPE) is used.

Return value:
If the operation was successful, mconv_buffer_converter() (p. 80) returns the created code converter.
Otherwise it returns NULL and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_SYMBOL, MERROR_CODING

See Also:
mconv_stream_converter() (p. 81)

2.13 Code Conversion 81

2.13.3.5 MConverterx mconv_stream_converter (MSymbol name, FILE x fp)

Create a code converter bound to a stream.

The mconv_stream_converter() (p. 81) function creates a pointer to a code converter for coding system name.
The code converter is bound to stream fp. Subsequent decodings and encodings are done to/from this stream.

name can be Mnil (p. 17). In this case, a coding system associated with the current locale (LC_CTYPE) is used.

Return value:
If the operation was successful, mconv_stream_converter() (p. 81) returns the created code converter.
Otherwise it returns NULL and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_SYMBOL, MERROR_CODING

See Also:
mconv_buffer_converter() (p. 80)

2.13.3.6 int mconv_reset_converter (MConverter * converter)

Reset a code converter.
The mconv_reset_converter() (p. 81) function resets code converter converter to the initial state.
Return value:

If converter->coding has its own reseter function, mconv_reset_converter() (p. 81) returns the result of
that function applied to converter. Otherwise it returns 0.

2.13.3.7 void mconv_free_converter (MConverter * converter)

Free a code converter.

The mconv_free_converter() (p. 81) function frees the code converter converter.

2.13.3.8 MConverterx mconv_rebind_buffer (MConverter * converter, const unsigned char * buf, int n)

Bind a buffer to a code converter.
The mconv_rebind_buffer() (p. 81) function binds buffer area of n bytes pointed to by buf to code converter

converter. Subsequent decodings and encodings are done to/from this newly bound buffer area.

Return value:
This function always returns converter.

See Also:
mconv_rebind_stream() (p. 81)

2.13.3.9 MConverters mconv_rebind_stream (MConverter x converter, FILE x fp)

Bind a stream to a code converter.

The mconv_rebind_stream() (p. 81) function binds stream fp to code converter converter. Following decodings
and encodings are done to/from this newly bound stream.

82 Module Documentation

Return value:
This function always returns converter.

See Also:
mconv_rebind_buffer() (p. 81)

2.13.3.10 MText+x mconv_decode (MConverter x converter, MText x mt)

Decode a byte sequence into an M-text.

The mconv_decode() (p. 82) function decodes a byte sequence and appends the result at the end of M-text mt.
The source byte sequence is taken from either the buffer area or the stream that is currently bound to converter.

Return value:
If the operation was successful, mconv_decode() (p. 82) returns updated mt. Otherwise it returns NULL and
assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_IO, MERROR_CODING

See Also:
mconv_rebind_buffer() (p. 81), mconv_rebind_stream() (p. 81), mconv_encode() (p. 83),
mconv_encode_range() (p. 83), mconv_decode_buffer() (p. 82), mconv_decode_stream() (p. 82)

2.13.3.11 MText+ mconv_decode_buffer (MSymbol name, const unsigned char * buf, int n)

Decode a buffer area based on a coding system.

The mconv_decode_buffer() (p. 82) function decodes n bytes of the buffer area pointed to by buf based on the
coding system name. A temporary code converter for decoding is automatically created and freed.

Return value:
If the operation was successful, mconv_decode_buffer() (p. 82) returns the resulting M-text. Otherwise it
returns NULL and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_IO, MERROR_CODING

See Also:
mconv_decode() (p. 82), mconv_decode_stream() (p. 82)

2.13.3.12 MText+ mconv_decode_stream (MSymbol name, FILE x fp)

Decode a stream input based on a coding system.

The mconv_decode_stream() (p. 82) function decodes the entire byte sequence read in from stream fp based on
the coding system name. A code converter for decoding is automatically created and freed.

Return value:
If the operation was successful, mconv_decode_stream() (p. 82) returns the resulting M-text. Otherwise it
returns NULL and assigns an error code to the external variable merror_code (p. 155).

2.13 Code Conversion 83

Errors:
MERROR_IO, MERROR_CODING

See Also:
mconv_decode() (p. 82), mconv_decode_buffer() (p. 82)

2.13.3.13 int mconv_encode (MConverter * converter, MText x mt)

Encode an M-text into a byte sequence.

The mconv_encode() (p. 83) function encodes M-text mt and writes the resulting byte sequence into the buffer
area or the stream that is currently bound to code converter converter.

Return value:
If the operation was successful, mconv_encode() (p. 83) returns the number of written bytes. Otherwise it
returns -1 and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_ IO, MERROR_CODING

See Also:
mconv_rebind_buffer() (p. 81), mconv_rebind_stream() (p. 81), mconv_decode() (p. 82),
mconv_encode_range() (p. 83)

2.13.3.14 int mconv_encode_range (MConverter x converter, MText x mt, int from, int to)

Encode a part of an M-text.

The mconv_encode_range() (p. 83) function encodes the text between from (inclusive) and to (exclusive) in
M-text mt and writes the resulting byte sequence into the buffer area or the stream that is currently bound to code
converter converter.

Return value:
If the operation was successful, mconv_encode_range() (p. 83) returns the number of written bytes.
Otherwise it returns -1 and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE, MERROR_TIO, MERROR_CODING

See Also:
mconv_rebind_buffer() (p. 81), mconv_rebind_stream() (p. 81), mconv_decode() (p. 82),
mconv_encode() (p. 83)

2.13.3.15 int mconv_encode_buffer (MSymbol name, MText « mt, unsigned char x buf, int n)

Encode an M-text into a buffer area.

The mconv_encode_buffer() (p. 83) function encodes M-text mt based on coding system name and writes the
resulting byte sequence into the buffer area pointed to by buf. At most n bytes are written. A temporary code
converter for encoding is automatically created and freed.

Return value:
If the operation was successful, mconv_encode_buffer() (p. 83) returns the number of written bytes.
Otherwise it returns -1 and assigns an error code to the external variable merror_code (p. 155).

84 Module Documentation

Errors:
MERROR_IO, MERROR_CODING

See Also:
mconv_encode() (p. 83), mconv_encode_stream() (p. 84)

2.13.3.16 int mconv_encode_stream (MSymbol name, MText « mt, FILE x fp)

Encode an M-text to write to a stream.

The mconv_encode_stream() (p. 84) function encodes M-text mt based on coding system name and writes the
resulting byte sequence to stream fp. A temporary code converter for encoding is automatically created and freed.

Return value:
If the operation was successful, mconv_encode_stream() (p. 84) returns the number of written bytes.
Otherwise it returns -1 and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_IO, MERROR_CODING

See Also:
mconv_encode() (p. 83), mconv_encode_buffer() (p. 83), mconv_encode_file()

2.13.3.17 int mconv_getc (MConverter x converter)

Read a character via a code converter.

The mconv_gete() (p. 84) function reads one character from the buffer area or the stream that is currently bound
to code converter converter. The decoder of converter is used to decode the byte sequence. The internal status
of converter is updated appropriately.

Return value:
If the operation was successful, mconv_getc() (p. 84) returns the character read in. If the input source
reaches EOF, it returns EOF without changing the external variable merror_code (p. 155). If an error is
detected, it returns EOF and assigns an error code to merror_code (p. 155).

Errors:
MERROR_CODING

See Also:
mconv_ungetc() (p. 84), mconv_putc() (p. 85), mconv_gets() (p. 85)

2.13.3.18 int mconv_ungetc (MConverter * converter, int c)

Push a character back to a code converter.

The mconv_ungetc() (p. 84) function pushes character ¢ back to code converter converter. Any number of
characters can be pushed back. The lastly pushed back character is firstly read by the subsequent mconv_getc()
(p. 84) call. The characters pushed back are registered only in converter; they are not written to the input source.
The internal status of converter is updated appropriately.

Return value:
If the operation was successful, mconv_ungetc() (p. 84) returns c. Otherwise it returns EOF and assigns an
error code to the external variable merror_code (p. 155).

2.13 Code Conversion 85

Errors:
MERROR_CODING, MERROR_CHAR

See Also:
mconv_getc() (p. 84), mconv_putce() (p. 85), mconv_gets() (p. 85)

2.13.3.19 int mconv_putc (MConverter * converter, int c)

Write a character via a code converter.

The mconv_putc() (p. 85) function writes character ¢ to the buffer area or the stream that is currently bound to
code converter converter. The encoder of converter is used to encode the character. The number of bytes
actually written is set to the nbytes member of converter. The internal status of converter is updated
appropriately.

Return value:
If the operation was successful, mconv_putc() (p. 85) returns c. If an error is detected, it returns EOF and
assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_CODING, MERROR_IO, MERROR_CHAR

See Also:
mconv_getc() (p. 84), mconv_ungetc() (p. 84), mconv_gets() (p. 85)

2.13.3.20 MText+ mconv_gets (MConverter x converter, MText x mt)

Read a line using a code converter.

The mconv_gets() (p. 85) function reads one line from the buffer area or the stream that is currently bound to
code converter converter. The decoder of converter is used for decoding. The decoded character sequence is
appended at the end of M-text mt. The final newline character in the original byte sequence is not appended. The
internal status of converter is updated appropriately.

Return value:
If the operation was successful, mconv_gets() (p. 85) returns the modified mt. If it encounters EOF without
reading a single character, it returns mt without changing it. If an error is detected, it returns NULL and
assigns an error code to merror_code (p. 155).

Errors:
MERROR_CODING

See Also:
mconv_getc() (p. 84), mconv_ungetc() (p. 84), mconv_putc() (p. 85)

2.13.4 Variable Documentation
2.13.4.1 MSymbol Mcoding us_ascii

Symbol for the coding system US-ASCII.

The symbol Mcoding_us_ascii (p. 85) has name "us—-ascii" and represents a coding system for the CES
US-ASCIL

86 Module Documentation

2.13.4.2 MSymbol Mcoding_iso_8859_1

Symbol for the coding system ISO-8859-1.

The symbol Mcoding_iso_8859_1 (p. 86) has name "is0-8859-1" and represents a coding system for the
CES ISO-8859-1.

2.13.4.3 MSymbol Mcoding_utf 8

Symbol for the coding system UTF-8.
The symbol Mcoding_utf 8 (p. 86) has name "ut £-8" and represents a coding system for the CES UTF-8.

2.13.4.4 MSymbol Mcoding_utf 8_full

Symbol for the coding system UTF-8-FULL.

The symbol Mcoding_utf 8_full (p. 86) has name "ut £-8-full" and represents a coding system that is a
extension of UTF-8. This coding system uses the same encoding algorithm as UTF-8 but is not limited to the
Unicode characters. It can encode all characters supported by the m17n library.

2.13.4.5 MSymbol Mcoding_utf 16

Symbol for the coding system UTF-16.

The symbol Mcoding_utf 16 (p. 86) has name "ut £-16" and represents a coding system for the CES UTF-16
(RFC 2279).

2.13.4.6 MSymbol Mcoding_utf 16be

Symbol for the coding system UTF-16BE.

The symbol Mcoding_utf 16be (p. 86) has name "ut £-16be" and represents a coding system for the CES
UTF-16BE (RFC 2279).

2.13.4.7 MSymbol Mcoding utf 16le

Symbol for the coding system UTF-16LE.

The symbol Mcoding_utf 16le (p. 86) has name "ut £-161e" and represents a coding system for the CES
UTF-16LE (RFC 2279).

2.13.4.8 MSymbol Mcoding_utf 32

Symbol for the coding system UTF-32.

The symbol Mcoding_utf 32 (p. 86) has name "ut £-32" and represents a coding system for the CES UTF-32
(RFC 2279).

2.13.4.9 MSymbol Mcoding_utf 32be

Symbol for the coding system UTF-32BE.

The symbol Mcoding_utf 32be (p. 86) has name "ut £-32be" and represents a coding system for the CES
UTF-32BE (RFC 2279).

2.13 Code Conversion

2.13.4.10 MSymbol Mcoding_utf_32le

Symbol for the coding system UTF-32LE.

The symbol Mcoding_utf 32le (p. 87) has name "ut £-321e" and represents a coding system for the CES
UTF-32LE (RFC 2279).

2.13.4.11 MSymbol Mcoding_sjis

Symbol for the coding system SJIS.
The symbol Mcoding_sjis (p. 87) has name "sjis" and represents a coding system for the CES Shift-JIS.

2.13.4.12 MSymbol Mtype

Parameter key for mconv_define_coding() (p. 77) (which see).

2.13.4.13 MSymbol Mcharsets

2.13.4.14 MSymbol Mflags

2.13.4.15 MSymbol Mdesignation

2.13.4.16 MSymbol Minvocation

2.13.4.17 MSymbol Mcode_unit

2.13.4.18 MSymbol Mbom

2.13.4.19 MSymbol Mlittle_endian

2.13.4.20 MSymbol Mutf

Symbol that can be a value of the Mtype (p. 87) parameter of a coding system used in an argument to the
mconv_define_coding() (p. 77) function (which see).

88 Module Documentation

2.13.4.21 MSymbol Miso_2022
2.13.4.22 MSymbol Mreset_at_eol
2.13.4.23 MSymbol Mreset_at_cntl
2.13.4.24 MSymbol Meight_bit
2.13.4.25 MSymbol Mlong_form
2.13.4.26 MSymbol Mdesignation_g0
2.13.4.27 MSymbol Mdesignation_g1
2.13.4.28 MSymbol Mdesignation_ctext
2.13.4.29 MSymbol Mdesignation_ctext_ext
2.13.4.30 MSymbol Mlocking_shift
2.13.4.31 MSymbol Msingle_shift
2.13.4.32 MSymbol Msingle_shift_7
2.13.4.33 MSymbol Meuc_tw_shift
2.13.4.34 MSymbol Miso_6429
2.13.4.35 MSymbol Mrevision_number
2.13.4.36 MSymbol Mfull_support
2.13.4.37 MSymbol Mmaybe

Symbol whose name is "maybe".

The variable Mmaybe (p. 88) is a symbol of name "maybe". It is used a value of Mbom parameter of the
function mconv_define_coding() (p. 77) (which see).

2.13.4.38 MSymbol Mcoding

The symbol Mcoding.

Any decoded M-text has a text property whose key is the predefined symbol Mcoding. The name of Mcoding
is "coding™".

2.14 Locale

89

2.14 Locale

Locale objects and API for them.

Typedefs

* typedef struct MLocale MLocale

struct MLocale.

Functions

* MLocale * mlocale_set (int category, const char xname)

Set the current locale.

¢ MSymbol mlocale_get_prop (MLocale xlocale, MSymbol key)

Get the value of a locale property.

¢ int mtext_ftime (MText «mt, const char xformat, const struct tm xtm, MLocale *locale)

Format date and time.

* MText « mtext_getenv (const char *name)

Get an environment variable.

* int mtext_putenv (MText xmt)

Change or add an environment variable.

¢ int mtext_coll (MText xmtl, MText xmt2)

Compare two M-texts using the current locale.

Variables

¢ MSymbol Mterritory
* MSymbol Mmodifier
* MSymbol Mcodeset

2.14.1 Detailed Description

Locale objects and API for them. The m17n library represents locale related information as objects of type
MLocale (p. 89).

2.14.2 Typedef Documentation
2.14.2.1 typedef struct MLocale MLocale

struct MLocale.

The structure MLocale is used to hold information about name, language, territory, modifier, codeset, and the
corresponding coding system of locales.

90 Module Documentation

The contents of this structure are implementation dependent. Its internal structure is concealed from application
programs.

See Also:
mlocale_get_prop() (p.90)

2.14.3 Function Documentation
2.14.3.1 MLocalex mlocale_set (int category, const char x name)

Set the current locale.

The mlocale_set() (p. 90) function sets or query a part of the current locale. The part is specified by category
which must be a valid first argument to set locale ().

If locale is not NULL, the locale of the specified part is set to locale. If locale is not supported by the system, the
current locale is not changed.

If locale is NULL, the current locale of the specified part is queried.

Return value:
If the call is successful, mlocale_set() (p. 90) returns an opaque locale object that corresponds to the locale.
The name of the locale can be acquired by the function mlocale_get_prop() (p. 90). Otherwise, it returns
NULL.

Errors:
MERROR_LOCALE

2.14.3.2 MSymbol mlocale_get_prop (MLocale * locale, MSymbol key)

Get the value of a locale property.

The mlocale_get_prop() (p. 90) function returns the value of a property key of local locale. key must be Mname
(p- 27), Mlanguage (p. 48), Mterritory (p.91), Mcodeset (p. 91), Mmodifier (p.91), or Mcoding (p. 88).

2.14.3.3 int mtext_ftime (MText x mt, const char * format, const struct tm x tm, MLocale * locale)

Format date and time.

The mtext_ftime() (p. 90) function formats the broken-down time tm according to the format specification
format and append the result to the M-text mt. The formating is done according to the locale locale (if not
NULL) or the current locale (LC_TIME).

The meaning of the arguments tm and format are the same as those of strftime().

See Also:
strftime().

2.14.3.4 MTextx mtext_getenv (const char x name)

Get an environment variable.

The mtext_getenv() (p. 90) function searches the environment variable list for a string that matches the string
pointed to by name.

2.14 Locale 91

If there is a match, the function decodes the value according to the current locale (LC_CTYPE) into an M-text,
and return that M-text.

If there is no match, the function returns NULL.
2.14.3.5 int mtext_putenv (MText x mft)

Change or add an environment variable.

The mtext_putenv() (p. 91) function changes or adds the value of environment variables according to M-text mt.
It calls the function putenv with an argument generated by encoding mt according to the current locale
(LC_CTYPE).

Return value:
This function returns zero on success, or -1 if an error occurs.

2.14.3.6 int mtext_coll (MText x mt1, MText x mt2)

Compare two M-texts using the current locale.

The mtext_coll() (p. 91) function compares the two M-texts mtl and mt2. It returns an integer less than, equal
to, or greater than zero if mtl is found, respectively, to be less than, to match, or to be greater than mt2. The
comparison is based on texts as appropriate for the current locale (LC_COLLATE).

This function makes use of information that is automatically cached in the M-texts as a text property. So, the
second call of this function with mt1 or mt2 finishes faster than the first call.

2.14.4 Variable Documentation
2.14.4.1 MSymbol Mterritory

The symbol whose name is "territory".

2.14.4.2 MSymbol Mmodifier

The symbol whose name is "modifier".

2.144.3 MSymbol Mcodeset

The symbol whose name is "codeset".

92 Module Documentation

2.15 Input Method (basic)

API for Input method.

Data Structures

¢ struct MInputDriver

Structure of input method driver.

* struct MInputMethod

Structure of input method.

¢ struct MInputContext

Structure of input context.

Typedefs

¢ typedef void(* MInputCallbackFunc)(MInputContext xic, MSymbol command)

Type of input method callback functions.

Enumerations

¢ enum MInputCandidatesChanged {
MINPUT_CANDIDATES_LIST _CHANGED =1,
MINPUT_CANDIDATES_INDEX CHANGED =2,
MINPUT_CANDIDATES_SHOW_CHANGED = 4,
MINPUT_CANDIDATES_CHANGED_MAX }

Bit-masks to specify how candidates of input method is changed.

Variables

MSymbol Minput_method

Symbol whose name is "input-method".

MInputDriver minput_default_driver

The default driver for internal input methods.

¢ MInputDriver * minput_driver

The driver for internal input methods.

MSymbol Minput_driver

2.15 Input Method (basic) 93

Variables: Predefined symbols for callback commands.

These are the predefined symbols that are used as the COMMAND argument of callback functions of an input
method driver (see MInputDriver::callback_list (p. 191)).

Most of them do not require extra argument nor return any value; exceptions are these:

Minput_get_surrounding_text: When a callback function assigned for this command is called, the first element
of MInputContext::plist (p. 189) has key Minteger (p. 23) and the value specifies which portion of the
surrounding text should be retrieved. If the value is positive, it specifies the number of characters following the
current cursor position. If the value is negative, the absolute value specifies the number of characters preceding
the current cursor position. If the value is zero, it means that the caller just wants to know if the surrounding text
is currently supported or not.

If the surrounding text is currently supported, the callback function must set the key of this element to Mtext
(p-23) and the value to the retrieved M-text. The length of the M-text may be shorter than the requested number
of characters, if the available text is not that long. The length can be zero in the worst case. Or, the length may be
longer if an application thinks it is more efficient to return that length.

If the surrounding text is not currently supported, the callback function should return without changing the first
element of MInputContext::plist (p. 189).

Minput_delete_surrounding_text: When a callback function assigned for this command is called, the first
element of MInputContext::plist (p. 189) has key Minteger (p.23) and the value specifies which portion of the
surrounding text should be deleted in the same way as the case of Minput_get_surrounding_text. The callback
function must delete the specified text. It should not alter MInputContext::plist (p. 189).

¢ MSymbol Minput_preedit_start

¢ MSymbol Minput_preedit_done

¢ MSymbol Minput_preedit_draw

¢ MSymbol Minput_status_start

* MSymbol Minput_status_done

* MSymbol Minput_status_draw

* MSymbol Minput_candidates_start

* MSymbol Minput_candidates_done

* MSymbol Minput_candidates_draw

¢ MSymbol Minput_set_spot

¢ MSymbol Minput_toggle

¢ MSymbol Minput_reset

¢ MSymbol Minput_get_surrounding_text
¢ MSymbol Minput_delete_surrounding_text

Variables: Predefined symbols for special input events.
These are the predefined symbols that are used as the KEY argument of minput_filter() (p. 97).

¢ MSymbol Minput_focus_out
¢ MSymbol Minput_focus_in
¢ MSymbol Minput_focus_move

Variables: Predefined symbols used in input method information.

¢ MSymbol Minherited
¢ MSymbol Mcustomized
* MSymbol Mconfigured

94 Module Documentation

Functions

¢ MInputMethod * minput_open_im (MSymbol language, MSymbol name, void *arg)

Open an input method.

* void minput_close_im (MInputMethod *im)

Close an input method.

¢ MInputContext + minput_create_ic (MInputMethod *im, void *arg)

Create an input context.

* void minput_destroy_ic (MInputContext xic)

Destroy an input context.

* int minput_filter (MInputContext xic, MSymbol key, void xarg)
Filter an input key.

¢ int minput_lookup (MInputContext xic, MSymbol key, void xarg, MText xmt)

Look up a text produced in the input context.

* void minput_set_spot (MInputContext xic, int X, int y, int ascent, int descent, int fontsize, MText xmt,
int pos)

Set the spot of the input context.

* void minput_toggle (MInputContext xic)
Toggle input method.

¢ void minput_reset_ic (MInputContext xic)

Reset an input context.

* MPIist + minput_get_title_icon (MSymbol language, MSymbol name)

Get title and icon filename of an input method.

¢ MText « minput_get_description (MSymbol language, MSymbol name)

Get description text of an input method.

* MPIlist * minput_get_command (MSymbol language, MSymbol name, MSymbol command)

Get information about input method command(s).

* int minput_config_command (MSymbol language, MSymbol name, MSymbol command, MPlist
xkeyseqlist)

Configure the key sequence of an input method command.

* MPIlist + minput_get_variable (MSymbol language, MSymbol name, MSymbol variable)

Get information about input method variable(s).

* int minput_config_variable (MSymbol language, MSymbol name, MSymbol variable, MPlist xvalue)

Configure the value of an input method variable.

e char x minput_config_file ()

Get the name of per-user customization file.

2.15 Input Method (basic) 95

* int minput_save_config (void)

Save configurations in per-user customization file.

Obsolete functions

¢ MPIlist « minput_get_variables (MSymbol language, MSymbol name)
Get a list of variables of an input method (obsolete).

* int minput_set_variable (MSymbol language, MSymbol name, MSymbol variable, void *value)

Set the initial value of an input method variable.

* MPIlist + minput_get_commands (MSymbol language, MSymbol name)

Get information about input method commands.

* int minput_assign_command_keys (MSymbol language, MSymbol name, MSymbol command, MPlist
xkeyseq)

Assign a key sequence to an input method command (obsolete).

* int minput_callback (MInputContext xic, MSymbol command)
Call a callback function.

2.15.1 Detailed Description

API for Input method. An input method is an object to enable inputting various characters. An input method is
identified by a pair of symbols, LANGUAGE and NAME. This pair decides an input method driver of the input
method. An input method driver is a set of functions for handling the input method. There are two kinds of input
methods; internal one and foreign one.

* Internal Input Method

An internal input method has non Mnil LANGUAGE, and its body is defined in the m17n database by the
tag <Minput_method, LANGUAGE, NAME>. For this kind of input methods, the m17n library uses two
predefined input method drivers, one for CUI use and the other for GUI use. Those drivers utilize the input
processing engine provided by the m17n library itself. The m17n database may provide input methods that
are not limited to a specific language. The database uses Mt as LANGUAGE of those input methods.

An internal input method accepts an input key which is a symbol associated with an input event. As there
is no way for the m17n 1ibrary to know how input events are represented in an application program, an
application programmer has to convert an input event to an input key by himself. See the documentation of
the function minput_event_to_key() (p. 150) for the detail.

* Foreign Input Method

A foreign input method has Mni1 LANGUAGE, and its body is defined in an external resource (e.g. XIM
of X Window System). For this kind of input methods, the symbol NAME must have a property of key
Minput_driver (p. 107), and the value must be a pointer to an input method driver. Therefore, by preparing
a proper driver, any kind of input method can be treated in the framework of the m17n library.

For convenience, the m17n-X library provides an input method driver that enables the input style of
OverTheSpot for XIM, and stores Minput_driver (p. 107) property of the symbol Mx im with a pointer to
the driver. See the documentation of m17n GUI API for the detail.

PROCESSING FLOW

The typical processing flow of handling an input method is:

96 Module Documentation

* open an input method
* create an input context for the input method
« filter an input key

* look up a produced text in the input context

2.15.2 Typedef Documentation
2.15.2.1 typedef void(+ MInputCallbackFunc)(MInputContext xic, MSymbol command)

Type of input method callback functions.

This is the type of callback functions called from input method drivers. ic is a pointer to an input context,
command is a name of callback for which the function is called.

2.15.3 Enumeration Type Documentation
2.15.3.1 enum MInputCandidatesChanged

Bit-masks to specify how candidates of input method is changed.

Enumerator:
MINPUT_CANDIDATES_LIST CHANGED

MINPUT_CANDIDATES_INDEX CHANGED
MINPUT_CANDIDATES_SHOW_CHANGED
MINPUT_CANDIDATES CHANGED_MAX

2.15.4 Function Documentation
2.15.4.1 MlInputMethod+ minput_open_im (MSymbol language, MSymbol name, void * arg)

Open an input method.

The minput_open_im() (p. 96) function opens an input method whose language and name match language and
name, and returns a pointer to the input method object newly allocated.

This function at first decides a driver for the input method as described below.
If language is not Mnil (p. 17), the driver pointed by the variable minput_driver (p. 107) is used.

If language is Mnil (p. 17) and name has the property Minput_driver (p. 107), the driver pointed to by the
property value is used to open the input method. If name has no such a property, NULL is returned.

Then, the member MInputDriver::open_im() (p. 190) of the driver is called.

arg is set in the member arg of the structure MInputMethod (p. 193) so that the driver can refer to it.

2.15.4.2 void minput_close_im (MInputMethod * im)

Close an input method.

The minput_close_im() (p. 96) function closes the input method im, which must have been created by
minput_open_im() (p. 96).

2.15 Input Method (basic) 97

2.15.4.3 MlInputContext+ minput_create_ic (MInputMethod * im, void * arg)

Create an input context.

The minput_create_ic() (p. 97) function creates an input context object associated with input method im, and
calls callback functions corresponding to Minput_preedit_start, Minput_status_start, and
Minput_status_draw in this order.

Return value:
If an input context is successfully created, minput_create_ic() (p. 97) returns a pointer to it. Otherwise it
returns NULL.

2.15.4.4 void minput_destroy_ic (MInputContext x ic)

Destroy an input context.

The minput_destroy_ic() (p. 97) function destroys the input context ic, which must have been created by
minput_create_ic() (p. 97). It calls callback functions corresponding to Minput_preedit_done,
Minput_status_done, and Minput_candidates_done in this order.

2.15.4.5 int minput_filter (MInputContext x ic, MSymbol key, void * arg)

Filter an input key.

The minput_filter() (p. 97) function filters input key key according to input context ic, and calls callback
functions corresponding to Minput_preedit_draw, Minput_status_draw, and Minput_candidates_draw if
the preedit text, the status, and the current candidate are changed respectively.

To make the input method commit the current preedit text (if any) and shift to the initial state, call this function
with Mnil (p. 17) as key.

To inform the input method about the focus-out event, call this function with Minput_focus_out as key.
To inform the input method about the focus-in event, call this function with Minput_focus_in as key.
To inform the input method about the focus-move event (i.e. input spot change within the same input context),

call this function with Minput_focus_move as key.

Return value:
If key is filtered out, this function returns 1. In that case, the caller should discard the key. Otherwise, it
returns 0, and the caller should handle the key, for instance, by calling the function minput_lookup() (p.97)
with the same key.

2.15.4.6 int minput_lookup (MInputContext x ic, MSymbol key, void x arg, MText x mt)

Look up a text produced in the input context.

The minput_lookup() (p. 97) function looks up a text in the input context ic. key must be identical to the one
that was used in the previous call of minput_filter() (p. 97).

If a text was produced by the input method, it is concatenated to M-text mt.
This function calls MInputDriver::lookup (p. 191) .
Return value:

If key was correctly handled by the input method, this function returns 0. Otherwise, it returns -1, even
though some text might be produced in mt.

98 Module Documentation

2.154.7 void minput_set_spot (MInputContext * ic, int x, inty, int ascent, int descent, int fontsize,
MText « mt, int pos)

Set the spot of the input context.

The minput_set_spot() (p. 98) function sets the spot of input context ic to coordinate (x, y) with the height
specified by ascent and descent . The semantics of these values depends on the input method driver.

For instance, a driver designed to work in a CUI environment may use x and y as the column- and row numbers,
and may ignore ascent and descent . A driver designed to work in a window system may interpret X and y as the
pixel offsets relative to the origin of the client window, and may interpret ascent and descent as the ascent- and
descent pixels of the line at (x . y).

fontsize specifies the fontsize of preedit text in 1/10 point.

mt and pos are the M-text and the character position at the spot. mt may be NULL, in which case, the input
method cannot get information about the text around the spot.

2.15.4.8 void minput_toggle (MInputContext x ic)

Toggle input method.

The minput_toggle() (p. 98) function toggles the input method associated with input context ic.

2.154.9 void minput_reset_ic (MInputContext * ic)

Reset an input context.

The minput_reset_ic() (p. 98) function resets input context ic by calling a callback function corresponding to
Minput_reset. It resets the status of ic to its initial one. As the current preedit text is deleted without
commitment, if necessary, call minput_filter() (p. 97) with the arg key Mnil (p. 17) to force the input method to
commit the preedit in advance.

2.154.10 MPlistx minput_get_title_icon (MSymbol language, MSymbol name)

Get title and icon filename of an input method.

The minput_get_title_icon() (p. 98) function returns a plist containing a title and icon filename (if any) of an
input method specified by language and name.

The first element of the plist has key Mtext (p. 23) and the value is an M-text of the title for identifying the input
method. The second element (if any) has key Mtext (p. 23) and the value is an M-text of the icon image
(absolute) filename for the same purpose.

Return value:
If there exists a specified input method and it defines an title, a plist is returned. Otherwise, NULL is
returned. The caller must free the plist by m17n_object_unref() (p. 12).

2.15.4.11 MText+ minput_get_description (MSymbol language, MSymbol name)

Get description text of an input method.

The minput_get_description() (p. 98) function returns an M-text that describes the input method specified by
language and name.

2.15 Input Method (basic) 99

Return value:
If the specified input method has a description text, a pointer to MText (p. 36) is returned. The caller has to
free it by m17n_object_unref() (p. 12). If the input method does not have a description text, NULL is
returned.

2.15.4.12 MPlist+ minput_get_command (MSymbol language, MSymbol name, MSymbol command)

Get information about input method command(s).

The minput_get_command() (p. 99) function returns information about the command command of the input
method specified by language and name. An input method command is a pseudo key event to which one or
more actual input key sequences are assigned.

There are two kinds of commands, global and local. A global command has a global definition, and the
description and the key assignment may be inherited by a local command. Each input method defines a local
command which has a local key assignment. It may also declare a local command that inherits the definition of a
global command of the same name.

If language is Mt (p. 17) and name is Mnil (p. 17), this function returns information about a global command.
Otherwise information about a local command is returned.

If command is Mnil (p. 17), information about all commands is returned.

The return value is a well-formed plist (Property List (p. 18)) of this format:

((NAME DESCRIPTION STATUS [KEYSEQ ...]) ...)

NAME is a symbol representing the command name.
DESCRIPTION is an M-text describing the command, or Mnil (p. 17) if the command has no description.

STATUS is a symbol representing how the key assignment is decided. The value is Mnil (p. 17) (the default key
assignment), Mcustomized (the key assignment is customized by per-user customization file), or Mconfigured
(the key assignment is set by the call of minput_config_command() (p. 100)). For a local command only, it may
also be Minherited (the key assignment is inherited from the corresponding global command).

KEYSEQ is a plist of one or more symbols representing a key sequence assigned to the command. If there’s no
KEYSEQ, the command is currently disabled (i.e. no key sequence can trigger actions of the command).

If command is not Mnil (p. 17), the first element of the returned plist contains the information about command.

Return value:

If the requested information was found, a pointer to a non-empty plist is returned. As the plist is kept in the
library, the caller must not modify nor free it.

Otherwise (the specified input method or the specified command does not exist), NULL is returned.

Example:

MText =
get_im_command_description (MSymbol language, MSymbol name, MSymbol command)
{
/* Return a description of the command COMMAND of the input method
specified by LANGUAGE and NAME. =/
MPlist *cmd = minput_get_command (langauge, name, command) ;
MPlist *plist;

if (! cmds)

return NULL;
plist = mplist_value (cmds); /% (NAME DESCRIPTION STATUS KEY-SEQ ...) x/
plist = mplist_next (plist); /* (DESCRIPTION STATUS KEY-SEQ ...) =*/

100 Module Documentation

return (mplist_key (plist) == Mtext
? (MText *) mplist_value (plist)
: NULL);

2.15.4.13 int minput_config_command (MSymbol language, MSymbol name, MSymbol command,
MPlist * keyseqlist)

Configure the key sequence of an input method command.

The minput_config_command() (p. 100) function assigns a list of key sequences keyseqlist to the command
command of the input method specified by language and name.

If keyseqlist is a non-empty plist, it must be a list of key sequences, and each key sequence must be a plist of
symbols.

If keyseqlist is an empty plist, any configuration and customization of the command are cancelled, and default
key sequences become effective.

If keyseqlist is NULL, the configuration of the command is canceled, and the original key sequences (what saved
in per-user customization file, or the default one) become effective.

In the latter two cases, command can be Mnil (p. 17) to make all the commands of the input method the target of
the operation.

If name is Mnil (p. 17), this function configures the key assignment of a global command, not that of a specific
input method.

The configuration takes effect for input methods opened or re-opened later in the current session. In order to
make the configuration take effect for the future session, it must be saved in a per-user customization file by the
function minput_save_config() (p. 103).

Return value:
If the operation was successful, this function returns 0, otherwise returns -1. The operation fails in these
cases:

* keyseqlist is not in a valid form.
* command is not available for the input method.

* language and name do not specify an existing input method.

See Also:
minput_get_commands() (p. 104), minput_save_config() (p. 103).

Example:

/+ Add "C-x u" to the "start" command of Unicode input method. =x/
{

MSymbol start_command = msymbol ("start");

MSymbol unicode = msymbol ("unicode");

MPlist *cmd, =*plist, =xkey_seq list, =*key_seq;

/* At first get the current key-sequence assignment. */
cmd = minput_get_command (Mt, unicode, start_command);
if (! cmd)
{
/* The input method does not have the command "start". Here
should come some error handling code. */
}
/+* Now CMD == ((start DESCRIPTION STATUS KEY-SEQUENCE ...) ...).
Extract the part (KEY-SEQUENCE ...). */
plist = mplist_next (mplist_next (mplist_next (mplist_value (cmd))));
/* Copy it because we should not modify it directly. =/
key_seq_list = mplist_copy (plist);

2.15 Input Method (basic) 101

key_seqg = mplist();

mplist_add (key_seq, Msymbol, msymbol ("C-x"));
mplist_add (key_seq, Msymbol, msymbol ("u"));
mplist_add (key_seq_list, Mplist, key_seq);
ml7n_object_unref (key_seq);

minput_config_command (Mt, unicode, start_command, key_seqg list);
ml7n_object_unref (key_seq_list);

2.15.4.14 MPlist+ minput_get_variable (MSymbol language, MSymbol name, MSymbol variable)

Get information about input method variable(s).

The minput_get_variable() (p. 101) function returns information about variable variable of the input method
specified by language and name. An input method variable controls behavior of an input method.

There are two kinds of variables, global and local. A global variable has a global definition, and the description
and the value may be inherited by a local variable. Each input method defines a local variable which has local
value. It may also declare a local variable that inherits definition of a global variable of the same name.

If language is Mt (p. 17) and name is Mnil (p. 17), information about a global variable is returned. Otherwise
information about a local variable is returned.

If variable is Mnil (p. 17), information about all variables is returned.
The return value is a well-formed plist (Property List (p. 18)) of this format:

((NAME DESCRIPTION STATUS VALUE [VALID-VALUE ...]) ...)

NAME is a symbol representing the variable name.
DESCRIPTION is an M-text describing the variable, or Mnil (p. 17) if the variable has no description.

STATUS is a symbol representing how the value is decided. The value is Mnil (p. 17) (the default value),
Mcustomized (the value is customized by per-user customization file), or Mconfigured (the value is set by the
call of minput_config_variable() (p. 102)). For a local variable only, it may also be Minherited (the value is
inherited from the corresponding global variable).

VALUE is the initial value of the variable. If the key of this element is Mt (p. 17), the variable has no initial value.
Otherwise, the key is Minteger (p.23), Msymbol (p. 17), or Mtext (p. 23) and the value is of the corresponding

type.

VALID-VALUEs (if any) specify which values the variable can have. They have the same type (i.e. having the
same key) as VALUE except for the case that VALUE is an integer. In that case, VALID-VALUE may be a plist
of two integers specifying the range of possible values.

If there no VALID-VALUE, the variable can have any value as long as the type is the same as VALUE.

If variable is not Mnil (p. 17), the first element of the returned plist contains the information about variable.

Return value:

If the requested information was found, a pointer to a non-empty plist is returned. As the plist is kept in the
library, the caller must not modify nor free it.

Otherwise (the specified input method or the specified variable does not exist), NULL is returned.

102 Module Documentation

2.154.15 int minput_config_variable (MSymbol language, MSymbol name, MSymbol variable, MPlist
* value)
Configure the value of an input method variable.

The minput_config_variable() (p. 102) function assigns value to the variable variable of the input method
specified by language and name.

If value is a non-empty plist, it must be a plist of one element whose key is Minteger (p.23), Msymbol (p. 17),
or Mtext (p. 23), and the value is of the corresponding type. That value is assigned to the variable.

If value is an empty plist, any configuration and customization of the variable are canceled, and the default value
is assigned to the variable.

If value is NULL, the configuration of the variable is canceled, and the original value (what saved in per-user
customization file, or the default value) is assigned to the variable.

In the latter two cases, variable can be Mnil (p. 17) to make all the variables of the input method the target of the
operation.

If name is Mnil (p. 17), this function configures the value of global variable, not that of a specific input method.

The configuration takes effect for input methods opened or re-opened later in the current session. To make the
configuration take effect for the future session, it must be saved in a per-user customization file by the function
minput_save_config() (p. 103).

Return value:

If the operation was successful, this function returns 0, otherwise returns -1. The operation fails in these cases:

* value is not in a valid form, the type does not match the definition, or the value is our of range.
« variable is not available for the input method.

* language and name do not specify an existing input method.

See Also:
minput_get_variable() (p. 101), minput_save_config() (p. 103).

2.15.4.16 charx minput_config_file (void)

Get the name of per-user customization file.

The minput_config_file() (p. 102) function returns the absolute path name of per-user customization file into
which minput_save_config() (p. 103) save configurations. It is usually config.mic under the directory
${HOME}/.m17n.d (${HOME} is user’s home directory). It is not assured that the file of the returned name
exists nor is readable/writable. If minput_save_config() (p. 103) fails and returns -1, an application program
might check the file, make it writable (if possible), and try minput_save_config() (p. 103) again.

Return value:

This function returns a string. As the string is kept in the library, the caller must not modify nor free it.

See Also:
minput_save_config() (p. 103)

2.15 Input Method (basic) 103

2.15.4.17 int minput_save_config (void)

Save configurations in per-user customization file.
The minput_save_config() (p. 103) function saves the configurations done so far in the current session into the

per-user customization file.

Return value:

If the operation was successful, 1 is returned. If the per-user customization file is currently locked, O is returned.
In that case, the caller may wait for a while and try again. If the configuration file is not writable, -1 is returned.
In that case, the caller may check the name of the file by calling minput_config_file() (p. 102), make it writable
if possible, and try again.

See Also:
minput_config_file() (p. 102)

2.15.4.18 MPlist+ minput_get_variables (MSymbol language, MSymbol name)

Get a list of variables of an input method (obsolete).
This function is obsolete. Use minput_get_variable() (p. 101) instead.

The minput_get_variables() (p. 103) function returns a plist (MPlist (p. 19)) of variables used to control the
behavior of the input method specified by language and name. The plist is well-formed (Property List (p. 18))
of the following format:

(VARNAME (DOC-MTEXT DEFAULT-VALUE [VALUE ...])
VARNAME (DOC-MTEXT DEFAULT-VALUE [VALUE ...]
L)

VARNAME is a symbol representing the variable name.
DOC-MTEXT is an M-text describing the variable.
DEFAULT-VALUE is the default value of the variable. It is a symbol, integer, or M-text.

VALUESs (if any) specifies the possible values of the variable. If DEFAULT-VALUE is an integer, VALUE may be
a plist (FROM TO), where FROM and TO specifies a range of possible values.

For instance, suppose an input method has the variables:
* name:intvar, description:"value is an integer", initial value:0, value-range:0..3,10,20
* name:symvar, description:"value is a symbol", initial value:nil, value-range:a, b, c, nil
* name:txtvar, description:"value is an M-text", initial value:empty text, no value-range (i.e. any text)

Then, the returned plist is as follows.

(intvar ("value is an integer" 0 (0 3) 10 20)
symvar ("value is a symbol" nil a b ¢ nil)
txtvar ("value is an M-text" ""))

Return value:
If the input method uses any variables, a pointer to MPlist (p. 19) is returned. As the plist is kept in the
library, the caller must not modify nor free it. If the input method does not use any variable, NULL is
returned.

104 Module Documentation

2.15.4.19 int minput_set_variable (MSymbol language, MSymbol name, MSymbol variable, void *
value)

Set the initial value of an input method variable.

The minput_set_variable() (p. 104) function sets the initial value of input method variable variable to value for
the input method specified by language and name.

By default, the initial value is O.

This setting gets effective in a newly opened input method.

Return value:
If the operation was successful, 0 is returned. Otherwise -1 is returned, and merror_code (p. 155) is set to
MERROR__IM.

2.15.4.20 MPlist+ minput_get_commands (MSymbol language, MSymbol name)

Get information about input method commands.

The minput_get_commands() (p. 104) function returns information about input method commands of the input
method specified by language and name. An input method command is a pseudo key event to which one or
more actual input key sequences are assigned.

There are two kinds of commands, global and local. Global commands are used by multiple input methods for
the same purpose, and have global key assignments. Local commands are used only by a specific input method,
and have only local key assignments.

Each input method may locally change key assignments for global commands. The global key assignment for a
global command is effective only when the current input method does not have local key assignments for that
command.

If name is Mnil (p. 17), information about global commands is returned. In this case language is ignored.

If name is not Mnil (p. 17), information about those commands that have local key assignments in the input
method specified by language and name is returned.

Return value:
If no input method commands are found, this function returns NULL.

Otherwise, a pointer to a plist is returned. The key of each element in the plist is a symbol representing a
command, and the value is a plist of the form COMMAND-INFO described below.

The first element of COMMAND-INFO has the key Mtext (p. 23), and the value is an M-text describing the
command.

If there are no more elements, that means no key sequences are assigned to the command. Otherwise, each of the
remaining elements has the key Mplist (p. 23), and the value is a plist whose keys are Msymbol (p. 17) and
values are symbols representing input keys, which are currently assigned to the command.

As the returned plist is kept in the library, the caller must not modify nor free it.

2.15.4.21 int minput_assign_command_keys (MSymbol language, MSymbol name, MSymbol command,
MPIlist x keyseq)

Assign a key sequence to an input method command (obsolete).

This function is obsolete. Use minput_config_command() (p. 100) instead.

2.15 Input Method (basic) 105

The minput_assign_command_keys() (p. 104) function assigns input key sequence keyseq to input method
command command for the input method specified by language and name. If name is Mnil (p. 17), the key
sequence is assigned globally no matter what language is. Otherwise the key sequence is assigned locally.

Each element of keyseq must have the key msymbol and the value must be a symbol representing an input key.
keyseq may be NULL, in which case, all assignments are deleted globally or locally.

This assignment gets effective in a newly opened input method.

Return value:
If the operation was successful, 0 is returned. Otherwise -1 is returned, and merror_code (p. 155) is set to
MERROR__IM.

2.15.4.22 int minput_callback (MInputContext x ic, MSymbol command)

Call a callback function.

The minput_callback() (p. 105) functions calls a callback function command assigned for the input context ic.
The caller must set specific elements in ic->plist if the callback function requires.

Return value:
If there exists a specified callback function, 0 is returned. Otherwise -1 is returned. By side effects, ic->plist
may be modified.

2.15.5 Variable Documentation

2.15.5.1 MSymbol Minput_method

Symbol whose name is "input-method".

106 Module Documentation

2.15.5.2 MSymbol Minput_preedit_start

2.15.5.3 MSymbol Minput_preedit_done

2.15.5.4 MSymbol Minput_preedit_draw

2.15.5.5 MSymbol Minput_status_start

2.15.5.6 MSymbol Minput_status_done

2.15.5.7 MSymbol Minput_status_draw

2.15.5.8 MSymbol Minput_candidates_start
2.15.5.9 MSymbol Minput_candidates_done
2.15.5.10 MSymbol Minput_candidates_draw
2.15.5.11 MSymbol Minput_set_spot

2.15.5.12 MSymbol Minput_toggle

2.15.5.13 MSymbol Minput_reset

2.15.5.14 MSymbol Minput_get_surrounding_text
2.15.5.15 MSymbol Minput_delete_surrounding_text
2.15.5.16 MSymbol Minput_focus_out

2.15.5.17 MSymbol Minput_focus_in

2.15.5.18 MSymbol Minput_focus_move

2.15.5.19 MSymbol Minherited

These are the predefined symbols describing status of input method command and variable, and are used in a
return value of minput_get_command() (p. 99) and minput_get_variable() (p. 101).

2.15.5.20 MSymbol Mcustomized
2.15.5.21 MSymbol Mconfigured
2.15.5.22 MlinputDriver minput_default_driver

The default driver for internal input methods.
The variable minput_default_driver (p. 106) is the default driver for internal input methods.

The member MInputDriver::open_im() (p. 190) searches the m17n database for an input method that matches
the tag < Minput_method (p. 105), language, name> and loads it.

The member MInputDriver::callback_list() (p. 191) is NULL. Thus, it is programmers responsibility to set it to
a plist of proper callback functions. Otherwise, no feedback information (e.g. preedit text) can be shown to users.

2.15 Input Method (basic) 107

The macro M17N_INIT() (p. 7) sets the variable minput_driver (p. 107) to the pointer to this driver so that all
internal input methods use it.

Therefore, unless minput_driver is set differently, the driver dependent arguments arg of the functions
whose name begins with "minput_" are all ignored.

2.15.5.23 MiInputDriverx minput_driver

The driver for internal input methods.

The variable minput_driver (p. 107) is a pointer to the input method driver that is used by internal input
methods. The macro M17N_INIT() (p. 7) initializes it to a pointer to minput_default_driver (p. 106) if
<ml7n.h> is included.

2.15.5.24 MSymbol Minput_driver

The variable Minput_driver (p. 107) is a symbol for a foreign input method. See foreign input method (p. 95)
for the detail.

108 Module Documentation

2.16 FLT API

API provided by libm17n-flt.so.

Data Structures

¢ struct MFLTGlyph
Type of information about a glyph.

¢ struct MFLTGlyphAdjustment

Type of information about a glyph position adjustment.

¢ struct MFLTGlyphString

Type of information about a glyph sequence.

¢ struct MFLTOtfSpec
Type of specification of GSUB and GPOS OpenType tables.

* struct MFLTFont
Type of font to be used by the FLT driver.

Typedefs

e typedef struct _MFLT MFLT
Type of FLT (Font Layout Table).

Functions

e MFLT * mfit_get (MSymbol name)

Return an FLT object that has a specified name.

e MFLT * mflt_find (int c, MFLTFont xfont)
Find an FLT suitable for the specified character and font.

e const char x mflt_name (MFLT xflt)
Return the name of an FLT.

¢ MCharTable x mflt_coverage (MFLT xfit)

Return a coverage of a FLT.

¢ int mfit_run (MFLTGlyphString xgstring, int from, int to, MFLTFont *«font, MFLT xfit)

Layout characters with an FLT.

¢ MFLT * mdebug_dump_fit (MFLT xflt, int indent)
Dump a Font Layout Table.

* void mflt_dump_gstring (MFLTGlyphString *gstring)
Dump an MFLTGlyphString (p. 184).

2.16 FLT API 109

Variables

¢ int mflt_enable_new_feature
Flag to control several new OTF handling commands.
* int(x mfit_iterate_otf_feature)(struct _MFLTFont *font, MFLTOtfSpec *spec, int from, int to, unsigned
char *table)
¢ MSymbol(x mflt_font_id)(struct _MFLTFont xfont)

* int(x mfit_try_otf)(struct _MFLTFont xfont, MFLTOtfSpec sspec, MFLTGlyphString *gstring, int
from, int to)

2.16.1 Detailed Description

API provided by libm17n-flt.so. FLT support for a window system.

This section defines the m17n FLT API concerning character layouting facility using FLT (Font Layout Table).
The format of FLT is described in Font Layout Table (p.211).

2.16.2 Typedef Documentation
2.16.2.1 typedef struct MFLT MFLT

Type of FLT (Font Layout Table).

The type MFLT (p. 109) is for an FLT object. Its internal structure is concealed from application programs.

2.16.3 Function Documentation
2.16.3.1 MFLT + mfit_get (MSymbol name)

Return an FLT object that has a specified name.
The mfit_get() (p. 109) function returns an FLT object whose name is name.
Return value:

If the operation was successful, mfit_get() (p. 109) returns a pointer to the found FLT object. Otherwise, it
returns NULL.

2.16.3.2 MFLT x mfit_find (int c, MFLTFont * font)

Find an FLT suitable for the specified character and font.
The mfit_find() (p. 109) function returns the most appropriate FLT for layouting character ¢ with font font.
Return value:

If the operation was successful, mfit_find() (p. 109) returns a pointer to the found FLT object. Otherwise, it
returns NULL.

2.16.3.3 const char x mflt_name (MFLT x fif)

Return the name of an FLT.

The mflt_name() (p. 109) function returns the name of fit.

110 Module Documentation

2.16.3.4 MCharTable « mflt_coverage (MFLT x fiIf)

Return a coverage of a FLT.

The mflt_coverage() (p. 110) function returns a char-table that contains nonzero values for characters supported
by fit.

2.16.3.5 int mfit_run (MFLTGlyphString * gstring, int from, int to, MFLTFont * font, MFLT x flt)

Layout characters with an FLT.

The mfit_run() (p. 110) function layouts characters in gstring between from (inclusive) and to (exclusive) with
font. If fit is nonzero, it is used for all the charaters. Otherwise, appropriate FLTs are automatically chosen.

Return values
>=(The operation was successful. The value is the index to the glyph, which was previously indexed by to,
in gstring->glyphs.

-2 gstring->glyphs is too short to store the result. The caller can call this fucntion again with a longer
gstring->glyphs.

-1 Some other error occurred.

2.16.3.6 MFLT* mdebug_dump_fit (MFLT x flt, int indent)

Dump a Font Layout Table.

The mdebug_dump_fit() (p. 110) function prints the Font Layout Table flt in a human readable way to the stderr
or to what specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many
columns to indent the lines but the first one.

Return value:
This function returns fit.

2.16.3.7 void mfit_dump_gstring (MFLTGlyphString * gstring)

Dump an MFLTGlyphString (p. 184).

The mfit_dump_gstring() (p. 110) function prints the glyph sequence gstring in a human readable way to the
stderr or to what specified by the environment variable MDEBUG_OUTPUT_FILE.

2.16.4 Variable Documentation
2.16.4.1 int mflit_enable_new_feature

Flag to control several new OTF handling commands.

If the variable mflt_enable_new_feature is nonzero, the function mflt_run() (p. 110) can drive a Font Layout
Table that contains the new OTF-related commands ":otf?" and/or OTF feature specification in a category table.

2.16 FLT API 111

2.16.4.2 int(x mfit_iterate_otf feature)(struct _MFLTFont «font, MFLTOtfSpec *spec, int from, int to,
unsigned char xtable)

2.16.4.3 MSymbol(x mfit_font_id)(struct _MFLTFont x«font)

2.16.4.4 int(x mfit_try_otf)(struct _MFLTFont «font, MFLTOtfSpec sspec, MFLTGlyphString +gstring,
int from, int to)

112 Module Documentation

2.17 GUI API

API provided by libm17n-gui.so.

Modules

¢ Frame

A frame is an object corresponding to the graphic device.

¢ Font

Font object.

* Fontset

A fontset is an object that maps a character to fonts.

e Face

A face is an object to control appearance of M-text.

* Drawing

Drawing M-texts on a window.

* Input Method (GUI)

Input method support on window systems.

2.17.1 Detailed Description

API provided by libm17n-gui.so. GUI support for a window system.
This section defines the m17n GUI API concerning M-text drawing and inputting under a window system.

All the definitions here are independent of window systems. An actual library file, however, can depend on a
specific window system. For instance, the library file m17n-X.so is an example of implementation of the m17n
GUI API for the X Window System.

Actually the GUI API is mainly for toolkit libraries or to implement XOM, not for direct use from application
programs.

2.18 Frame 113

2.18 Frame

A frame is an object corresponding to the graphic device.

Typedefs

¢ typedef struct MFrame MFrame
Type of frames.

Functions

¢ MFrame * mframe (MPlist xplist)

Create a new frame.

* void * mframe_get_prop (MFrame xframe, MSymbol key)

Return property value of frame.

Variables

¢ MFrame * mframe_default
The default frame.

Variables: Keys of frame parameter

These are the symbols to use in a parameter to create a frame. See the function mframe() (p. 114) for details.

Mdevice, Mdisplay, Mscreen, Mdrawable, Mdepth, and Mcolormap are also keys of a frame property.

e MSymbol Mdevice

¢ MSymbol Mdisplay

¢ MSymbol Mscreen

¢ MSymbol Mdrawable
¢ MSymbol Mdepth

¢ MSymbol Mcolormap
* MSymbol Mwidget

* MSymbol Mgd

Variables: Keys of frame property

These are the symbols to use as an argument to the function mframe_get_prop() (p. 115).

¢ MSymbol Mfont

¢ MSymbol Mfont_width
* MSymbol Mfont_ascent
* MSymbol Mfont_descent

114 Module Documentation

2.18.1 Detailed Description

A frame is an object corresponding to the graphic device. A frame is an object of the type MFrame (p. 114) to
hold various information about each display/input device. Almost all m17n GUI functions require a pointer to a
frame as an argument.

2.18.2 Typedef Documentation
2.18.2.1 typedef struct MFrame MFrame

Type of frames.

The type MFrame (p. 114) is for a frame object. Each frame holds various information about the corresponding
physical display/input device.

The internal structure of the type MFrame (p. 114) is concealed from an application program, and its contents
depend on the window system in use. In the m17n-X library, it contains the information about display and screen
in the X Window System.

2.18.3 Function Documentation
2.18.3.1 MFramex mframe (MPlist * plist)

Create a new frame.
The mframe() (p. 114) function creates a new frame with parameters listed in plist which may be NULL.
The recognized keys in plist are window system dependent.

The following key is always recognized.

¢ Mdevice, the value must be one of Mx (p. 127), Mgd, and Mnil (p. 17).

If the value is Mx (p. 127), the frame is for X Window System. The argument MDrawWindow (p. 144)
specified together with the frame must be of type Window. The frame is both readable and writable, thus
all GUI functions can be used.

If the value is Mgd, the frame is for an image object of GD library. The argument MDrawWindow
(p. 144) specified together with the frame must be of type gdImagePt r. The frame is writable only, thus
functions minput_XXX can’t be used for the frame.

If the value is Mnil (p. 17), the frame is for a null device. The frame is not writable nor readable, thus
functions mdraw_XXX that require the argument MDrawWindow (p. 144) and functions minput_XXX
can’t be used for the frame.

e Mface (p. 142), the value must be a pointer to MFace (p. 135).

The value is used as the default face of the frame.

In addition, if the value of the key Mdevice is Mx (p. 127), the following keys are recognized. They are to
specify the root window and the depth of drawables that can be used with the frame.

* Mdrawable, the value type must be Drawable.

A parameter of key Mdisplay must also be specified. The created frame can be used for drawables whose
root window and depth are the same as those of the specified drawable on the specified display.

When this parameter is specified, the parameter of key Mscreen is ignored.

2.18 Frame 115

* Mwidget, the value type must be Widget.

The created frame can be used for drawables whose root window and depth are the same as those of the
specified widget.

If a parameter of key Mface (p. 142) is not specified, the default face is created from the resources of the
widget.

When this parameter is specified, the parameters of key Mdisplay, Mscreen, Mdrawable, Mdepth are
ignored.
e Mdepth, the value type must be unsigned.

The created frame can be used for drawables of the specified depth.

* Mscreen, the value type must be (Screen).

The created frame can be used for drawables whose root window is the same as the root window of the
specified screen, and depth is the same at the default depth of the screen.

When this parameter is specified, parameter of key Mdisplay is ignored.

* Mdisplay, the value type must be (Display x*).
The created frame can be used for drawables whose root window is the same as the root window for the
default screen of the display, and depth is the same as the default depth of the screen.

* Mcolormap, the value type must be (Colormap).

The created frame uses the specified colormap.

¢ Mfont, the value must be Mx (p. 127), Mfreetype (p. 127), or Mxft (p. 128).

The created frame uses the specified font backend. The value Mx (p. 127) instructs to use X core fonts,
Mfreetype (p. 127) to use local fonts supported by FreeType fonts, and Mxft (p. 128) to use local fonts via
Xft library. You can specify this parameter more than once with different values if you want to use multiple
font backends. This is ignored if the specified font backend is not supported on the device.

When this parameter is not specified, all font backend supported on the device are used.

Return value:
If the operation was successful, mframe() (p. 114) returns a pointer to a newly created frame. Otherwise, it
returns NULL.

2.18.3.2 void+ mframe_get_prop (MFrame * frame, MSymbol key)

Return property value of frame.

The mframe_get_prop() (p. 115) function returns a value of property key of frame frame. The valid keys and
the corresponding return values are as follows.

key type of value meaning of value

uface Wace x The default face.

Mfont MFont = The default font.
Mfont_width int Width of the default font.
Mfont_ascent int Ascent of the default font.
Mfont_descent int Descent of the default font.

In the m17n-X library, the followings are also accepted.

116

Module Documentation

key type of value
Mdisplay Display =
Mscreen int

Mcolormap Colormap
Mdepth unsigned

2.18.4 Variable Documentation
2.18.4.1 MSymbol Mdevice

2.18.4.2 MSymbol Mdisplay

2.18.4.3 MSymbol Mscreen

2.18.4.4 MSymbol Mdrawable
2.18.4.5 MSymbol Mdepth

2.18.4.6 MSymbol Mcolormap
2.18.4.7 MSymbol Mwidget

2.18.4.8 MSymbol Mgd

2.18.4.9 MSymbol Mfont

2.18.4.10 MSymbol Mfont_width
2.18.4.11 MSymbol Mfont_ascent
2.18.4.12 MSymbol Mfont_descent
2.18.4.13 MFramex mframe_default
The default frame.

meaning of value

Display associated with the frame.

Screen number of a screen associated
with the frame.

Colormap of the frame.

Depth of the frame.

The external variable mframe_default (p. 116) contains a pointer to the default frame that is created by the first
call of mframe() (p. 114).

2.19 Font 117

2.19 Font

Font object.

Typedefs

¢ typedef struct MFont MFont
Type of fonts.

Functions

e MFont x mfont ()

Create a new font.

¢ MFont x mfont_parse_name (const char xname, MSymbol format)

Create a font by parsing a fontname.

¢ char * mfont_unparse_name (MFont xfont, MSymbol format)

Create a fontname from a font.

* MFont x mfont_copy (MFont «font)
Make a copy of a font.

¢ void * mfont_get_prop (MFont xfont, MSymbol key)
Get a property value of a font.

* int mfont_put_prop (MFont +font, MSymbol key, void xval)

Put a property value to a font.

¢ MSymbol x mfont_selection_priority ()

Return the font selection priority.

« int mfont_set_selection_priority (MSymbol xkeys)

Set the font selection priority.

e MFont x mfont_find (MFrame x«frame, MFont xspec, int sscore, int max_size)
Find a font.

« int mfont_set_encoding (MFont xfont, MSymbol encoding_name, MSymbol repertory_name)

Set encoding of a font.

¢ char x« mfont_name (MFont xfont)

Create a fontname from a font.

¢ MFont x mfont_from_name (const char xname)

Create a new font from fontname.

¢ int mfont_resize_ratio (MFont xfont)

Get resize information of a font.

118 Module Documentation

* MPIlist « mfont_list (MFrame xframe, MFont xfont, MSymbol language, int maxnum)
Get a list of fonts.

* MPIlist « mfont_list_family_names (MFrame xframe)

Get a list of font famiy names.

« int mfont_check (MFrame xframe, MFontset «fontset, MSymbol script, MSymbol language, MFont
«font)

Check the usability of a font.

« int mfont_match_p (MFont «font, MFont *spec)

Check is a font matches with a font spec.

¢ MFont x mfont_open (MFrame xframe, MFont *font)

Open a font.

* MFont x mfont_encapsulate (MFrame xframe, MSymbol data_type, void «data)

Encapusulate a font.

¢ int mfont_close (MFont xfont)
Close a font.

Variables

* MPIist « mfont_freetype_path

List of font files and directories that contain font files.

Variables: Keys of font property.

¢ MSymbol Mfoundry
Key of font property specifying foundry.

MSymbol Mfamily
Key of font property specifying family.

* MSymbol Mweight
Key of font property specifying weight.

MSymbol Mstyle
Key of font property specifying style.

MSymbol Mstretch
Key of font property specifying stretch.

MSymbol Madstyle
Key of font property specifying additional style.

* MSymbol Mspacing
Key of font property specifying spacing.

2.19 Font 119

¢ MSymbol Mregistry
Key of font property specifying registry.

¢ MSymbol Msize
Key of font property specifying size.

¢ MSymbol Motf
Key of font property specifying file name.

* MSymbol Mfontfile
Key of font property specifying file name.

* MSymbol Mresolution
Key of font property specifying resolution.

* MSymbol Mmax_advance

Key of font property specifying max advance width.

¢ MSymbol Mfontconfig
Symbol of name "fontconfig".

* MSymbol Mx

Symbol of name "x".

¢ MSymbol Mfreetype
Symbol of name "freetype".

¢ MSymbol Mxft
Symbol of name "xft".

2.19.1 Detailed Description

Font object. The m17n GUI API represents a font by an object of the type MFont. A font can have font
properties. Like other types of properties, a font property consists of a key and a value. The key of a font
property must be one of the following symbols:

Mfoundry,Mfamily, Mweight, Mstyle, Mstretch, Madstyle, Mregistry, Msize,
Mresolution, Mspacing.

When the key of a font property is Msize or Mresolution, its value is an integer. Otherwise the value is a
symbol.

The notation "xxx property of F" means the font property that belongs to font F and whose key is Mxxx.
The value of a foundry property is a symbol representing font foundry information, e.g. adobe, misc, etc.
The value of a family property is a symbol representing font family information, e.g. times, helvetica, etc.
The value of a weight property is a symbol representing weight information, e.g. normal, bold, etc.

The value of a style property is a symbol representing slant information, e.g. normal, italic, etc.

The value of a stretch property is a symbol representing width information, e.g. normal, semicondensed, etc.

The value of an adstyle property is a symbol representing abstract font family information, e.g. serif, sans-serif,
etc.

120 Module Documentation

The value of a registry property is a symbol representing registry information, e.g. iso10646-1, is08895-1, etc.
The value of a size property is an integer representing design size in the unit of 1/10 point.

The value of a resolution property is an integer representing assumed device resolution in the unit of dots per
inch (dpi).

The value of a type property is a symbol indicating a font driver; currently Mx or Mfreetype.

The m17n library uses font objects for two purposes: to receive font specification from an application program,
and to present available fonts to an application program. When the m17n library presents an available font to an
application program, all font properties have a concrete value.

The m17n library supports three kinds of fonts: Window system fonts, FreeType fonts, and OpenType fonts.

¢ Window system fonts

The m17n-X library supports all fonts handled by an X server and an X font server. The correspondence

between XLFD fields and font properties are shown below.

XLFD field property
FOUNDRY foundry
FAMILY_ NAME family
WEIGHT_NAME weight
SLANT style
SETWIDTH_NAME stretch
ADD_STYLE_NAME adstyle
PIXEL_SIZE size
RESOLUTION_Y resolution
CHARSET_REGISTRY-CHARSET_ENCODING registry

XLFD fields not listed in the above table are ignored.

* FreeType fonts

The m17n library, if configured to use the FreeType library, supports all fonts that can be handled by the
FreeType library. The variable mfont_freetype_path (p. 128) is initialized properly according to the
configuration of the m17n library and the environment variable M1 7NDIR. See the documentation of the
variable for details.

If the m17n library is configured to use the fontconfig library, in addition to mfont_freetype_path (p. 128),
all fonts available via fontconfig are supported.

The family name of a FreeType font corresponds to the family property. Style names of FreeType fonts
correspond to the weight, style, and stretch properties as below.

style name weight style stretch
Regular medium r normal
Italic medium i normal
Bold bold r normal
Bold Italic bold i normal
Narrow medium r condensed
Narrow Italic medium i condensed
Narrow Bold bold r condensed
Narrow Bold Italic bold i condensed
Black black r normal
Black Italic black i normal
Oblique medium o normal
BoldOblique bold o normal

Style names not listed in the above table are treated as "Regular".

Combination of a platform ID and an encoding ID corresponds to the registry property. For example, if a
font has the combination (1 1), the registry property is 1-1. Some frequent combinations have a predefined
registry property as below.

2.19 Font 121

platform ID encoding ID registry property

0 3 unicode-bmp
0 4 unicode-full
1 0 apple—-roman
3 1 unicode-bmp
3 1 unicode-full

Thus, a font that has two combinations (1 0) and (3 1) corresponds to four font objects whose registries are
1-0, apple-roman, 3-1, and unicode-bmp.

* OpenType fonts

The m17n library, if configured to use both the FreeType library and the OTF library, supports any
OpenType fonts. The list of actually available fonts is created in the same way as in the case of FreeType
fonts. If a fontset instructs to use an OpenType font via an FLT (Font Layout Table), and the FLT has an
OTF-related command (e.g. otf:deva), the OTF library converts a character sequence to a glyph code
sequence according to the OpenType layout tables of the font, and the FreeType library gives a bitmap
image for each glyph.

2.19.2 Typedef Documentation
2.19.2.1 typedef struct MFont MFont

Type of fonts.

The type MFont (p. 121) is the structure defining fonts. It contains information about the following properties of
a font: foundry, family, weight, style, stretch, adstyle, registry, size, and resolution.

This structure is used both for specifying a font in a fontset and for storing information about available system
fonts.

The internal structure is concealed from an application program.

See Also:
mfont() (p. 121), mfont_from_name() (p. 123), mfont_find() (p. 123).

2.19.3 Function Documentation
2.19.3.1 MFontx mfont ()

Create a new font.
The mfont() (p. 121) function creates a new font object that has no property.

Return value:
This function returns a pointer to the created font object.

2.19.3.2 MFont+ mfont_parse_name (const char x« name, MSymbol format)

Create a font by parsing a fontname.

The mfont_parse_name() (p. 121) function creates a new font object. The properties are extracted fontname
name.

format specifies the format of name. If format is Mx (p. 127), name is parsed as XLFD (X Logical Font
Description). If format is Mfontconfig (p. 127), name is parsed as Fontconfig’s textual representation of font. If
format is Mnil (p. 17), name is at first parsed as XLFD, and it it fails, parsed as Fontconfig’s representation.

122 Module Documentation

Return value:
If the operation was successful, this function returns a pointer to the created font. Otherwise it returns NULL.

2.19.3.3 charx mfont_unparse_name (MFont x font, MSymbol format)

Create a fontname from a font.
The mfont_unparse_name() (p. 122) function creates a fontname string from font font according to format.

format must be Mx (p. 127) or Mfontconfig (p. 127). If it is Mx (p. 127), the fontname is in XLFD (X Logical
Font Description) format. If it is Mfontconfig (p. 127), the fontname is in the style of Fontconfig’s text
representation.

Return value:
This function returns a newly allocated fontname string, which is not freed unless the user explicitly does so
by free().

2.19.3.4 MFont+ mfont_copy (MFont x font)

Make a copy of a font.

The mfont_copy() (p. 122) function returns a new copy of font font.

2.19.3.5 void+ mfont_get_prop (MFont x font, MSymbol key)

Get a property value of a font.

The mfont_get_prop() (p. 122) function gets the value of key property of font font. key must be one of the
following symbols:

Mfoundry,Mfamily, Mweight, Mstyle, Mstretch, Madstyle, Mregistry, Msize,
Mresolution, Mspacing.

If font is a return value of mfont_find() (p. 123), key can also be one of the following symbols:

Mfont_ascent, Mfont_descent, Mmax_advance (p. 127).

Return value:
If key is Mfoundry, Mfamily, Mweight, Mstyle, Mstretch, Madstyle, Mregistry, or
Mspacing, this function returns the corresponding value as a symbol. If the font does not have key
property, it returns Mnil. If key is Msize, Mresolution, Mfont_ascent, Mfont_descent, or
Mmax_advance (p. 127), this function returns the corresponding value as an integer. If the font does not
have key property, it returns 0. If key is something else, it returns NULL and assigns an error code to the
external variable merror_code (p. 155).

2.19.3.6 int mfont_put_prop (MFont x font, MSymbol key, void * val)

Put a property value to a font.

The mfont_put_prop() (p. 122) function puts a font property whose key is key and value is val to font font. key
must be one of the following symbols:

Mfoundry,Mfamily, Mweight, Mstyle, Mstretch, Madstyle, Mregistry, Msize,
Mresolution.

If key is Msize or Mresolution, val must be an integer. Otherwise, val must be a symbol of a property value
name. But, if the name is "nil", a symbol of name "Nil" must be specified.

2.19 Font 123

2.19.3.7 MSymbolx mfont_selection_priority ()

Return the font selection priority.

The mfont_selection_priority() (p. 123) function returns a newly created array of six symbols. The elements are
the following keys of font properties ordered by priority.

Mfamily, Mweight,Mstyle, Mstretch, Madstyle, Msize.

The m17n library selects the best matching font according to the order of this array. A font that has a different
value for a property of lower priority is preferred to a font that has a different value for a property of higher
priority.

2.19.3.8 int mfont_set_selection_priority (MSymbol x keys)

Set the font selection priority.

The mfont_set_selection_priority() (p. 123) function sets font selection priority according to keys, which is an
array of six symbols. Each element must be one of the below. No two elements must be the same.

Mfamily, Mweight,Mstyle, Mstretch, Madstyle, Msize.

See the documentation of the function mfont_selection_priority() (p. 123) for details.

2.19.3.9 MFont+ mfont_find (MFrame * frame, MFont x spec, int x score, int max_size)

Find a font.

The mfont_find() (p. 123) function returns a pointer to the available font that matches best the specification spec
on frame frame.

score, if not NULL, must point to a place to store the score value that indicates how well the found font matches
to spec. The smaller score means a better match.

2.19.3.10 int mfont_set_encoding (MFont x font, MSymbol encoding_name, MSymbol repertory_name)

Set encoding of a font.

The mfont_set_encoding() (p. 123) function sets the encoding information of font font.

encoding_name is a symbol representing a charset that has the same encoding as the font.
repertory_name is Mnil or a symbol representing a charset that has the same repertory as the font. If it is

Mnil, whether a specific character is supported by the font is asked to each font driver.

Return value:
If the operation was successful, this function returns 0. Otherwise it returns -1 and assigns an error code to
the external variable merror_code (p. 155).

2.19.3.11 charx mfont_name (MFont * font)

Create a fontname from a font.

This function is obsolete. Use mfont_unparse_name instead.
2.19.3.12 MFontx mfont_from_name (const char x name)

Create a new font from fontname.

124 Module Documentation

This function is obsolete. Use mfont_parse_name() (p. 121) instead.

2.19.3.13 int mfont_resize_ratio (MFont * font)

Get resize information of a font.

The mfont_resize_ratio() (p. 124) function lookups the m17n database <font, reisize> and returns a resizing
ratio (in percentage) of FONT. For instance, if the return value is 150, that means that the m17n library uses an
1.5 time bigger font than a specified size.

2.19.3.14 MPIlist+ mfont_list (MFrame x frame, MFont x font, MSymbol language, int maxnum)

Get a list of fonts.

The mfont_list() (p. 124) functions returns a list of fonts available on frame frame. font, if not NULL, limits
fonts to ones that match with font. language, if not Mn1i1, limits fonts to ones that support language. maxnum,
if greater than 0, limits the number of fonts.

language argument exists just for backward compatibility, and the use is deprecated. Use Mlanguage (p. 48)
font property instead. If font already has Mlanguage (p. 48) property, language is ignored.

Return value:

This function returns a plist whose keys are family names and values are pointers to the object MFont. The
plist must be freed by m17n_object_unref() (p. 12). If no font is found, it returns NULL.

2.19.3.15 MPlist+ mfont_list_family_names (MFrame * frame)

Get a list of font famiy names.

The mfont_list_family_names() (p. 124) functions returns a list of font family names available on frame frame.
Return value:
This function returns a plist whose keys are Msymbol (p. 17) and values are symbols representing font family

names. The elements are sorted by alphabetical order. The plist must be freed by m17n_object_unref() (p. 12).
If not font is found, it returns NULL.

2.19.3.16 int mfont_check (MFrame * frame, MFontset x fontset, MSymbol script, MSymbol language,
MFont * font)

Check the usability of a font.

The mfont_check() (p. 124) function checkes if font can be used for script and language in fontset on frame.

Return value:
If the font is usable, return 1. Otherwise return 0.

2.19.3.17 int mfont_match_p (MFont « font, MFont * spec)

Check is a font matches with a font spec.

The mfont_match_p() (p. 124) function checks if font matches with the font-spec spec.

2.19 Font 125

Return value:
If the font matches, 1 is returned. Otherwise 0 is returned.

2.19.3.18 MFontx mfont_open (MFrame * frame, MFont * font)

Open a font.

The mfont_open() (p. 125) function opens font on frame, and returns a realized font.

Return value:
If the font was successfully opened, a realized font is returned. Otherwize NULL is returned.

See Also:
mfont_close() (p. 125).

2.19.3.19 MFontx mfont_encapsulate (MFrame x frame, MSymbol data_type, void x data)

Encapusulate a font.

The mfont_encapsulate() (p. 125) functions realizes a font by encapusulating data data or type data_type on
frame. Currently data_tape is Mfontconfig (p. 127) or Mfreetype (p. 127), and data points to an object of
FcPattern or FT_Face respectively.

Return value:
If the operation was successful, a realized font is returned. Otherwise NULL is return.

See Also:
mfont_close() (p. 125).

2.19.3.20 int mfont_close (MFont * font)

Close a font.

The mfont_close() (p. 125) function close a realized font font. font must be opened previously by mfont_open()
(p. 125) or mfont_encapsulate ().

Return value:
If the operation was successful, 0 is returned. Otherwise, -1 is returned.

See Also:

mfont_open() (p. 125), mfont_encapsulate() (p. 125).
2.19.4 Variable Documentation
2.19.4.1 MSymbol Mfoundry

Key of font property specifying foundry.

The variable Mfoundry (p. 125) is a symbol of name " foundry" and is used as a key of font property and face
property. The property value must be a symbol whose name is a foundry name of a font.

126 Module Documentation

2.194.2 MSymbol Mfamily

Key of font property specifying family.

The variable Mfamily (p. 126) is a symbol of name "family" and is used as a key of font property and face
property. The property value must be a symbol whose name is a family name of a font.

2.19.4.3 MSymbol Mweight

Key of font property specifying weight.

The variable Mweight (p. 126) is a symbol of name "weight" and is used as a key of font property and face
property. The property value must be a symbol whose name is a weight name of a font (e.g "medium", "bold").

2.19.4.4 MSymbol Mstyle

Key of font property specifying style.

The variable Mstyle (p. 126) is a symbol of name "style" and is used as a key of font property and face
property. The property value must be a symbol whose name is a style name of a font (e.g "r", "i", "0").

2.19.4.5 MSymbol Mstretch

Key of font property specifying stretch.

The variable Mstretch (p. 126) is a symbol of name "stretch" and is used as a key of font property and face
property. The property value must be a symbol whose name is a stretch name of a font (e.g "normal",
"condensed").

2.19.4.6 MSymbol Madstyle

Key of font property specifying additional style.

The variable Madstyle (p. 126) is a symbol of name "adstyle" and is used as a key of font property and face
property. The property value must be a symbol whose name is an additional style name of a font (e.g "serif", "",
"sans").

2.19.4.7 MSymbol Mspacing

Key of font property specifying spacing.

The variable Madstyle (p. 126) is a symbol of name "spacing" and is used as a key of font property. The
property value must be a symbol whose name specifies the spacing of a font (e.g "p" for proportional, "m" for
monospaced).

2.19.4.8 MSymbol Mregistry

Key of font property specifying registry.

The variable Mregistry (p. 126) is a symbol of name "registry" and is used as a key of font property. The
property value must be a symbol whose name is a registry name a font registry (e.g. "iso8859-1",
"jisx0208.1983-0").

2.19 Font 127

2.19.4.9 MSymbol Msize

Key of font property specifying size.

The variable Msize (p. 127) is a symbol of name "size" and is used as a key of font property and face property.
The property value must be an integer specifying a font design size in the unit of 1/10 point (on 100 dpi display).

2.19.4.10 MSymbol Motf

Key of font property specifying file name.

The variable Mfontfile (p. 127) is a symbol of name "fontfile" and is used as a key of font property. The
property value must be a symbol whose name is a font file name.

2.19.4.11 MSymbol Mfontfile

Key of font property specifying file name.

The variable Mfontfile (p. 127) is a symbol of name "fontfile" and is used as a key of font property. The
property value must be a symbol whose name is a font file name.

2.19.4.12 MSymbol Mresolution

Key of font property specifying resolution.

The variable Mresolution (p. 127) is a symbol of name "resolution™ and is used as a key of font property
and face property. The property value must be an integer to specifying a font resolution in the unit of dots per
inch (dpi).

2.19.4.13 MSymbol Mmax_advance

Key of font property specifying max advance width.

The variable Mmax_advance (p. 127) is a symbol of name "max-advance" and is used as a key of font
property. The property value must be an integer specifying a font’s max advance value by pixels.

2.19.4.14 MSymbol Mfontconfig

Symbol of name "fontconfig".

The variable Mfontconfig (p. 127) is to be used as an argument of the functions mfont_parse_name() (p. 121)
and mfont_unparse_name() (p. 122).

2.19.4.15 MSymbol Mx

nyn

Symbol of name "x".

The variable Mx (p. 127) is to be used for a value of <type> member of the structure MDrawGlyph (p. 170) to
specify the type of <fontp> member is actually (XFontStruct).

2.19.4.16 MSymbol Mfreetype

Symbol of name "freetype".

128 Module Documentation

The variable Mfreetype (p. 127) is to be used for a value of <type> member of the structure MDrawGlyph
(p. 170) to specify the type of <fontp> member is actually FT_Face.

2.194.17 MSymbol Mxft

Symbol of name "xft".

The variable Mxft (p. 128) is to be used for a value of <type> member of the structure MDrawGlyph (p. 170) to
specify the type of <fontp> member is actually (XftFont *).

2.19.4.18 MPIlistx mfont_freetype_path

List of font files and directories that contain font files.

The variable mfont_freetype_path is a plist of FreeType font files and directories that contain FreeType
font files. Key of the element is Mst ring, and the value is a string that represents a font file or a directory.

The macro M17N_INIT() (p. 7) sets up this variable to contain the sub-directory "fonts" of the m17n database
and the environment variable "M 17NDIR". The first call of mframe() (p. 114) creates the internal list of the
actually available fonts from this variable. Thus, an application program, if necessary, must modify the variable
before calling mframe() (p. 114). If it is going to add a new element, value must be a string that can be safely
freed.

If the m17n library is not configured to use the FreeType library, this variable is not used.

2.20 Fontset 129

2.20 Fontset

A fontset is an object that maps a character to fonts.

Functions

 MFontset + mfontset (char *name)

Return a fontset.

* MSymbol mfontset_name (MFontset «fontset)

Return the name of a fontset.

* MFontset « mfontset_copy (MFontset xfontset, char xname)

Make a copy of a fontset.

« int mfontset_modify_entry (MFontset xfontset, MSymbol script, MSymbol language, MSymbol
charset, MFont «spec, MSymbol layouter_name, int how)

Modify the contents of a fontset.

MPIist « mfontset_lookup (MFontset «fontset, MSymbol script, MSymbol language, MSymbol charset)

Lookup a fontset.

2.20.1 Detailed Description

A fontset is an object that maps a character to fonts. A fontset is an object of the type MFont set. When
drawing an M-text, a fontset provides rules to select a font for each character in the M-text according to the
following information.

 The script character property of a character.
» The language text property of a character.

* The charset text property of a character.

The documentation of mdraw_text() (p. 145) describes how that information is used.

2.20.2 Function Documentation
2.20.2.1 MFontset * mfontset (char x name)

Return a fontset.

The mfontset() (p. 129) function returns a pointer to a fontset object of name name. If name is NULL, it returns
a pointer to the default fontset.

If no fontset has the name name, a new one is created. At that time, if there exists a data <fontset, name> in
the m17n database, the fontset contents are initialized according to the data. If no such data exists, the fontset
contents are left vacant.

The macro M17N_INIT() (p. 7) creates the default fontset. An application program can modify it before the first
call of mframe() (p. 114).

130 Module Documentation

Return value:
This function returns a pointer to the found or newly created fontset.

2.20.2.2 MSymbol mfontset_name (MFontset * fontsef)

Return the name of a fontset.

The mfontset_name() (p. 130) function returns the name of fontset fontset.

2.20.2.3 MFontset « mfontset_copy (MFontset * fontset, char x name)

Make a copy of a fontset.

The mfontset_copy() (p. 130) function makes a copy of fontset fontset, gives it a name name, and returns a
pointer to the created copy. name must not be a name of existing fontset. In such case, this function returns
NULL without making a copy.

2.20.2.4 int mfontset_modify_entry (MFontset * fontset, MSymbol script, MSymbol language, MSymbol
charset, MFont x spec, MSymbol layouter_name, int how)

Modify the contents of a fontset.

The mfontset_modify_entry() (p. 130) function associates, in fontset fontset, a copy of font with the script /
language pair or with charset.

Each font in a fontset is associated with a particular script/language pair, with a particular charset, or with the
symbol Mn1il. The fonts that are associated with the same item make a group.

If script is not Mn1i1, it must be a symbol identifying a script. In this case, language is either a symbol
identifying a language or Mn1i1, and font is associated with the script / language pair.

If charset is not Mn1i1, it must be a symbol representing a charset object. In this case, font is associated with that
charset.

If both script and charset are not Mni 1, two copies of font are created. Then one is associated with the script /
language pair and the other with that charset.

If both script and charset are Mn1i1, font is associated with Mni1. This kind of fonts are called fallback fonts.

The argument how specifies the priority of font. If how is positive, font has the highest priority in the group of
fonts that are associated with the same item. If how is negative, font has the lowest priority. If how is zero, font
becomes the only available font for the associated item; all the other fonts are removed from the group.

If layouter_name is not Mni 1, it must be a symbol representing a Font Layout Table (p. 211) (font layout
table). In that case, if font is selected for drawing an M-text, that font layout table is used to generate a glyph
code sequence from a character sequence.

Return value:
If the operation was successful, mfontset_modify_entry() (p. 130) returns 0. Otherwise it returns -1 and
assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_SYMBOL

2.20.2.5 MPlist x mfontset_lookup (MFontset x fontset, MSymbol script, MSymbol language, MSymbol
charset)

Lookup a fontset.

2.20 Fontset 131

The mfontset_lookup() (p. 130) function lookups fontset and returns a plist that describes the contents of fontset
corresponding to the specified script, language, and charset.

If script is Mt, keys of the returned plist are script name symbols for which some fonts are specified and values
are NULL.

If script is a script name symbol, the returned plist is decided by language.

« If language is Mt, keys of the plist are language name symbols for which some fonts are specified and
values are NULL. A key may be Mt which means some fallback fonts are specified for the script.

« If language is a language name symbol, the plist is a FONT-GROUP for the specified script and language.
FONT-GROUP is a plist whose keys are FLT (FontLayoutTable) name symbols (Mt if no FLT is associated
with the font) and values are pointers to MFont (p. 121).

« If language is Mnil, the plist is fallback FONT-GROUP for the script.

If script is Mn1i 1, the returned plist is decided as below.

« If charset is Mt, keys of the returned plist are charset name symbols for which some fonts are specified
and values are NULL.

« If charset is a charset name symbol, the plist is a FONT-GROUP for the charset.

* If charset is Mni1, the plist is a fallback FONT-GROUP.

Return value:
It returns a plist describing the contents of a fontset. The plist should be freed by m17n_object_unref()

(p- 12).

132 Module Documentation

2.21 Face

A face is an object to control appearance of M-text.

Data Structures

¢ struct MFaceHLineProp
Type of horizontal line spec of face.

* struct MFaceBoxProp
Type of box spec of face.

Typedefs

¢ typedef struct MFace MFace
Type of faces.

* typedef void(x* MFaceHookFunc)(MFace xface, void *arg, void xinfo)
Type of hook function of face.

Functions

¢ MFace *« mface ()

Create a new face.

¢ MFace x mface_copy (MFace xface)
Make a copy of a face.

« int mface_equal (MFace xfacel, MFace xface2)

Compare faces.

* MFace x mface_merge (MFace xdst, MFace *src)

Merge faces.

¢ MFace *« mface_from_font (MFont «font)

Make a face from a font.

* void * mface_get_prop (MFace xface, MSymbol key)
Get the value of a face property.

* MFaceHookFunc mface_get_hook (MFace xface)

Get the hook function of a face.

« int mface_put_prop (MFace «face, MSymbol key, void *val)

Set a value of a face property.

 int mface_put_hook (MFace xface, MFaceHookFunc func)

Set a hook function to a face.

2.21 Face

133

¢ void mface_update (MFrame xframe, MFace xface)

Update a face.

Variables: Keys of face property

MSymbol Mforeground
Key of a face property specifying foreground color.

* MSymbol Mbackground
Key of a face property specifying background color.

¢ MSymbol Mvideomode
Key of a face property specifying video mode.

¢ MSymbol Mratio
Key of a face property specifying font size ratio.

* MSymbol Mhline
Key of a face property specifying horizontal line.

¢ MSymbol Mbox
Key of a face property specifying box.

* MSymbol Mfontset
Key of a face property specifying fontset.

¢ MSymbol Mhook_func
Key of a face property specifying hook.

¢ MSymbol Mhook_arg
Key of a face property specifying argument of hook.

Variables: Possible values of #Mvideomode property of face

See the documentation of the variable Mvideomode (p. 138).

¢ MSymbol Mnormal
¢ MSymbol Mreverse
Variables: Predefined faces

¢ MFace * mface_normal_video

Normal video face.

e MFace * mface_reverse_video

Reverse video face.

134

Module Documentation

MFace *x mface_underline

Underline face.

MPFace * mface_medium
Medium face.

MPFace * mface_bold
Bold face.

MFace * mface_italic
Italic face.

MFace * mface_bold_italic
Bold italic face.

MFace * mface_xx_small

Smallest face.

MPFace * mface_x_small

Smaller face.

MFace * mface_small
Small face.

MPFace * mface_normalsize

Normalsize face.

MFace x mface_large

Large face.

MPFace * mface_x_large
Larger face.

MFace « mface_xx_large

Largest face.

MFace * mface_black
Black face.

MPFace * mface_white
White face.

MFace * mface_red
Red face.

MFace « mface_green

Green face.

MFace * mface_blue
Blue face.

MFace * mface_cyan

2.21 Face 135

Cyan face.

* MFace x mface_yellow

yellow face.

¢ MFace x mface_magenta

Magenta face.

Variables: The other symbols for face handling.

¢ MSymbol Mface
Key of a text property specifying a face.

2.21.1 Detailed Description

A face is an object to control appearance of M-text. A face is an object of the type MFace (p. 135) and controls
how to draw M-texts. A face has a fixed number of face properties. Like other types of properties, a face
property consists of a key and a value. A key is one of the following symbols:

Mforeground (p. 137), Mbackground (p. 138), Mvideomode (p. 138), Mhline (p. 138), Mbox (p. 138),
Mfoundry (p. 125), Mfamily (p. 126), Mweight (p. 126), Mstyle (p. 126), Mstretch (p. 126), Madstyle (p. 126),
Msize (p. 127), Mfontset (p. 139), Mratio (p. 138), Mhook_func (p. 139), Mhook_arg (p. 139)

The notation "xxx property of F" means the face property that belongs to face F and whose key is Mxxx.

The M-text drawing functions first search an M-text for the text property whose key is the symbol Mface
(p. 142), then draw the M-text using the value of that text property. This value must be a pointer to a face object.

If there are multiple text properties whose key is Mface, and they are not conflicting one another, properties of
those faces are merged and used.

If no faces specify a certain property, the value of the default face is used.

2.21.2 Typedef Documentation
2.21.2.1 typedef struct MFace MFace

Type of faces.

The type MFace (p. 135) is the structure of face objects. The internal structure is concealed from an application
program.

2.21.2.2 typedef void(x MFaceHookFunc)(MFace xface, void xarg, void *info)
Type of hook function of face.

MFaceHookFunc (p. 135) is a type of a hook function of a face.

2.21.3 Function Documentation

2.21.3.1 MPFacex mface ()

Create a new face.

136 Module Documentation

The mface() (p. 135) function creates a new face object that specifies no property.

Return value:
This function returns a pointer to the created face.

2.21.3.2 MFacex mface_copy (MFace * face)

Make a copy of a face.

The mface_copy() (p. 136) function makes a copy of face and returns a pointer to the created copy.

2.21.3.3 int mface_equal (MFace * facel, MFace * face2)

Compare faces.
The mface_equal() (p. 136) function compares faces facel and face2.

Return value:
If two faces have the same property values, return 1. Otherwise return 0.

2.21.3.4 MFacex mface_merge (MFace * dst, MFace * src)

Merge faces.
The mface_merge() (p. 136) functions merges the properties of face src into dst.

Return value:
This function returns dst.

2.21.3.5 MFacex mface_from_font (MFont x font)

Make a face from a font.

The mface_from_font() (p. 136) function return a newly created face while reflecting the properties of font in its
properties.

2.21.3.6 void+ mface_get_prop (MFace * face, MSymbol key)

Get the value of a face property.

The mface_get_prop() (p. 136) function returns the value of the face property whose key is key in face face. key
must be one of the followings:

Mforeground (p. 137), Mbackground (p. 138), Mvideomode (p. 138), Mhline (p. 138), Mbox (p. 138),
Mfoundry (p. 125), Mfamily (p. 126), Mweight (p. 126), Mstyle (p. 126), Mstretch (p. 126), Madstyle (p. 126),
Msize (p. 127), Mfontset (p. 139), Mratio (p. 138), Mhook_func (p. 139), Mhook_arg (p. 139)

Return value:
The actual type of the returned value depends of key. See documentation of the above keys. If an error is
detected, it returns NULL and assigns an error code to the external variable merror_code (p. 155).

See Also:
mface_put_prop() (p. 137), mface_put_hook() (p. 137)

2.21 Face 137

Errors:
MERROR_FACE

2.21.3.7 MFaceHookFunc mface_get_hook (MFace * face)

Get the hook function of a face.

The mface_get_hook() (p. 137) function returns the hook function of face face.

2.21.3.8 int mface_put_prop (MFace * face, MSymbol key, void * val)

Set a value of a face property.

The mface_put_prop() (p. 137) function assigns val to the property whose key is key in face face. key must be
one the followings:

Mforeground (p. 137), Mbackground (p. 138), Mvideomode (p. 138), Mhline (p. 138), Mbox (p. 138),
Mfoundry (p. 125), Mfamily (p. 126), Mweight (p. 126), Mstyle (p. 126), Mstretch (p. 126), Madstyle (p. 126),
Msize (p. 127), Mfontset (p. 139), Mratio (p. 138), Mhook_func (p. 139), Mhook_arg (p. 139)

Among them, font related properties (Mfoundry (p. 125) through Msize (p. 127)) are used as the default values
when a font in the fontset of face does not specify those values.

The actual type of the returned value depends of key. See documentation of the above keys.

Return value:
If the operation was successful, mface_put_prop() (p. 137) returns 0. Otherwise it returns -1 and assigns an
error code to the external variable merror_code (p. 155).

See Also:
mface_get_prop() (p. 136)

Errors:
MERROR_FACE

2.21.3.9 int mface_put_hook (MFace * face, MFaceHookFunc func)
Set a hook function to a face.

The mface_set_hook() function sets the hook function of face face to func.
2.21.3.10 void mface_update (MFrame * frame, MFace * face)

Update a face.

The mface_update() (p. 137) function update face face on frame frame by calling a hook function of face (if
any).

2.21.4 Variable Documentation
2.21.4.1 MSymbol Mforeground

Key of a face property specifying foreground color.

138 Module Documentation

The variable Mforeground (p. 137) is used as a key of face property. The property value must be a symbol
whose name is a color name, or Mnil (p. 17).

Mnil (p. 17) means that the face does not specify a foreground color. Otherwise, the foreground of an M-text is
drawn by the specified color.

2.21.4.2 MSymbol Mbackground

Key of a face property specifying background color.

The variable Mbackground (p. 138) is used as a key of face property. The property value must be a symbol
whose name is a color name, or Mnil (p. 17).

Mnil (p. 17) means that the face does not specify a background color. Otherwise, the background of an M-text is
drawn by the specified color.

2.21.4.3 MSymbol Mvideomode

Key of a face property specifying video mode.

The variable Mvideomode (p. 138) is used as a key of face property. The property value must be Mnormal,
Mreverse, or Mnil (p. 17).

Mnormal means that an M-text is drawn in normal video mode (i.e. the foreground is drawn by foreground
color, the background is drawn by background color).

Mreverse means that an M-text is drawn in reverse video mode (i.e. the foreground is drawn by background
color, the background is drawn by foreground color).

Mnil (p. 17) means that the face does not specify a video mode.

2.21.44 MSymbol Mratio

Key of a face property specifying font size ratio.
The variable Mratio (p. 138) is used as a key of face property. The value RATIO must be an integer.

The value 0 means that the face does not specify a font size ratio. Otherwise, an M-text is drawn by a font of size
(FONTSIZE RATIO / 100) where FONTSIZE is a font size specified by the face property Msize (p. 127).

2.21.4.5 MSymbol Mhline

Key of a face property specifying horizontal line.

The variable Mhline (p. 138) is used as a key of face property. The value must be a pointer to an object of type
MFaceHLineProp (p. 177), or NULL.

The value NULL means that the face does not specify this property. Otherwise, an M-text is drawn with a
horizontal line by a way specified by the object that the value points to.

2.21.4.6 MSymbol Mbox

Key of a face property specifying box.

The variable Mbox (p. 138) is used as a key of face property. The value must be a pointer to an object of type
MFaceBoxProp (p. 176), or NULL.

The value NULL means that the face does not specify a box. Otherwise, an M-text is drawn with a surrounding
box by a way specified by the object that the value points to.

2.21 Face 139

2.21.4.7 MSymbol Mfontset

Key of a face property specifying fontset.

The variable Mfontset (p. 139) is used as a key of face property. The value must be a pointer to an object of type
Mfontset (p. 139), or NULL.

The value NULL means that the face does not specify a fontset. Otherwise, an M-text is drawn with a font
selected from what specified in the fontset.

2.21.4.8 MSymbol Mhook_func

Key of a face property specifying hook.

The variable Mhook_func (p. 139) is used as a key of face property. The value must be a function of type
MFaceHookFunc (p. 135), or NULL.

The value NULL means that the face does not specify a hook. Otherwise, the specified function is called before
the face is realized.

2.21.4.9 MSymbol Mhook_arg

Key of a face property specifying argument of hook.

The variable Mhook_arg (p. 139) is used as a key of face property. The value can be anything that is passed a
hook function specified by the face property Mhook_func (p. 139).

2.21.4.10 MSymbol Mnormal
2.21.4.11 MSymbol Mreverse
2.21.4.12 MFacex mface_normal_video

Normal video face.

The variable mface_normal_video (p. 139) points to a face that has the Mvideomode (p. 138) property with
value Mnormal. The other properties are not specified. An M-text drawn with this face appear normal colors
(i.e. the foreground is drawn by foreground color, and background is drawn by background color).

2.21.4.13 MFacex mface_reverse_video

Reverse video face.

The variable mface_reverse_video (p. 139) points to a face that has the Mvideomode (p. 138) property with
value Mreverse. The other properties are not specified. An M-text drawn with this face appear in reversed colors
(i.e. the foreground is drawn by background color, and background is drawn by foreground color).

2.21.4.14 MFacex mface_underline

Underline face.

The variable mface_underline (p. 139) points to a face that has the Mhline (p. 138) property with value a pointer
to an object of type MFaceHLineProp (p. 177). The members of the object are as follows:

member value

140 Module Documentation

type MFACE_HLINE_UNDER
width 1
color Mnil

The other properties are not specified. An M-text that has this face is drawn with an underline.

2.21.4.15 MFacex mface_medium

Medium face.

The variable mface_medium (p. 140) points to a face that has the Mweight (p. 126) property with value a
symbol of name "medium". The other properties are not specified. An M-text that has this face is drawn with a
font of medium weight.

2.21.4.16 MFacex mface_bold

Bold face.

The variable mface_bold (p. 140) points to a face that has the Mweight (p. 126) property with value a symbol of
name "bold". The other properties are not specified. An M-text that has this face is drawn with a font of bold
weight.

2.21.4.17 MFacex mface_italic

Italic face.

The variable mface_italic (p. 140) points to a face that has the Mstyle (p. 126) property with value a symbol of
name "italic". The other properties are not specified. An M-text that has this face is drawn with a font of italic
style.

2.21.4.18 MFacex mface_bold_italic

Bold italic face.

The variable mface_bold_italic (p. 140) points to a face that has the Mweight (p. 126) property with value a
symbol of name "bold", and Mstyle (p. 126) property with value a symbol of name "italic". The other properties
are not specified. An M-text that has this face is drawn with a font of bold weight and italic style.

2.21.4.19 MFacex mface_xx_small

Smallest face.

The variable mface_xx_small (p. 140) points to a face that has the Mratio (p. 138) property with value 50. The
other properties are not specified. An M-text that has this face is drawn with a font whose size is 50% of a normal
font.

2.21.4.20 MFace* mface_x_small

Smaller face.

The variable mface_x_small (p. 140) points to a face that has the Mratio (p. 138) property with value 66. The
other properties are not specified. An M-text that has this face is drawn with a font whose size is 66% of a normal
font.

2.21 Face 141

2.21.4.21 MFacex mface_small

Small face.

The variable mface_x_small (p. 140) points to a face that has the Mratio (p. 138) property with value 75. The
other properties are not specified. An M-text that has this face is drawn with a font whose size is 75% of a normal
font.

2.21.4.22 MFacex mface_normalsize

Normalsize face.

The variable mface_normalsize (p. 141) points to a face that has the Mratio (p. 138) property with value 100.
The other properties are not specified. An M-text that has this face is drawn with a font whose size is the same as
a normal font.

2.21.4.23 MFacex mface_large

Large face.

The variable mface_large (p. 141) points to a face that has the Mratio (p. 138) property with value 120. The
other properties are not specified. An M-text that has this face is drawn with a font whose size is 120% of a
normal font.

2.21.4.24 MFace+ mface_x_large

Larger face.

The variable mface_x_large (p. 141) points to a face that has the Mratio (p. 138) property with value 150. The
other properties are not specified. An M-text that has this face is drawn with a font whose size is 150% of a
normal font.

2.21.4.25 MFacex mface_xx_large

Largest face.

The variable mface_xx_large (p. 141) points to a face that has the Mratio (p. 138) property with value 200. The
other properties are not specified. An M-text that has this face is drawn with a font whose size is 200% of a
normal font.

2.21.4.26 MFacex mface_black

Black face.

The variable mface_black (p. 141) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "black". The other properties are not specified. An M-text that has this face is drawn with black
foreground.

2.21.4.27 MFacex mface_white

White face.

The variable mface_white (p. 141) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "white". The other properties are not specified. An M-text that has this face is drawn with white
foreground.

142 Module Documentation

2.21.4.28 MFacex mface_red

Red face.

The variable mface_red (p. 142) points to a face that has the Mforeground (p. 137) property with value a symbol
of name "red". The other properties are not specified. An M-text that has this face is drawn with red foreground.

2.21.4.29 MFace* mface_green

Green face.

The variable mface_green (p. 142) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "green". The other properties are not specified. An M-text that has this face is drawn with green
foreground.

2.21.4.30 MFacex mface_blue

Blue face.

The variable mface_blue (p. 142) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "blue". The other properties are not specified. An M-text that has this face is drawn with blue
foreground.

2.21.4.31 MFacex mface_cyan

Cyan face.

The variable mface_cyan (p. 142) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "cyan". The other properties are not specified. An M-text that has this face is drawn with cyan
foreground.

2.21.4.32 MFace* mface_yellow

yellow face.

The variable mface_yellow (p. 142) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "yellow". The other properties are not specified. An M-text that has this face is drawn with
yellow foreground.

2.21.4.33 MFacex mface_magenta

Magenta face.

The variable mface_magenta (p. 142) points to a face that has the Mforeground (p. 137) property with value a
symbol of name "magenta". The other properties are not specified. An M-text that has this face is drawn with
magenta foreground.

2.21.4.34 MSymbol Mface

Key of a text property specifying a face.

The variable Mface (p. 142) is a symbol of name "face". A text property whose key is this symbol must have a
pointer to an object of type MFace (p. 135). This is a managing key.

2.22 Drawing

143

2.22 Drawing

Drawing M-texts on a window.

Data Structures

¢ struct MDrawControl

Type of a text drawing control.

¢ struct MDrawMetric

Type of metric for glyphs and texts.

¢ struct MDrawGlyphlInfo
Type of information about a glyph.

* struct MDrawGlyph
Type of information about a glyph metric and font.

Typedefs

¢ typedef void * MDrawWindow

Window system dependent type for a window.

¢ typedef void x MDrawRegion
Window system dependent type for a region.

Functions

 int mdraw_text (MFrame xframe, MDrawWindow win, int X, int y, MText xmt, int from, int to)

Draw an M-text on a window.

* int mdraw_image_text (MFrame +frame, MDrawWindow win, int X, int y, MText «mt, int from, int to)

Draw an M-text on a window as an image.

 int mdraw_text_with_control (MFrame xframe, MDrawWindow win, int x, int y, MText «mt, int from,

int to, MDrawControl xcontrol)

Draw an M-text on a window with fine control.

¢ int mdraw_text_extents (MFrame xframe, MText «mt, int from, int to, MDrawControl xcontrol,
MDrawMetric xoverall_ink_return, MDrawMaetric xoverall_logical_return, MDrawMetric
xoverall_line_return)

Compute text pixel width.

* int mdraw_text_per_char_extents (MFrame xframe, MText «mt, int from, int to, MDrawControl
xcontrol, MDrawMetric xink_array_return, MDrawMetric xlogical_array_return, int array_size, int
sxnum_chars_return, MDrawMetric *xoverall_ink_return, MDrawMaetric xoverall_logical_return)

Compute the text dimensions of each character of M-text.

144 Module Documentation

* int mdraw_coordinates_position (MFrame «frame, MText xmt, int from, int to, int x_offset, int
y_offset, MDrawControl xcontrol)

Return the character position nearest to the coordinates.

 int mdraw_glyph_info (MFrame xframe, MText +mt, int from, int pos, MDrawControl xcontrol,
MDrawGlyphlInfo *info)

Compute information about a glyph.

* int mdraw_glyph_list (MFrame xframe, MText «mt, int from, int to, MDrawControl xcontrol,
MDrawGlyph xglyphs, int array_size, int xnum_glyphs_return)

Compute information about glyph sequence.

¢ void mdraw_text_items (MFrame xframe, MDrawWindow win, int x, int y, MDrawTextItem xitems,
int nitems)

Draw one or more textitems.

¢ int mdraw_default_line_break (MText xmt, int pos, int from, int to, int line, int y)

Calculate a line breaking position.

* void mdraw_per_char_extents (MFrame xframe, MText xmt, MDrawMetric xarray_return,
MDrawMetric xoverall_return)

Obtain per character dimension information.

¢ void mdraw_clear_cache (MText xmt)

clear cached information.

Variables

¢ int mdraw_line_break_option

Option of line breaking for drawing text.

2.22.1 Detailed Description

Drawing M-texts on a window. The m17n GUI API provides functions to draw M-texts.

The fonts used for drawing are selected automatically based on the fontset and the properties of a face. A face
also specifies the appearance of M-texts, i.e. font size, color, underline, etc.

The drawing format of M-texts can be controlled in a variety of ways, which provides powerful 2-dimensional
layout facility.

2.22.2 Typedef Documentation
2.22.2.1 typedef void+ MDrawWindow

Window system dependent type for a window.

The type MDrawWindow (p. 144) is for a window; a rectangular area that works in several ways like a miniature
screen.

What it actually points depends on a window system. A program that uses the m17n-X library must coerce the
type Drawable to this type.

2.22 Drawing 145

2.22.2.2 typedef void+ MDrawRegion

Window system dependent type for a region.

The type MDrawRegion (p. 145) is for a region; an arbitrary set of pixels on the screen (typically a rectangular
area).

What it actually points depends on a window system. A program that uses the m17n-X library must coerce the
type Region to this type.

2.22.3 Function Documentation

2.22.3.1 int mdraw_text (MFrame * frame, MDrawWindow win, int x, int y, MText x mt, int from, int
to)

Draw an M-text on a window.

The mdraw_text() (p. 145) function draws the text between from and to of M-text mt on window win of frame
frame at coordinate (X, y).

The appearance of the text (size, style, color, etc) is specified by the value of the text property whose key is
Mface. If the M-text or a part of the M-text does not have such a text property, the default face of frame is used.

The font used to draw a character in the M-text is selected from the value of the fontset property of a face by the
following algorithm:

1. Search the text properties given to the character for the one whose key is Mcharset; its value should be
either a symbol specifying a charset or Mnil (p. 17). If the value is Mnil (p. 17), proceed to the next step.

Otherwise, search the mapping table of the fontset for the charset. If no entry is found proceed to the next
step.

If an entry is found, use one of the fonts in the entry that has a glyph for the character and that matches best
with the face properties. If no such font exists, proceed to the next step.

2. Get the character property "script” of the character. If it is inherited, get the script property from the
previous characters. If there is no previous character, or none of them has the script property other than
inherited, proceed to the next step.

Search the text properties given to the character for the one whose key is M1anguage; its value should be
either a symbol specifying a language or Mnil.

Search the mapping table of the fontset for the combination of the script and language. If no entry is found,
proceed to the next step.

If an entry is found, use one of the fonts in the entry that has a glyph for the character and that matches best
with the face properties. If no such font exists, proceed to the next step.

3. Search the fall-back table of the fontset for a font that has a glyph of the character. If such a font is found,
use that font.

If no font is found by the algorithm above, this function draws an empty box for the character.

This function draws only the glyph foreground. To specify the background color, use mdraw_image_text()
(p. 146) or mdraw_text_with_control() (p. 146).

This function is the counterpart of XDrawString (), XmbDrawString (), and XwcDrawString ()
functions in the X Window System.

Return value:
If the operation was successful, mdraw_text() (p. 145) returns 0. If an error is detected, it returns -1 and
assigns an error code to the external variable merror_code (p. 155).

146 Module Documentation

Errors:
MERROR_RANGE

See Also:
mdraw_image_text() (p. 146)

2.22.3.2 int mdraw_image_text (MFrame x frame, MDrawWindow win, int x, int y, MText x mt, int
from, int to)

Draw an M-text on a window as an image.

The mdraw_image_text() (p. 146) function draws the text between from and to of M-text mt as image on
window win of frame frame at coordinate (X, y).

The way to draw a text is the same as in mdraw_text() (p. 145) except that this function also draws the
background with the color specified by faces.

This function is the counterpart of XDrawImageString (), XmbDrawImageString (), and
XwcDrawImageString () functions in the X Window System.

Return value:
If the operation was successful, mdraw_image_text() (p. 146) returns 0. If an error is detected, it returns -1
and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

See Also:
mdraw_text() (p. 145)

2.22.3.3 int mdraw_text_with_control (MFrame * frame, MDrawWindow win, int x, int y, MText x mf,
int from, int to, MDrawControl * control)

Draw an M-text on a window with fine control.

The mdraw_text_with_control() (p. 146) function draws the text between from and to of M-text mt on
windows win of frame frame at coordinate (x, y).

The way to draw a text is the same as in mdraw_text() (p. 145) except that this function also follows what
specified in the drawing control object control.

For instance, if <two_dimensional> of control is nonzero, this function draw an M-text 2-dimensionally, i.e.,
newlines in M-text breaks lines and the following characters are drawn in the next line. See the documentation of
the structure @ MDrawControl (p. 166) for more detail.

2.22.3.4 int mdraw_text_extents (MFrame x frame, MText x mt, int from, int fo, MDrawControl
x control, MDrawMetric x overall_ink_return, MDrawMetric * overall_logical_return,
MDrawMetric * overall_line_return)

Compute text pixel width.

The mdraw_text_extents() (p. 146) function computes the width of text between from and to of M-text mt
when it is drawn on a window of frame frame using the mdraw_text_with_control() (p. 146) function with the
drawing control object control.

2.22 Drawing 147

If overall_ink_return is not NULL, this function also computes the bounding box of character ink of the M-text,
and stores the results in the members of the structure pointed to by overall_ink_return. If the M-text has a face
specifying a surrounding box, the box is included in the bounding box.

If overall_logical_return is not NULL, this function also computes the bounding box that provides minimum
spacing to other graphical features (such as surrounding box) for the M-text, and stores the results in the
members of the structure pointed to by overall_logical_return.

If overall_line_return is not NULL, this function also computes the bounding box that provides minimum
spacing to the other M-text drawn, and stores the results in the members of the structure pointed to by
overall_line_return. This is a union of overall_ink_return and overall_logical_return if the members
min_line_ascent, min_line_descent, max_line_ascent, and max_line_descent of control are all zero.

Return value:
This function returns the width of the text to be drawn in the unit of pixels. If control->two_dimensional is
nonzero and the text is drawn in multiple physical lines, it returns the width of the widest line. If an error
occurs, it returns -1 and assigns an error code to the external variable merror_code (p. 155).

Errors:
MERROR_RANGE

2.22.3.5 int mdraw_text_per_char_extents (MFrame x frame, MText x mt, int from, int
to, MDrawControl *x control, MDrawMetric * ink_array_return, MDrawMetric
x logical_array_return, int array_size, int x num_chars_return, MDrawMetric x
overall_ink_return, MDrawMaetric * overall_logical_return)

Compute the text dimensions of each character of M-text.

The mdraw_text_per_char_extents() (p. 147) function computes the drawn metric of each character between
from and to of M-text mt assuming that they are drawn on a window of frame frame using the
mdraw_text_with_control() (p. 146) function with the drawing control object control.

array_size specifies the size of ink_array_return and logical_array_return. Each successive element of
ink_array_return and logical_array_return are set to the drawn ink and logical metrics of successive
characters respectively, relative to the drawing origin of the M-text. The number of elements of
ink_array_return and logical_array_return that have been set is returned to num_chars_return.

If array_size is too small to return all metrics, the function returns -1 and store the requested size in
num_chars_return. Otherwise, it returns zero.

If pointer overall_ink_return and overall_logical_return are not NULL, this function also computes the metrics
of the overall text and stores the results in the members of the structure pointed to by overall_ink_return and
overall_logical_return.

If control->two_dimensional is nonzero, this function computes only the metrics of characters in the first line.

2.22.3.6 int mdraw_coordinates_position (MFrame * frame, MText x mt, int from, int to, int x_offset,
int y_offset, MDrawControl * control)

Return the character position nearest to the coordinates.

The mdraw_coordinates_position() (p. 147) function checks which character is to be drawn at coordinate (X, y)
when the text between from and to of M-text mt is drawn at the coordinate (0, 0) using the
mdraw_text_with_control() (p. 146) function with the drawing control object control. Here, the character
position means the number of characters that precede the character in question in mt, that is, the character
position of the first character is 0.

frame is used only to get the default face information.

148 Module Documentation

Return value:
If the glyph image of a character covers coordinate (x, y), mdraw_coordinates_position() (p. 147) returns
the character position of that character.
If y is less than the minimum Y-coordinate of the drawn area, it returns from.
If y is greater than the maximum Y-coordinate of the drawn area, it returns to.
If y fits in with the drawn area but x is less than the minimum X-coordinate, it returns the character position
of the first character drawn on the line y.
If y fits in with the drawn area but x is greater than the maximum X-coordinate, it returns the character
position of the last character drawn on the line y.

2.22.3.7 int mdraw_glyph_info (MFrame * frame, MText x mt, int from, int pos, MDrawControl *
control, MDrawGlyphlInfo x info)

Compute information about a glyph.

The mdraw_glyph_info() (p. 148) function computes information about a glyph that covers a character at
position pos of the M-text mt assuming that the text is drawn from the character at from of mt on a window of
frame frame using the mdraw_text_with_control() (p. 146) function with the drawing control object control.

The information is stored in the members of info.

See Also:
MDrawGlyphlInfo (p. 172)

2.22.3.8 int mdraw_glyph_list (MFrame * frame, MText x mt, int from, int fo, MDrawControl * control,
MDrawGlyph * glyphs, int array_size, int x num_glyphs_return)
Compute information about glyph sequence.

The mdraw_glyph_list() (p. 148) function computes information about glyphs corresponding to the text between
from and to of M-text mt when it is drawn on a window of frame frame using the mdraw_text_with_control()
(p- 146) function with the drawing control object control. glyphs is an array of objects to store the information,
and array_size is the array size.

If array_size is large enough to cover all glyphs, it stores the number of actually filled elements in the place
pointed by num_glyphs_return, and returns 0.

Otherwise, it stores the required array size in the place pointed by num_glyphs_return, and returns -1.

See Also:
MDrawGlyph (p. 170)

2.22.3.9 void mdraw_text_items (MFrame x frame, MDrawWindow win, intx, inty, MDrawTextItem
* items, int nitems)
Draw one or more textitems.

The mdraw_text_items() (p. 148) function draws one or more M-texts on window win of frame frame at
coordinate (X, y). items is an array of the textitems to be drawn and nitems is the number of textitems in the array.

See Also:
MTextltem, mdraw_text() (p. 145).

2.22 Drawing 149

2.22.3.10 int mdraw_default_line_break (MText « mt, int pos, int from, int to, int line, int y)

Calculate a line breaking position.

The function mdraw_default_line_break() (p. 149) calculates a line breaking position based on the line number
line and the coordinate y, when a line is too long to fit within the width limit. pos is the position of the character
next to the last one that fits within the limit. from is the position of the first character of the line, and to is the
position of the last character displayed on the line if there were not width limit. line and y are reset to O when a
line is broken by a newline character, and incremented each time when a long line is broken because of the width
limit.

Return value:
This function returns a character position to break the line.

2.22.3.11 void mdraw_per_char_extents (MFrame * frame, MText x mt, MDrawMetric * array_return,
MDrawMetric * overall_return)
Obtain per character dimension information.

The mdraw_per_char_extents() (p. 149) function computes the text dimension of each character in M-text mt.
The faces given as text properties in mt and the default face of frame frame determine the fonts to draw the text.
Each successive element in array_return is set to the drawn metrics of successive characters, which is relative to
the origin of the drawing, and a rectangle for each character in mt. The number of elements of array_return
must be equal to or greater than the number of characters in mt.

If pointer overall_return is not NULL, this function also computes the extents of the overall text and stores the
results in the members of the structure pointed to by overall_return.

2.22.3.12 void mdraw_clear_cache (MText x mt)

clear cached information.

The mdraw_clear_cache() (p. 149) function clear cached information on M-text mt that was attached by any of
the drawing functions. When the behavior of ‘format’ or ‘line_break’ member functions of MDrawControl
(p. 166) is changed, the cache must be cleared.

See Also:
MDrawControl (p. 166)

2.22.4 Variable Documentation
2.22.4.1 int mdraw_line_break_option

Option of line breaking for drawing text.

The variable mdraw_line_break_option (p. 149) specifies line breaking options by logical-or of the members of
MTextLineBreakOption (p. 37). It controls the line breaking algorithm of the function
mdraw_default_line_break() (p. 149).

150 Module Documentation

2.23 Input Method (GUI)

Input method support on window systems.

Data Structures

¢ struct MInputGUIArgIC

Type of the argument to the function minput_create_ic() (p. 97).

¢ struct MInputXIMArgIM

Structure pointed to by the argument arg of the function minput_open_im() (p. 96).

¢ struct MInputXIMArgIC

Structure pointed to by the argument arg of the function minput_create_ic() (p. 97).

Functions

¢ MSymbol minput_event_to_key (MFrame xframe, void *xevent)

Convert an event to an input key.

Variables

¢ MInputDriver minput_gui_driver

Input driver for internal input methods on window systems.

* MSymbol Mxim

Symbol of the name "xim".

2.23.1 Detailed Description

Input method support on window systems. The input driver minput_gui_driver is provided for internal
input methods that is useful on window systems. It displays preedit text and status text at the inputting spot. See
the documentation of minput_gui_driver for more details.

In the m17n-X library, the foreign input method of name Mxim is provided. It uses XIM (X Input Method) as a
background input engine. The symbol Mx im has a property Minput_driver whose value is a pointer to the
input driver minput_xim_driver. See the documentation of minput_xim_driver for more details.

2.23.2 Function Documentation
2.23.2.1 MSymbol minput_event_to_key (MFrame * frame, void * event)

Convert an event to an input key.

The minput_event_to_key() (p. 150) function returns the input key corresponding to event event on frame by a
window system dependent manner.

In the m17n-X library, event must be a pointer to the structure XKeyEvent, and it is handled as below.

2.23 Input Method (GUI) 151

At first, the keysym name of event is acquired by the function XKeysymToString. Then, the name is
modified as below.

If the name is one of "a" .. "z" and event has a Shift modifier, the name is converted to "A" .. "Z" respectively,
and the Shift modifier is cleared.

If the name is one byte length and event has a Control modifier, the byte is bitwise anded by 0x1F and the
Control modifier is cleared.

If event still has modifiers, the name is preceded by "S-" (Shift), "C-" (Control), "M-" (Meta), "A-" (Alt), "G-"
(AltGr), "s-" (Super), and "H-" (Hyper) in this order.

For instance, if the keysym name is "a" and the event has Shift, Meta, and Hyper modifiers, the resulting name is
"M-H-A".

At last, a symbol who has the name is returned.

2.23.3 Variable Documentation
2.23.3.1 MlInputDriver minput_gui_driver

Input driver for internal input methods on window systems.
The input driver minput_gui_driver is for internal input methods to be used on window systems.

It creates sub-windows for a preedit text and a status text, and displays them at the input spot set by the function
minput_set_spot() (p. 98).

The macro M17N_INIT() (p. 7) set the variable minput_driver to the pointer to this driver so that all
internal input methods use it.

Therefore, unless minput_driver is changed from the default, the driver dependent arguments to the
functions whose name begin with minput_ must are treated as follows.

The argument arg of the function minput_open_im() (p. 96) is ignored.

The argument arg of the function minput_create_ic() (p. 97) must be a pointer to the structure
MInputGUIArgIC (p.192). See the documentation of MInputGUIArgIC (p.192) for more details.

If the argument key of function minput_filter() (p. 97) is Mn1i1, the argument arg must be a pointer to the object
of type XEvent. In that case, key is generated from arg.

The argument arg of the function minput_lookup() (p. 97) must be the same one as that of the function
minput_filter() (p.97).

2.23.3.2 MSymbol Mxim

Symbol of the name "xim".

The variable Mxim is a symbol of name "xim". It is a name of the input method driver minput_xim_driver
(P-??).

152

Module Documentation

2.24 MISC API

Miscellaneous API.

Modules

¢ Error Handling
Error handling of the m17n library.

* Debugging

Support for m17n library users to debug their programs.

2.24.1 Detailed Description

Miscellaneous API.

2.25 Error Handling

153

2.25 Error Handling

Error handling of the m17n library.

Enumerations

¢ enum MErrorCode {
MERROR_NONE,
MERROR_OBJECT,
MERROR_SYMBOL,
MERROR_MTEXT,
MERROR_TEXTPROP,
MERROR_CHAR,
MERROR_CHARTABLE,
MERROR_CHARSET,
MERROR_CODING,
MERROR_RANGE,
MERROR_LANGUAGE,
MERROR_LOCALE,
MERROR_PLIST,
MERROR_MISC,
MERROR_WIN,
MERROR_X,
MERROR_FRAME,
MERROR_FACE,
MERROR_DRAW,
MERROR_FLT,
MERROR_FONT,
MERROR_FONTSET,
MERROR_FONT_OTF,
MERROR_FONT_X,
MERROR_FONT_FT,
MERROR_IM,
MERROR_DB,
MERROR_IO,
MERROR_DEBUG,
MERROR_MEMORY,
MERROR_GD,
MERROR_MAX }

Enumeration for error code of the m17n library.

154 Module Documentation

Variables

¢ int merror_code

External variable to hold error code of the m17n library.

¢ void(* m17n_memory_full_handler)(enum MErrorCode err)

Memory allocation error handler.

2.25.1 Detailed Description

Error handling of the m17n library. There are two types of errors that may happen in a function of the m17n
library.

The first type is argument errors. When a library function is called with invalid arguments, it returns a value that
indicates error and at the same time sets the external variable merror_code (p. 155) to a non-zero integer.

The second type is memory allocation errors. When the required amount of memory is not available on the
system, m17n library functions call a function pointed to by the external variable
ml7n_memory_full_handler. The default value of the variable is a pointer to the default_error_handle()
function, which just calls exit ().

2.25.2 Enumeration Type Documentation
2.25.2.1 enum MErrorCode

Enumeration for error code of the m17n library.
Enumeration for error code of the m17n library.

When a library function is called with an invalid argument, it sets the external variable merror_code (p. 155) to
one of these values. All the error codes are positive integers.

When a memory allocation error happens, the function pointed to by the external variable
m17n_memory_full_handler (p. 155) is called with one of these values as an argument.

Enumerator:
MERROR_NONE

MERROR_OBJECT
MERROR_SYMBOL
MERROR_MTEXT
MERROR_TEXTPROP
MERROR_CHAR
MERROR_CHARTABLE
MERROR_CHARSET
MERROR_CODING
MERROR_RANGE
MERROR_LANGUAGE
MERROR_LOCALE
MERROR_PLIST
MERROR_MISC
MERROR_WIN

2.25 Error Handling 155

MERROR_X
MERROR_FRAME
MERROR_FACE
MERROR_DRAW
MERROR_FLT
MERROR_FONT
MERROR_FONTSET
MERROR_FONT_OTF
MERROR_FONT_X
MERROR_FONT_FT
MERROR_IM
MERROR_DB
MERROR_IO
MERROR_DEBUG
MERROR_MEMORY
MERROR_GD
MERROR_MAX

2.25.3 Variable Documentation
2.25.3.1 int merror_code

External variable to hold error code of the m17n library.

The external variable merror_code (p. 155) holds an error code of the m17n library. When a library function is
called with an invalid argument, it sets this variable to one of enum MErrorCode (p. 154).

This variable initially has the value 0.

2.25.3.2 void(x m17n_memory_full_handler)(enum MErrorCode err)

Memory allocation error handler.

The external variable m17n_memory_full_handler (p. 155) holds a pointer to the function to call when a library
function failed to allocate memory. err is one of enum MErrorCode (p. 154) indicating in which function the
error occurred.

This variable initially points a function that simply calls the exit () function with err as an argument.

An application program that needs a different error handling can change this variable to point a proper function.

156 Module Documentation

2.26 Debugging

Support for m17n library users to debug their programs.

Functions

¢ MCharTable x* mdebug_dump_chartab (MCharTable xtable, int indent)

Dump a chartable.

* MFace x mdebug_dump_face (MFace «face, int indent)

Dump a face.

¢ MFont x mdebug_dump_font (MFont «font)
Dump a font.

* MFontset « mdebug_dump_fontset (MFontset «fontset, int indent)

Dump a fontset.

¢ MInputMethod * mdebug_dump_im (MInputMethod *im, int indent)

Dump an input method.

¢ int mdebug_hook ()

Hook function called on an error:

¢ MText « mdebug_dump_mtext (MText «mt, int indent, int fullp)
Dump an M-text.

* MPIlist + mdebug_dump_plist (MPlist «plist, int indent)
Dump a property list.

¢ MSymbol mdebug_dump_symbol (MSymbol symbol, int indent)
Dump a symbol.

¢ MSymbol mdebug_dump_all_symbols (int indent)

Dump all symbol names.

2.26.1 Detailed Description

Support for m17n library users to debug their programs. The m17n library provides the following facilities to
support the library users to debug their programs.

» Environment variables to control printing of various information to stderr.

— MDEBUG_INIT -- If set to 1, print information about the library initialization on the call of
M17N_INIT((p. 7).

— MDEBUG_FINI -- If set to 1, print counts of objects that are not yet freed on the call of
M17N_FINI() (p. 8).

— MDEBUG_CHARSET -- If set to 1, print information about charsets being loaded from the m17n
database.

2.26 Debugging 157

— MDEBUG_CODING -- If set to 1, print information about coding systems being loaded from the
m17n database.

— MDEBUG_DATABASE -- If set to 1, print information about data being loaded from the m17n
database.

— MDEBUG_FONT -- If set to 1, print information about fonts being selected and opened.

— MDEBUG_FLT -- If set to 1, 2, or 3, print information about which command of Font Layout Table
are being executed. The bigger number prints the more detailed information.

— MDEBUG_INPUT -- If set to 1, print information about how an input method is running.
— MDEBUG_ALL -- Setting this variable to 1 is equivalent to setting all the above variables to 1.

— MDEBUG_OUTPUT_FILE -- If set to a file name, the above debugging information is appended to
the file. If set to "stdout", the information is printed to stdout.

* Functions to print various objects in a human readable way. See the documentation of
mdebug_dump_XXXX() functions.

* The hook function called on an error. See the documentation of mdebug_hook() (p. 158).

2.26.2 Function Documentation
2.26.2.1 MCharTablex mdebug_dump_chartab (MCharTable x table, int indent)

Dump a chartable.

The mdebug_dump_chartab() (p. 157) function prints a chartable table in a human readable way to the stderr
or to what specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many
columns to indent the lines but the first one.

Return value:
This function returns table.

2.26.2.2 MFacex mdebug_dump_face (MFace x face, int indent)

Dump a face.

The mdebug_dump_face() (p. 157) function prints face face in a human readable way to the stderr or to what
specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many columns to indent
the lines but the first one.

Return value:
This function returns face.

2.26.2.3 MFont+x mdebug_dump_font (MFont x font)

Dump a font.

The mdebug_dump_font() (p. 157) function prints font font in a human readable way to the stderr or to what
specified by the environment variable MDEBUG_OUTPUT_FILE.

Return value:
This function returns font.

158 Module Documentation

2.26.2.4 MFontsetx mdebug_dump_fontset (MFontset fontset, int indent)

Dump a fontset.

The mdebug_dump_fontset() (p. 158) function prints fontset fontset in a human readable way to the stderr or to
what specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many columns to
indent the lines but the first one.

Return value:
This function returns fontset.

2.26.2.5 MiInputMethod+ mdebug_dump_im (MInputMethod * im, int indent)

Dump an input method.

The mdebug_dump_im() (p. 158) function prints the input method im in a human readable way to the stderr or
to what specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many columns
to indent the lines but the first one.

Return value:
This function returns im.

2.26.2.6 int mdebug_hook (void)

Hook function called on an error.

The mdebug_hook() (p. 158) function is called when an error happens. It returns -1 without doing anything. It is
useful to set a break point on this function in a debugger.

2.26.2.7 MTextx mdebug_dump_mtext (MText x m¢, int indent, int fullp)

Dump an M-text.

The mdebug_dump_mtext() (p. 158) function prints the M-text mt in a human readable way to the stderr or to
what specified by the environment variable MDEBUG_OUTPUT _FILE. indent specifies how many columns to
indent the lines but the first one. If fullp is zero, this function prints only a character code sequence. Otherwise, it
prints the internal byte sequence and text properties as well.

Return value:
This function returns mt.

2.26.2.8 MPlist+ mdebug_dump_plist (MPlist x plist, int indent)

Dump a property list.

The mdebug_dump_plist() (p. 158) function prints a property list plist in a human readable way to the stderr or
to what specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many columns
to indent the lines but the first one.

Return value:
This function returns plist.

2.26 Debugging 159

2.26.2.9 MSymbol mdebug_dump_symbol (MSymbol symbol, int indent)

Dump a symbol.

The mdebug_dump_symbol() (p. 159) function prints symbol symbol in a human readable way to the stderr or
to what specified by the environment variable MDEBUG_OUTPUT _FILE. indent specifies how many columns
to indent the lines but the first one.

Return value:
This function returns symbol.

Errors:
MERROR_DEBUG

2.26.2.10 MSymbol mdebug_dump_all_symbols (int indent)

Dump all symbol names.

The mdebug_dump_all_symbols() (p. 159) function prints names of all symbols to the stderr or to what
specified by the environment variable MDEBUG_OUTPUT_FILE. indent specifies how many columns to indent
the lines but the first one.

Return value:
This function returns Mnil (p. 17).

Errors:
MERROR_DEBUG

160 Module Documentation

Chapter 3

Data Structure Documentation

3.1 MI17NObjectHead Struct Reference

The first member of a managed object.

Data Fields

e void * filler [2]

3.1.1 Detailed Description
The first member of a managed object. When an application program defines a new structure for managed

objects, its first member must be of the type st ruct M17NObjectHead (p. 161). Its contents are used by the
ml7n library, and application programs should never touch them.

3.1.2 Field Documentation
3.1.2.1 voidx M17NObjectHead::filler[2]

Hidden from applications.

162 Data Structure Documentation

3.2 MCodingInfolS0O2022 Struct Reference

Structure for a coding system of type MCODING_TYPE_ISO_2022 (p. 76).

Data Fields

* int initial_invocation [2]
¢ char designations [32]
* unsigned flags

3.2.1 Detailed Description

Structure for a coding system of type MCODING_TYPE_ISO_2022 (p. 76). Structure for extra information
about a coding system of type MCODING_TYPE_ISO_2022.

3.2.2 Field Documentation
3.2.2.1 int MCodingInfoIS02022::initial_invocation[2]

Table of numbers of an ISO2022 code extension element invoked to each graphic plane (Graphic Left and
Graphic Right). -1 means no code extension element is invoked to that plane.

3.2.2.2 char MCodingInfolSO2022::designations[32]
Table of code extension elements. The Nth element corresponds to the Nth charset in charset_names, which is
an argument given to the mconv_define_coding() (p. 77) function.

If an element value is 0..3, it specifies a graphic register number to designate the corresponds charset. In addition,
the charset is initially designated to that graphic register.

If the value is -4..-1, it specifies a graphic register number 0..3 respectively to designate the corresponds charset.
Initially, the charset is not designated to any graphic register.

3.2.2.3 unsigned MCodingInfolSO2022::flags

Bitwise OR of enum MCodingFlagIS02022 .

3.3 MCodingInfoUTF Struct Reference 163

3.3 MCodingInfoUTF Struct Reference

Structure for extra information about a coding system of type MCODING_TYPE_UTF (p. 76).

Data Fields

¢ int code_unit_bits
¢ int bom
* int endian

3.3.1 Detailed Description

Structure for extra information about a coding system of type MCODING_TYPE_UTF (p. 76).

3.3.2 Field Documentation
3.3.2.1 int MCodingInfoUTF::code_unit_bits

Specify bits of a code unit. The value must be 8, 16, or 32.

3.3.2.2 int MCodingInfoUTF::bom
Specify how to handle the heading BOM (byte order mark). The value must be 0, 1, or 2. The meanings are as
follows:

0: On decoding, check the first two byte. If they are BOM, decide endian by them. If not, decide endian by the
member endian. On encoding, produce byte sequence according to endian with heading BOM.

1: On decoding, do not handle the first two bytes as BOM, and decide endian by endian. On encoding, produce
byte sequence according to endian without BOM.

2: On decoding, handle the first two bytes as BOM and decide ending by them. On encoding, produce byte
sequence according to endian with heading BOM.

If <code_unit_bits> is 8, the value has no meaning.

3.3.2.3 int MCodingInfoUTF::endian

Specify the endian type. The value must be 0 or 1. 0 means little endian, and 1 means big endian.

If <code_unit_bits> is 8, the value has no meaning.

164 Data Structure Documentation

3.4 MConverter Struct Reference

Structure to be used in code conversion.

Data Fields

e int lenient
¢ int last_block
* unsigned at_most
¢ int nchars
* int nbytes
¢ enum MConversionResult result
e union {
void * ptr
double dbl
char ¢ [256]
} status

¢ void * internal_info

3.4.1 Detailed Description

Structure to be used in code conversion. Structure to be used in code conversion. The first three members are to
control the conversion.

3.4.2 Field Documentation
3.4.2.1 int MConverter::lenient

Set the value to nonzero if the conversion should be lenient. By default, the conversion is strict (i.e. not lenient).

If the conversion is strict, the converter stops at the first invalid byte (on decoding) or at the first character not
supported by the coding system (on encoding). If this happens, MConverter—>result is set to
MCONVERSION_RESULT_INVALID_BYTE or MCONVERSION_RESULT_INVALID_CHAR accordingly.

If the conversion is lenient, on decoding, an invalid byte is kept per se, and on encoding, an invalid character is
replaced with "<U+XXXX>" (if the character is a Unicode character) or with "<M+XXXXXX>" (otherwise).

3.4.2.2 int MConverter::last_block

Set the value to nonzero before decoding or encoding the last block of the byte sequence or the character
sequence respectively. The value influences the conversion as below.

On decoding, in the case that the last few bytes are too short to form a valid byte sequence:

If the value is nonzero, the conversion terminates by error (MCONVERSION_RESULT_INVALID_BYTE) at
the first byte of the sequence.

If the value is zero, the conversion terminates successfully. Those bytes are stored in the converter as carryover
and are prepended to the byte sequence of the further conversion.

On encoding, in the case that the coding system is context dependent:

If the value is nonzero, the conversion may produce a byte sequence at the end to reset the context to the initial
state even if the source characters are zero.

3.4 MConverter Struct Reference 165

If the value is zero, the conversion never produce such a byte sequence at the end.

3.4.2.3 unsigned MConverter::at_most

If the value is nonzero, it specifies at most how many characters to convert.

3.4.2.4 int MConverter::nchars

The following three members are to report the result of the conversion.
Number of characters most recently decoded or encoded.

3.4.2.5 int MConverter::nbytes

Number of bytes recently decoded or encoded.

3.4.2.6 enum MConversionResult MConverter::result

Result code of the conversion.

3.4.2.77 void+x MConverter::ptr

3.4.2.8 double MConverter::dbl

3.4.2.9 char MConverter::c[256]

3.4.2.10 wunion { ... } MConverter::status

Various information about the status of code conversion. The contents depend on the type of coding system. It is

assured that status is aligned so that any type of casting is safe and at least 256 bytes of memory space can be
used.

3.4.2.11 void+x MConverter::internal_info

This member is for internally use only. An application program should never touch it.

166 Data Structure Documentation

3.5 MDrawControl Struct Reference

Type of a text drawing control.

Data Fields

* unsigned as_image: 1

* unsigned align_head: 1

* unsigned two_dimensional: 1

* unsigned orientation_reversed: 1

* unsigned enable_bidi: 1

* unsigned ignore_formatting_char: 1

* unsigned fixed_width: 1

* unsigned anti_alias: 1

* unsigned disable_overlapping_adjustment: 1
e unsigned int min_line_ascent

¢ unsigned int min_line_descent

* unsigned int max_line_ascent

* unsigned int max_line_descent

¢ unsigned int max_line_width

* unsigned int tab_width

* void(x format)(int line, int y, int xindent, int *width)
* int(x line_break)(MText «mt, int pos, int from, int to, int line, int y)
¢ int with_cursor

* int cursor_pos

* int cursor_width

¢ int cursor_bidi

* int partial_update

* int disable_caching

* MDrawRegion clip_region

3.5.1 Detailed Description

Type of a text drawing control. The type MDrawControl (p. 166) is the structure that controls how to draw an
M-text.

3.5.2 Field Documentation
3.5.2.1 unsigned MDrawControl::as_image

If nonzero, draw an M-text as image, i.e. with background filled with background colors of faces put on the
M-text. Otherwise, the background is not changed.

3.5.2.2 unsigned MDrawControl::align_head

If nonzero and the first glyph of each line has negative Ibearing, shift glyphs horizontally to right so that no pixel
is drawn to the left of the specified position.

3.5 MDrawControl Struct Reference 167

3.5.2.3 unsigned MDrawControl::two_dimensional

If nonzero, draw an M-text two-dimensionally, i.e., newlines in M-text breaks lines and the following characters
are drawn in the next line. If <format> is non-NULL, and the function returns nonzero line width, a line longer
than that width is also broken.

3.5.2.4 unsigned MDrawControl::orientation_reversed

If nonzero, draw an M-text to the right of a specified position.

3.5.2.5 unsigned MDrawControl::enable_bidi

If nonzero, reorder glyphs correctly for bidi text.

3.5.2.6 unsigned MDrawControl::ignore_formatting_char

If nonzero, don’t draw characters whose general category (in Unicode) is Cf (Other, format).

3.5.2.7 unsigned MDrawControl::fixed_width

If nonzero, draw glyphs suitable for a terminal. Not yet implemented.

3.5.2.8 unsigned MDrawControl::anti_alias

If nonzero, draw glyphs with anti-aliasing if a backend font driver supports it.

3.5.2.9 unsigned MDrawControl::disable_overlapping_adjustment

If nonzero, disable the adjustment of glyph positions to avoid horizontal overlapping at font boundary.

3.5.2.10 unsigned int MDrawControl::min_line_ascent

If nonzero, the values are minimum line ascent pixels.

3.5.2.11 unsigned int MDrawControl::min_line_descent

If nonzero, the values are minimum line descent pixels.

3.5.2.12 unsigned int MDrawControl::max_line_ascent

If nonzero, the values are maximum line ascent pixels.

3.5.2.13 unsigned int MDrawControl::max_line_descent

If nonzero, the values are maximum line descent pixels.

168 Data Structure Documentation

3.5.2.14 unsigned int MDrawControl::max_line_width

If nonzero, the value specifies how many pixels each line can occupy on the display. The value zero means that
there is no limit. It is ignored if <format> is non-NULL.

3.5.2.15 unsigned int MDrawControl::tab_width

If nonzero, the value specifies the distance between tab stops in columns (the width of one column is the width of
a space in the default font of the frame). The value zero means 8.

3.5.2.16 void(x MDrawControl::format)(int line, int y, int xindent, int +width)

If non-NULL, the value is a function that calculates the indentation and width limit of each line based on the line
number LINE and the coordinate Y. The function store the indentation and width limit at the place pointed by
INDENT and WIDTH respectively.

The indentation specifies how many pixels the first glyph of each line is shifted to the right (if the member
<orientation_reversed>> is zero) or to the left (otherwise). If the value is negative, each line is shifted to the
reverse direction.

The width limit specifies how many pixels each line can occupy on the display. The value 0 means that there is
no limit.

LINE and Y are reset to 0 when a line is broken by a newline character, and incremented each time when a long
line is broken because of the width limit.

This has an effect only when <two_dimensional > is nonzero.

3.5.2.17 int(+ MDrawControl::line_break)(MText xmt, int pos, int from, int to, int line, int y)

If non-NULL, the value is a function that calculates a line breaking position when a line is too long to fit within
the width limit. POS is the position of the character next to the last one that fits within the limit. FROM is the
position of the first character of the line, and TO is the position of the last character displayed on the line if there
were not width limit. LINE and Y are the same as the arguments to <format>.

The function must return a character position to break the line.
The function should not modify MT.

The mdraw_default_line_break() (p. 149) function is useful for such a script that uses SPACE as a word
separator.
3.5.2.18 int MDrawControl::with_cursor

If nonzero, show the cursor according to <cursor_width>.

3.5.2.19 int MDrawControl::cursor_pos

Specifies the character position to display a cursor. If it is greater than the maximum character position, the
cursor is displayed next to the last character of an M-text. If the value is negative, even if <cursor_width> is
nonzero, cursor is not displayed.

3.5 MDrawControl Struct Reference 169

3.5.2.20 int MDrawControl::cursor_width

If nonzero, display a cursor at the character position <cursor_pos>. If the value is positive, it is the pixel width
of the cursor. If the value is negative, the cursor width is the same as the underlining glyph(s).

3.5.2.21 int MDrawControl::cursor_bidi
If nonzero and <cursor_width> is also nonzero, display double bar cursors; at the character position

<cursor_pos> and at the logically previous character. Both cursors have one pixel width with horizontal fringes
at upper or lower positions.

3.5.2.22 int MDrawControl::partial_update

If nonzero, on drawing partial text, pixels of surrounding texts that intrude into the drawing area are also drawn.
For instance, some CVC sequence of Thai text (C is consonant, V is upper vowel) is drawn so that V is placed
over the middle of two Cs. If this CVC sequence is already drawn and only the last C is drawn again (for instance

by updating cursor position), the right half of V is erased if this member is zero. By setting this member to
nonzero, even with such a drawing, we can keep this CVC sequence correctly displayed.

3.5.2.23 int MDrawControl::disable_caching

If nonzero, don’t cache the result of any drawing information of an M-text.

3.5.2.24 MDrawRegion MDrawControl::clip_region

If non-NULL, limit the drawing effect to the specified region.

170

Data Structure Documentation

3.6 MDrawGlyph Struct Reference

Type of information about a glyph metric and font.

Data Fields

¢ int glyph_code
¢ int x_advance
* int y_advance
¢ int x_off

e inty_off

* int Ibearing

* int rbearing

e int ascent

¢ int descent

¢ MFont « font
* MSymbol font_type
* void * fontp

¢ int from
* int to

3.6.1 Detailed Description

Type of information about a glyph metric and font. The type MDrawGlyph (p. 170) is the structure that contains
information about a glyph metric and font. It is used by the function mdraw_glyph_list() (p. 148).

3.6.2 Field Documentation
3.6.2.1 int MDrawGlyph::from

Character range corresponding to the glyph.

3.6.2.2 int MDrawGlyph::to
3.6.2.3 int MDrawGlyph::glyph_code

Font glyph code of the glyph.

3.6.2.4 int MDrawGlyph::x_advance

Logical width of the glyph. Nominal distance to the next glyph.

3.6.2.5 int MDrawGlyph::y_advance

Logical height of the glyph. Nominal distance to the next glyph.

3.6.2.6 int MDrawGlyph::x_off

X offset relative to the glyph position.

3.6 MDrawGlyph Struct Reference

171

3.6.2.7 int MDrawGlyph::y_off

Y offset relative to the glyph position.

3.6.2.8 int MDrawGlyph::lbearing

Metric of the glyph (left-bearing).

3.6.2.9 int MDrawGlyph::rbearing

Metric of the glyph (right-bearing).

3.6.2.10 int MDrawGlyph::ascent

Metric of the glyph (ascent).

3.6.2.11 int MDrawGlyph::descent

Metric of the glyph (descent).

3.6.2.12 MFont+ MDrawGlyph::font

Font used for the glyph. Set to NULL if no font is found for the glyph.

3.6.2.13 MSymbol MDrawGlyph::font_type

Type of the font. One of Mx, Mfreetype, Mxft.

3.6.2.14 voidx MDrawGlyph::fontp

Pointer to the font structure. The actual type is (XFontStruct *) if <font_type> member is Mx, FT_Face if
<font_type> member is Mfreetype, and (XftFont) if <font_type> member is Mxft.

172 Data Structure Documentation

3.7 MDrawGlyphlnfo Struct Reference

Type of information about a glyph.

Data Fields

e int from

e int to

¢ int line_from

* int line_to

e int x

* inty

¢ MDrawMetric metrics
¢ MFont * font

* int prev_from

¢ int next_to

e int left_from

o int left_to

* int right_from

* int right_to

* int logical_width

3.7.1 Detailed Description

Type of information about a glyph. The type MDrawGlyphlInfo (p. 172) is the structure that contains
information about a glyph. It is used by mdraw_glyph_info() (p. 148).

3.7.2 Field Documentation
3.7.2.1 int MDrawGlyphlInfo::from

Start position of character range corresponding to the glyph.

3.7.2.2 int MDrawGlyphlInfo::to

End position of character range corresponding to the glyph.

3.7.2.3 int MDrawGlyphlInfo::line_from

Start position of character range corresponding to the line of the glyph.

3.7.2.4 int MDrawGlyphlInfo::line_to

End position of character range corresponding to the line of the glyph.

3.7.2.5 int MDrawGlyphlInfo::x

X coordinates of the glyph.

3.7 MDrawGlyphlnfo Struct Reference 173

3.7.2.6 int MDrawGlyphlnfo::y

Y coordinates of the glyph.

3.7.2.7 MDrawMetric MDrawGlyphInfo::metrics

Metric of the glyph.

3.7.2.8 MFont+ MDrawGlyphInfo::font

Font used for the glyph. Set to NULL if no font is found for the glyph.

3.7.2.9 int MDrawGlyphlnfo::prev_from

Character ranges corresponding to logically previous glyphs. Note that we do not need the members prev_to
because it must be the same as the member <from>.

3.7.2.10 int MDrawGlyphlInfo::next_to

Character ranges corresponding to logically next glyphs. Note that we do not need the members next_from
because it must be the same as the member <to> respectively.

3.7.2.11 int MDrawGlyphlInfo::left from

Start position of character ranges corresponding to visually left glyphs.

3.7.2.12 int MDrawGlyphlInfo::left_to

End position of character ranges corresponding to visually left glyphs.

3.7.2.13 int MDrawGlyphlInfo::right_from

Start position of character ranges corresponding to visually right glyphs.

3.7.2.14 int MDrawGlyphlInfo::right_to

End position of character ranges corresponding to visually left glyphs.

3.7.2.15 int MDrawGlyphlInfo::logical_width

Logical width of the glyph. Nominal distance to the next glyph.

174 Data Structure Documentation

3.8 MDrawMetric Struct Reference

Type of metric for glyphs and texts.

Data Fields

e intx
e inty
* unsigned int width
* unsigned int height

3.8.1 Detailed Description

Type of metric for glyphs and texts. The type MDrawMetric (p. 174) is for a metric of a glyph and a drawn text.
It is also used to represent a rectangle area of a graphic device.

3.8.2 Field Documentation
3.8.2.1 int MDrawMetric::x

X coordinates of a glyph or a text.

3.8.2.2 int MDrawMetric::y

Y coordinates of a glyph or a text.

3.8.2.3 unsigned int MDrawMaetric::width

Pixel width of a glyph or a text.

3.8.2.4 unsigned int MDrawMetric::height

Pixel height of a glyph or a text.

3.9 MDrawTextItem Struct Reference 175

3.9 MDrawTextItem Struct Reference

Type of textitems.

Data Fields

* MText x mt

e int delta

¢ MFace * face

¢ MDrawControl * control

3.9.1 Detailed Description

Type of textitems. The type MDrawTextItem (p. 175) is for textitem objects. Each textitem contains an M-text
and some other information to control the drawing of the M-text.

3.9.2 Field Documentation
3.9.2.1 MText+x MDrawTextItem::mt

M-text.

3.9.2.2 int MDrawTextItem::delta

Optional change in the position (in the unit of pixel) along the X-axis before the M-text is drawn.

3.9.2.3 MFacex MDrawTextItem::face

Pointer to a face object. Each property of the face, if not Mnil, overrides the same property of face(s) specified as
a text property in <mt>.

3.9.2.4 MDrawControlx MDrawTextItem::control

Pointer to a draw control object. The M-text <mt> is drawn by mdraw_text_with_control() (p. 146) with this
control object.

176 Data Structure Documentation

3.10 MFaceBoxProp Struct Reference

Type of box spec of face.

Data Fields

¢ unsigned width

MSymbol color_top
MSymbol color_bottom
MSymbol color_left
MSymbol color_right

unsigned inner_hmargin
unsigned inner_vmargin
unsigned outer_hmargin
unsigned outer_vmargin

3.10.1 Detailed Description

Type of box spec of face. The type MFaceBoxProp (p. 176) is to specify the detail of Mbox (p. 138) property of
a face. The value of the property must be a pointer to an object of this type.

3.10.2 Field Documentation
3.10.2.1 unsigned MFaceBoxProp::width

Width of the box line in pixels.

3.10.2.2 MSymbol MFaceBoxProp::color_top

Colors of borders.

3.10.2.3 MSymbol MFaceBoxProp::color_bottom
3.10.2.4 MSymbol MFaceBoxProp::color_left
3.10.2.5 MSymbol MFaceBoxProp::color_right
3.10.2.6 unsigned MFaceBoxProp::inner_hmargin

Margins

3.10.2.7 unsigned MFaceBoxProp::inner_vmargin
3.10.2.8 unsigned MFaceBoxProp::outer_hmargin

3.10.2.9 unsigned MFaceBoxProp::outer_vmargin

3.11 MFaceHLineProp Struct Reference 177

3.11 MFaceHLineProp Struct Reference

Type of horizontal line spec of face.

Public Types

¢ enum MFaceHLineType {
MFACE_HLINE_BOTTOM,
MFACE_HLINE_UNDER,
MFACE_HLINE_STRIKE_THROUGH,
MFACE_HLINE_OVER,
MFACE_HLINE_TOP }

Data Fields

¢ enum MFaceHLineProp::MFaceHLineType type
* unsigned width
¢ MSymbol color

3.11.1 Detailed Description

Type of horizontal line spec of face. The type MFaceHLineProp (p. 177) is to specify the detail of Mhline
(p. 138) property of a face. The value of the property must be a pointer to an object of this type.

3.11.2 Member Enumeration Documentation
3.11.2.1 enum MFaceHLineProp::MFaceHLineType
Type of the horizontal line.

Enumerator:
MFACE_HLINE _BOTTOM

MFACE_HLINE UNDER
MFACE_HLINE STRIKE THROUGH
MFACE_HLINE _OVER
MFACE_HLINE _TOP

3.11.3 Field Documentation
3.11.3.1 enum MFaceHLineProp::MFaceHLineType MFaceHLineProp::type

Type of the horizontal line.

3.11.3.2 unsigned MFaceHLineProp::width

Width of the line in pixels.

178 Data Structure Documentation

3.11.3.3 MSymbol MFaceHLineProp::color

Color of the line. If the value is Mnil, foreground color of a merged face is used.

3.12 MFLTFont Struct Reference 179

3.12 MFLTFont Struct Reference

Type of font to be used by the FLT driver.

Data Fields

MSymbol family

* int X_ppem

e inty_ppem

* int(x get_glyph_id)(struct _MFLTFont *font, MFLTGlyphString *gstring, int from, int to)
* int(* get_metrics)(struct _MFLTFont xfont, MFLTGlyphString xgstring, int from, int to)
* int(* check_otf)(struct _MFLTFont *font, MFLTOtfSpec *spec)

* int(x drive_otf)(struct _MFLTFont *font, MFLTOtfSpec *spec, MFLTGlyphString xin, int from, int to,
MFLTGlyphString <out, MFLTGlyphAdjustment xadjustment)

¢ void * internal

3.12.1 Detailed Description

Type of font to be used by the FLT driver. The type MFLTFont (p. 179) is the structure that contains information
about a font used by the FLT driver. Usually, an application should prepare a bigger structure whose first element
is MFLTFont (p. 179) and has more information about the font that is used by callback funcitons, and give that
structure to mflt functions by coercing it to MFLTFont (p. 179). It is assured that callback functions can safely
coerce MFLTFont (p. 179) back to the original structure.

3.12.2 Field Documentation

3.12.2.1 MSymbol MFLTFont::family

Family name of the font. It may be Mnil (p. 17) if the family name is not important in finding a Font Layout
Table suitable for the font (for instance, in the case that the font is an OpenType font).

3.12.2.2 int MFLTFont::x_ppem

Horizontal font sizes in pixels per EM.

3.12.2.3 int MFLTFont::y_ppem

Vertical font sizes in pixels per EM.

3.12.2.4 int(+ MFLTFont::get_glyph_id)(struct _MFLTFont «font, MFLTGlyphString +gstring, int from,
int to)

Callback function to get glyph IDs for glyphs between FROM (inclusive) and TO (exclusive) of GSTRING. If
the member <encoded> of a glyph is zero, the member <code> of that glyph is a character code. The function
must convert it to the glyph ID of FONT.

180 Data Structure Documentation

3.12.2.5 int(x MFLTFont::get_metrics)(struct _MFLTFont «font, MFLTGlyphString +gstring, int from,
int to)

Callback function to get metrics of glyphs between FROM (inclusive) and TO (exclusive) of GSTRING. If the

member <measured> of a glyph is zero, the function must set the members <xadv>, <yadv>, <ascent>,
<descent>, <lbearing>, and <rbearing> of the glyph.

3.12.2.6 int(x MFLTFont::check_otf)(struct _MFLTFont «font, MFLTOtfSpec *spec)
Callback function to check if the font has OpenType GSUB/GPOS features for a specific script/language. The

function must return 1, if the font satisfies SPEC, or 0. It must be NULL if the font does not have OpenType
tables.

3.12.2.7 int(+ MFLTFont::drive_otf)(struct _MFLTFont «font, MFLTOtfSpec xspec, MFLTGlyphString
xin, int from, int to, MFLTGlyphString xout, MFLTGlyphAdjustment xadjustment)

Callback function to apply OpenType features in SPEC to glyphs between FROM (inclusive) and TO (exclusive)

of IN. The resulting glyphs are appended to the tail of OUT. If OUT does not have a room to store all the
resulting glyphs, it must return -2. It must be NULL if the font does not have OpenType tables.

3.12.2.8 void« MFLTFont::internal

For m17n-lib’s internal use only. It should be initialized to NULL.

3.13 MFLTGlyph Struct Reference 181

3.13 MFLTGIlyph Struct Reference

Type of information about a glyph.

Data Fields

e intc

* unsigned int code

* int from

* int to

* int xadv

* int yadv

* unsigned encoded: 1
* unsigned measured: 1
* unsigned adjusted: 1
* unsigned internal: 30

int ascent
int descent
int Ibearing
int rbearing

* int xoff
* int yoff

3.13.1 Detailed Description

Type of information about a glyph. The type MFLTGlyph (p. 181) is the structure that contains information
about a glyph.

3.13.2 Field Documentation
3.13.2.1 int MFLTGlyph::c

Character code (Unicode) of the glyph. This is the sole member to be set before calling the functions mflt_find()
(p. 109) and mflt_run() (p. 110).

3.13.2.2 unsigned int MFLTGlyph::code

Glyph ID of the glyph in the font.

3.13.2.3 int MFLTGlyph::from

Starting index of the run in MFLTGlyphString (p. 184) that is replaced by this glyph.

3.13.2.4 int MFLTGlyph::to

Ending index of the run in MFLTGlyphString (p. 184) that is replaced by this glyph.

182 Data Structure Documentation

3.13.2.5 int MFLTGlyph::xadv

Advance width for horizontal layout expressed in 26.6 fractional pixel format.

3.13.2.6 int MFLTGlyph::yadv

Advance height for vertical layout expressed in 26.6 fractional pixel format.

3.13.2.7 int MFLTGlyph::ascent

Ink metrics of the glyph expressed in 26.6 fractional pixel format.

3.13.2.8 int MFLTGlyph::descent
3.13.2.9 int MFLTGlyph::1bearing
3.13.2.10 int MFLTGlyph::rbearing
3.13.2.11 int MFLTGlyph::xoff

Horizontal and vertical adjustments for the glyph positioning expressed in 26.6 fractional pixel format.

3.13.2.12 int MFLTGlyph::yoff
3.13.2.13 unsigned MFLTGlyph::encoded

Flag to tell whether the member <code> has already been set to a glyph ID in the font.

3.13.2.14 unsigned MFLTGlyph::measured

Flag to tell if the metrics of the glyph (members <xadv> thru <rbearing>) are already calculated.

3.13.2.15 unsigned MFLTGlyph::adjusted

Flag to tell if the metrics of the glyph is adjusted, i.e. <xadv> or <yadv> is different from the normal size, or
<xoff> or <yoff> is nonzero.

3.13.2.16 unsigned MFLTGlyph::internal

For m17n-1ib’s internal use only.

3.14 MFLTGlyphAdjustment Struct Reference 183

3.14 MFLTGlyphAdjustment Struct Reference

Type of information about a glyph position adjustment.

Data Fields

¢ short back
¢ unsigned advance_is_absolute: 1
* unsigned set: 1

¢ int xadv
* int yadv

* int xoff
* int yoff

3.14.1 Detailed Description
Type of information about a glyph position adjustment. The type MFLTGlyphAdjustment (p. 183) is the

structure to store information about a glyph metrics/position adjustment. It is given to the callback function
drive_otf of MFLTFont (p. 179).

3.14.2 Field Documentation
3.14.2.1 int MFLTGlyphAdjustment::xadv

Adjustments for advance width for horizontal layout and advance height for vertical layout expressed in 26.6
fractional pixel format.

3.14.2.2 int MFLTGlyphAdjustment::yadv
3.14.2.3 int MFLTGlyphAdjustment::xoff

Horizontal and vertical adjustments for glyph positioning expressed in 26.6 fractional pixel format.

3.14.2.4 int MFLTGlyphAdjustment::yoff
3.14.2.5 short MFLTGlyphAdjustment::back

Number of glyphs to go back for drawing a glyph.

3.14.2.6 unsigned MFLTGlyphAdjustment::advance_is_absolute

If nonzero, the member <xadv> and <yadv>> are absolute, i.e., they should not be added to a glyph’s origianl
advance width and height.

3.14.2.7 unsigned MFLTGlyphAdjustment::set

Should be set to 1 iff at least one of the other members has a nonzero value.

184 Data Structure Documentation

3.15 MFLTGIlyphString Struct Reference

Type of information about a glyph sequence.

Data Fields

¢ int glyph_size

* MFLTGlyph * glyphs
* int allocated

* int used

* unsigned int r2l

3.15.1 Detailed Description

Type of information about a glyph sequence. The type MFLTGlyphString (p. 184) is the structure that contains
information about a sequence of glyphs.

3.15.2 Field Documentation
3.15.2.1 int MFLTGlyphString::glyph_size

The actual byte size of elements of the array pointed by the member glyphs (p. 184). It must be equal to or
greater than "sizeof (MFLTGlyph)".

3.15.2.2 MFLTGlyph+x MFLTGlyphString::glyphs

Array of glyphs.

3.15.2.3 int MFLTGlyphString::allocated

Number of elements allocated in glyphs (p. 184).

3.15.2.4 int MFLTGlyphString::used

Number of elements in glyphs (p. 184) in use.

3.15.2.5 unsigned int MFLTGlyphString::r2l

Flag to tell if the glyphs should be drawn from right-to-left or not.

3.16 MFLTOtfSpec Struct Reference 185

3.16 MFLTOtfSpec Struct Reference

Type of specification of GSUB and GPOS OpenType tables.

Data Fields

¢ MSymbol sym
* unsigned int * features [2]

* unsigned int script
* unsigned int langsys

3.16.1 Detailed Description

Type of specification of GSUB and GPOS OpenType tables. The type MFLTOtfSpec (p. 185) is the structure
that contains information about the GSUB and GPOS features of a specific script and language system. The
information is used to select which features to apply to a glyph string, or to check if a specific FLT is usable for a
specific font.

3.16.2 Field Documentation
3.16.2.1 MSymbol MFLTOtfSpec::sym

Unique symbol representing the spec. This is the same as the OTF-SPEC (p. 215) of the FLT.

3.16.2.2 unsigned int MFLTOtfSpec::script

Tags for script and language system.

3.16.2.3 unsigned int MFLTOtfSpec::langsys
3.16.2.4 unsigned intx MFLTOtfSpec::features[2]

Array of GSUB (Ist element) and GPOS (2nd element) feature tag arrays. Each array is terminated by 0. It may
be NULL if there is no feature to specify.

(1) The case of using this information for selecting which features to apply to a glyph string. If the array is
NULL, apply no feature. If the first element is OXFFFFFFFF, apply all available features except for what appear
in the second and following elements (if any). Otherwise, apply all listed features.

(2) The case of using this information for checking if a a font can be drived by a specific FLT. If the array is
NULL, the font should not have any features. Otherwize, the font should have all features before 0xFFFFFFFF
element (if any) and should not have any features after that element.

186 Data Structure Documentation

3.17 MliInputContext Struct Reference

Structure of input context.

Data Fields

* MInputMethod * im
¢ MText * produced
* void * arg
* int active
e struct {

int x

inty

int ascent

int descent

int fontsize

MText + mt

int pos

} spot

¢ void * info

¢ MText * status

* int status_changed

¢ MText * preedit

* int preedit_changed

* int cursor_pos

* int cursor_pos_changed
 MPIlist * candidate_list
¢ int candidate_index

¢ int candidate_show

* int candidates_changed
¢ MPIlist * plist

* int candidate from
¢ int candidate_to

3.17.1 Detailed Description

Structure of input context. See struct MInputContext (p. 186).
The type MInputContext (p.186) is the structure of input context objects.

3.17.2 Field Documentation
3.17.2.1 MiInputMethod+ MInputContext::im

Backward pointer to the input method. It is set up be the function minput_create_ic() (p. 97).

3.17.2.2 MTextx MInputContext::produced

M-text produced by the input method. It is set up by the function minput_lookup() (p.97) .

3.17 MInputContext Struct Reference 187

3.17.2.3 void« MInputContext::arg

Argument given to the function minput_create_ic() (p. 97).

3.17.2.4 int MInputContext::active

Flag telling whether the input context is currently active or inactive. The value is set to 1 (active) when the input
context is created. It is toggled by the function minput_toggle() (p. 98).

3.17.2.5 int MInputContext::x

X and Y coordinate of the spot.

3.17.2.6 int MInputContext::y
3.17.2.7 int MInputContext::ascent

Ascent and descent pixels of the line of the spot.

3.17.2.8 int MInputContext::descent
3.17.2.9 int MInputContext::fontsize

Font size for preedit text in 1/10 point.

3.17.2.10 MText+ MInputContext::mt

M-text at the spot, or NULL.

3.17.2.11 int MInputContext::pos

Character position in <mt> at the spot.

3.17.2.12 struct { ... } MInputContext::spot

Spot location and size of the input context.

3.17.2.13 void+x MInputContext::info

The usage of the following members depends on the input method driver. The descriptions below are for the
driver of an internal input method. They are set by the function <im>->driver.filter(). Pointer to extra
information that <im>>->driver.create_ic() setups. It is used to record the internal state of the input context.

3.17.2.14 MText+ MInputContext::status

M-text describing the current status of the input context.

188 Data Structure Documentation

3.17.2.15 int MInputContext::status_changed

The function <im>->driver.filter() sets the value to 1 when it changes <status>.

3.17.2.16 MText+x MInputContext::preedit

M-text containing the current preedit text. The function <im>->driver.filter() sets the value.

3.17.2.17 int MInputContext::preedit_changed

The function <im>->driver.filter() sets the value to 1 when it changes <preedit>.

3.17.2.18 int MInputContext::cursor_pos

Cursor position of <preedit>.

3.17.2.19 int MInputContext::cursor_pos_changed

The function <im>->driver.filter() sets the value to 1 when it changes <cursor_pos>.

3.17.2.20 MPIlist+x MInputContext::candidate_list
Plist of the current candidate groups. Each element is an M-text or a plist. If an element is an M-text (i.e. the key

is Mtext), candidates in that group are characters in the M-text. If it is a plist (i.e. the key is Mplist), each element
is an M-text, and candidates in that group are those M-texts.

3.17.2.21 int MInputContext::candidate_index
Index number of the currently selected candidate in all the candidates. The index of the first candidate is 0. If the

number is 8, and the first candidate group contains 7 candidates, the currently selected candidate is the second
element of the second candidate group.

3.17.2.22 int MInputContext::candidate_from

Start and the end positions of the preedit text where <candidate_list> corresponds to.

3.17.2.23 int MInputContext::candidate_to
3.17.2.24 int MInputContext::candidate_show

Flag telling whether the current candidate group must be shown or not. The function <im>->driver.filter() sets
the value to 1 when an input method required to show candidates, and sets the value to 0 otherwise.

3.17.2.25 int MInputContext::candidates_changed

The function <im>->driver.filter() sets the value to bitwise OR of enum MInputCandidatesChanged
when it changed any of the above members (<candidate_ XXX>), and sets the value to 0 otherwise.

3.17 MInputContext Struct Reference 189

3.17.2.26 MPlistx MInputContext::plist

Plist that can be freely used by <im>->driver functions. The driver of internal input method uses it to exchange
extra arguments and result for callback functions. The function <im>->>driver.create_ic() sets this to an empty
plist, and the function <im>->driver.destroy_ic() frees it by using m17n_object_unref() (p. 12).

190 Data Structure Documentation

3.18 MiInputDriver Struct Reference

Structure of input method driver.

Data Fields

¢ int(x open_im)(MInputMethod *im)

Open an input method.

* void(x close_im)(MInputMethod *im)

Close an input method.

* int(x create_ic) (MInputContext xic)

Create an input context.

¢ void(x destroy_ic)(MInputContext xic)

Destroy an input context.

* int(x filter)(MInputContext xic, MSymbol key, void *arg)

Filter an input key.

¢ int(x lookup)(MInputContext xic, MSymbol key, void xarg, MText «mt)

Lookup a produced text in an input context.

* MPIist * callback_list

List of callback functions.

3.18.1 Detailed Description

Structure of input method driver. The type MInputDriver (p.190) is the structure of an input method
driver that contains several functions to handle an input method.

3.18.2 Field Documentation
3.18.2.1 int(x MInputDriver::open_im)(MInputMethod *im)

Open an input method.

This function opens the input method im. It is called from the function minput_open_im() (p. 96) after all
member of im but <info> set. If opening im succeeds, it returns 0. Otherwise, it returns -1. The function can
setup im->info to keep various information that is referred by the other driver functions.

3.18.2.2 void(x MInputDriver::close_im)(MInputMethod *xim)

Close an input method.

This function closes the input method im. It is called from the function minput_close_im() (p. 96). It frees all
memory allocated for im->info (if any) after finishing all the tasks of closing the input method. But, the other
members of im should not be touched.

3.18 MInputDriver Struct Reference 191

3.18.2.3 int(x MInputDriver::create_ic)(MInputContext xic)

Create an input context.

This function creates the input context ic. It is called from the function minput_create_ic() (p. 97) after all
members of ic but <info>> are set. If creating ic succeeds, it returns 0. Otherwise, it returns -1. The function can
setup ic->info to keep various information that is referred by the other driver functions.

3.18.2.4 void(x MInputDriver::destroy_ic)(MInputContext xic)

Destroy an input context.

This function is called from the function minput_destroy_ic() (p. 97) and destroys the input context ic. It frees
all memory allocated for ic->info (if any) after finishing all the tasks of destroying the input method. But, the
other members of ic should not be touched.

3.18.2.5 int(+x MInputDriver::filter)(MInputContext xic, MSymbol key, void *arg)

Filter an input key.

This function is called from the function minput_filter() (p. 97) and filters an input key. key and arg are the
same as what given to minput_filter() (p.97).

The task of the function is to handle key, update the internal state of ic. If key is absorbed by the input method
and no text is produced, it returns 1. Otherwise, it returns 0.

It may update ic->status, ic->preedit, ic->cursor_pos, ic->ncandidates, ic->candidates, and ic->produced
if that is necessary for the member <callback>.

The meaning of arg depends on the input method river. See the documentation of
minput_default_driver and minput_gui_driver for instance.

3.18.2.6 int(x MInputDriver::lookup)(MInputContext xic, MSymbol key, void +arg, MText +xmt)

Lookup a produced text in an input context.

It is called from the function minput_lookup() (p. 97) and looks up a produced text in the input context ic. This
function concatenate a text produced by the input key key (if any) to M-text mt. If key was correctly handled by
the input method of ic, it returns 0. Otherwise, it returns 1.

The meaning of arg depends on the input method driver. See the documentation of
minput_default_driver and minput_gui_driver for instance.

3.18.2.7 MPIlist+ MInputDriver::callback_list

List of callback functions.

List of callback functions. Keys are one of Minput_preedit_start, Minput_preedit_draw,
Minput_preedit_done, Minput_status_start, Minput_status_draw, Minput_status_done,
Minput_candidates_start, Minput_candidates_draw, Minput_candidates_done, Minput_set_spot,
Minput_toggle, Minput_reset, Minput_get_surrounding_text, Minput_delete_surrounding_text. Values are
functions of type MInputCallbackFunc (p. 96).

192 Data Structure Documentation

3.19 MiInputGUIArglIC Struct Reference

Type of the argument to the function minput_create_ic() (p. 97).

Data Fields

e MFrame x frame
e MDrawWindow client
¢ MDrawWindow focus

3.19.1 Detailed Description

Type of the argument to the function minput_create_ic() (p. 97). The type MInputGUIArgIC (p. 192) is for the
argument arg of the function minput_create_ic() (p. 97) to create an input context of an internal input method.

3.19.2 Field Documentation
3.19.2.1 MFrames MInputGUIArgIC::frame

Frame of the client.

3.19.2.2 MDrawWindow MInputGUIArgIC::client

Window on which to display the preedit and status text.

3.19.2.3 MDrawWindow MInputGUIArgIC::focus

Window that the input context has a focus on.

3.20 MInputMethod Struct Reference 193

3.20 MiInputMethod Struct Reference

Structure of input method.

Data Fields

¢ MSymbol language
¢ MSymbol name

¢ MInputDriver driver
* void * arg

¢ void * info

3.20.1 Detailed Description

Structure of input method. See struct MInputMethod (p. 193).
The type MInputMethod (p.193) is the structure of input method objects.

3.20.2 Field Documentation
3.20.2.1 MSymbol MInputMethod::language

Which language this input method is for. The value is Mni1 if the input method is foreign.

3.20.2.2 MSymbol MInputMethod::name

Name of the input method. If the input method is foreign, it must has a property of key Minput_driver and
the value must be a pointer to a proper input method driver.

3.20.2.3 MlInputDriver MInputMethod::driver

Input method driver of the input method.

3.20.2.4 void+ MInputMethod::arg

The argument given to minput_open_im() (p. 96).

3.20.2.5 voidx MInputMethod::info

Pointer to extra information that <driver>.open_im() setups.

194 Data Structure Documentation

3.21 MiInputXIMArglIC Struct Reference

Structure pointed to by the argument arg of the function minput_create_ic() (p. 97).

Data Fields

* XIMStyle input_style

¢ Window client_win

¢ Window focus_win

¢ XVaNestedList preedit_attrs
¢ XVaNestedList status_attrs

3.21.1 Detailed Description

Structure pointed to by the argument arg of the function minput_create_ic() (p. 97). The type
MInputXIMArgIC (p. 194) is the structure pointed to by the argument arg of the function minput_create_ic()
(p- 97) for the foreign input method of name Mxim (p. 151).

3.21.2 Field Documentation
3.21.2.1 XIMStyle MInputXIMArgIC::input_style

Used as the arguments of XCreateIC following XNInputStyle. If this is zero, (XIMPreeditNothing|
XIMStatusNothing)is used, and <preedit_attrs> and <status_attrs> are set to NULL.

3.21.2.2 Window MInputXIMArgIC::client_win

Used as the argument of XCreateIC following XNClientWindow.

3.21.2.3 Window MInputXIMArgIC::focus_win

Used as the argument of XCreateIC following XNFocusWindow.

3.21.2.4 XVaNestedList MInputXIMArgIC::preedit_attrs

If non- NULL, used as the argument of XCreateIC following XNPreeditAttributes.

3.21.2.5 XVaNestedList MInputXIMArgIC::status_attrs

If non- NULL, used as the argument of XCreateIC following XNStatusAttributes.

3.22 MInputXIMArgIM Struct Reference 195

3.22 MliInputXIMArgIM Struct Reference

Structure pointed to by the argument arg of the function minput_open_im() (p. 96).

Data Fields

* Display * display

¢ XrmDatabase db

e char * res_class

¢ char * res_name

¢ char * locale

¢ char * modifier_list

3.22.1 Detailed Description

Structure pointed to by the argument arg of the function minput_open_im() (p. 96). The type
MInputXIMArgIM (p. 195) is the structure pointed to by the argument arg of the function minput_open_im()
(p- 96) for the foreign input method of name Mxim (p. 151).

3.22.2 Field Documentation
3.22.2.1 Displayx MInputXIMArgIM::display

The meaning of the following four members are the same as arguments to XOpenIM(). Display of the client.

3.22.2.2 XrmDatabase MInputXIMArgIM::db

Pointer to the X resource database.

3.22.2.3 charx MInputXIMArgIM::res_class

Full class name of the application.

3.22.2.4 charx MInputXIMArgIM::res_name

Full resource name of the application.

3.22.2.5 charsx MInputXIMArgIM::locale

Locale name under which an XIM is opened.

3.22.2.6 charx MInputXIMArgIM::modifier_list

Arguments to XSetLocaleModifiers().

196 Data Structure Documentation

Appendix A

Print compile/link options of the m17n
library

198 Print compile/link options of the m17n library

A.1 SYNOPSIS

ml7n-config [API-LEVEL ...] [--cflags | --libs | --libtool] [--version]

A.2 DESCRIPTION

The shell script m17n-config prints compile and link options for a program that uses the m17n library.

By default, the printed options are for such a program that uses SHELL API of the libray. But, if the first
argument is "CORE", "GUI", or "FLT", the options are for a program that uses the corresponding APIL.

The other arguments are as follows.

» --cflags

Print compile option (e.g. -I/usr/local/include)
e --libs

Print link option (e.g. -L/ust/local/lib -Im17n)
* --libtool

Print libtool option (e.g. /usr/local/lib/libm17n.1a)

e —-version

Print version number of the m17n library.

Appendix B

Print information about the m17n
database

200 Print information about the m17n database

B.1 SYNOPSIS

m17n-db [OPTIONS] [TAGO [TAG1 [TAG2 [TAG3 1111

B.2 DESCRIPTION

The shell script m17n-db prints information about the m17n database.

The arguments OPTIONS has the following meanings.

* -h, --help

Print this information.

e -y, --version

Print the version number.

e -], --locate
Print absolute pathnames of database files.
TAGO through TAG3 specifies the tags of the database.

With no arguments, print where the m17n database is installed.

Appendix C

Sample Programs

202 Sample Programs

This section describes these example programs. They are to demonstrate the usage of the m17n library, not for
practical use.

e m17n-conv (p. 202) -- convert file code

* m17n-view (p.203) -- view file

* ml17n-date (p.203) -- display date and time

* m17n-dump (p. 203) -- dump text image

¢ ml17n-edit (p. 205) -- edit multilingual text

e mimx-anthy (p. 205) -- external module for the input method <ja, anthy>

* mimx-ispell (p. 206) -- external module for the input method <en, ispell>

C.1 ml7n-conv -- convert file code

C.1.1 SYNOPSIS

ml7n-conv [OPTION ...] [INFILE [OUTFILE]]

C.1.2 DESCRIPTION

Convert encoding of given files from one to another.

If INFILE is omitted, the input is taken from standard input. If OUTFILE is omitted, the output written to
standard output.

The following OPTIONS are available.

¢ -f FROMCODE
FROMCODE is the encoding of INFILE (defaults to UTF-8).

* -t TOCODE
TOCODE is the encoding of OUTFILE (defaults to UTF-8).
e -k
Do not stop conversion on error.
* s
Suppress warnings.
° v
Print progress information.
e -]

List available encodings.

e —-version

Print version number.

* -h, --help

Print this message.

C.2 m17n-view -- view file 203

C.2 ml7n-view -- view file

C.2.1 SYNOPSIS

m17n-view [XT-OPTION ...] [OPTION ...] [FILE]

C.2.2 DESCRIPTION

Display FILE on a window.

If FILE is omitted, the input is taken from standard input.
XT-OPTIONS are standard Xt arguments (e.g. -fn, -fg).
The following OPTIONS are available.

¢ -¢ ENCODING
ENCODING is the encoding of FILE (defaults to UTF-8).

* -s FONTSIZE

FONTSIZE is the fontsize in point. If omitted, it defaults to the size of the default font defined in X
resource.

e —-version

Print version number.

* -h, --help

Print this message.

C.3 ml7n-date -- display date and time

C.3.1 SYNOPSIS

ml7n-date [OPTION ...]

C.3.2 DESCRIPTION

Display the system date and time in many locales on a window.

The following OPTIONS are available.

e —-version

Print version number.

e -h, --help

Print this message.

C.4 ml7n-dump -- dump text image

C4.1 SYNOPSIS

m17n-dump [OPTION ...] [FILE]

204

Sample Programs

C.4.2 DESCRIPTION

Dump a text as PNG image file.

The PNG file is written to a file created in the current directory with the name "BASE.png" where BASE is the
basename of FILE. If FILE is omitted, text is read from standard input, and the image is dumped into the file
"output.png".

The following OPTIONS are available.

-s SIZE
SIZE is the font size in point. The default font size is 12 point.

-d DPI
DPI is the resolution in dots per inch. The default resolution is 300 dpi.

-p PAPER

PAPER is the paper size: a4, adr, a5, aSr, b5, bSr, letter, WxH, or W. In the case of WxH, W and H are the
width and height in millimeter. In the case of W, W is the width in millimeter. If this option is specified,
PAPER limits the image size. If FILE is too large for a single page, multiple files with the names
"BASE.O1.png", "BASE.02.png", etc. are created.

-m MARGIN

MARGIN is the horizontal and vertical margin in millimeter. The default margin is 20 mm. It is ignored
when PAPER is not specified.

-c POS

POS is the character position of cursor to draw. By default, cursor is not drawn.

-X
FILE is assumed to be an XML file generated by the serialize facility of the m17n library, and FILE is
deserialized before an image is created.

-w

Each line is broken at word boundary.

-f FILTER

FILTER is a string containing a shell command line. If this option is specified, the PNG image is not
written info a file but is given to FILTER as standard input. If FILTER contains "%s", that part is replaced
by a basename of FILE. So, the default behaviour is the same as specifying "cat > %s.png" as FILTER.

If FILTER is just "-", the PNG image is written to stdout.
-a

Enable anti-alias drawing.

--family FAMILY
Prefer a font whose family name is FAMILY.

--language LANG

Prefer a font specified for the language LANG. LANG must be a 2-letter code of ISO 630 (e.g. "en" for
English).

-fg FOREGROUND

Specify the text color. The supported color names are those of HTML 4.0 and "#RRGGBB" notation.

C.5 m17n-edit -- edit multilingual text 205

+ -bg BACKGROUND

Specify the background color. The supported color names are the same as FOREGROUND, except that if
"transparent” is specified, make the background transparent.

o r

Specify that the orientation of the text is right-to-left.

°q
Quiet mode. Don’t print any messages.

e --version

Print the version number.

* -h, --help

Print this message.

C.5 ml7n-edit -- edit multilingual text

C.5.1 SYNOPSIS

m17n-edit [XT-OPTION ...] [OPTION ...] FILE

C.5.2 DESCRIPTION

Display FILE on a window and allow users to edit it.
XT-OPTIONS are standard Xt arguments (e.g. -fn, -fg).
The following OPTIONS are available.

e —-version

Print version number.

e -h, --help

Print this message.

This program is to demonstrate how to use the m17n GUI API. Although m17n-edit directly uses the GUI API,
the API is mainly for toolkit libraries or to implement XOM (X Output Method), not for direct use from
application programs.

C.6 mimx-anthy -- external module for the input method <ja, anthy>

C.6.1 DESCRIPTION

The shared library mimx-anthy.so is an external module used by the input method <ja, anthy>. It exports these
functions.

e init

Initialize this module.

206 Sample Programs

e fini

Finalize this module.

e convert

Convert the current preedit text (Hiragana sequence) into Kana-Kanji mixed text.

* change

Record the change of candidate of the current segment.

e resize

Enlarge or shorten the length of the current segment.

e commit
Commit the lastly selected candidates of all the segments.
C.6.2 See also

Input Method (p. 219)

C.7 mimx-ispell -- external module for the input method <en, ispell>

C.7.1 DESCRIPTION

The shared library mimx-ispell.so is an external module used by the input method <en, ispell>. It exports these
functions.
* init
Initialize this library.

e fini

Finalize this library.

* ispell_word

Check the spell of the current preedit text (English) and, if the spell is incorrect, return a list of candidates.

This program is just for demonstrating how to write an external module for an m17n input method, not for an
actual use.

C.7.2 See also

Input Method (p.219)

Appendix D

Data format of the m17n database

208 Data format of the m17n database

This section describes formats of these data supplied by the m17n database.

¢ General (p.208) -- General Format

* CharsetList (p. 210) -- List of character set definitions
¢ CodingList (p. 210) -- List of coding system definitions
* Dir (p.211) -- List of data in a database directory.

e FLT (p.211) -- Font Layout Table

* FontEncoding (p.217) -- Font Encoding

 FontSize (p.218) -- Font Size

* Fontset (p.218) -- Fontset

* IM (p. 219) -- Input Method

D.1 General Format

D.1.1 DESCRIPTION

The mdatabase_load() (p. 62) function returns the data specified by tags in the form of plist if the first tag is not
Mchartable nor Mcharset. The keys of the returned plist are limited to Minteger, Msymbol, Mtext,
and Mplist. The type of the value is unambiguously determined by the corresponding key. If the key is
Minteger, the value is an integer. If the key is Msymbo1l, the value is a symbol. And so on.

A number of expressions are possible to represent a plist. For instance, we can use the form (K1:V1, K2:V2,

., Kn:Vn) to represent a plist whose first property key and value are K1 and V1, second key and value are
K2 and V2, and so on. However, we can use a simpler expression here because the types of plists used in the
m17n database are fairly restricted.

Hereafter, we use an expression, which is similar to S-expression, to represent a plist. (Actually, the default
database loader of the m17n library is designed to read data files written in this expression.)

The expression consists of one or more elements. Each element represents a property, i.e. a single element of a
plist.

Elements are separated by one or more whitespaces, i.e. a space (code 32), a tab (code 9), or a newline (code 10).
Comments begin with a semicolon (;) and extend to the end of the line.

The key and the value of each property are determined based on the type of the element as explained below.

* INTEGER

An element that matches the regular expression —2? [0-9]+ or 0 [xX] [0-9A-Fa—f] + represents a
property whose key is Minteger. An element matching the former expression is interpreted as an integer
in decimal notation, and one matching the latter is interpreted as an integer in hexadecimal notation. The
value of the property is the result of interpretation.

For instance, the element 0xA0 represents a property whose value is 160 in decimal.

* SYMBOL

An element that matches the regular expression [N=0-9 (] ([A\ () 1]\ .) + represents a property whose
key is Msymbol. In the element, \t, \n, \r, and \ e are replaced with tab (code 9), newline (code 10),
carriage return (code 13), and escape (code 27) respectively. Other characters following a backslash is
interpreted as it is. The value of the property is the symbol having the resulting string as its name.

For instance, the element abc\ def represents a property whose value is the symbol having the name
"abc def".

D.1 General Format 209

e MTEXT

An element that matches the regular expression " (["1|\") *" represents a property whose key is
Mtext. The backslash escape explained above also applies here. Moreover, each part in the element
matching the regular expression \ [xX] [0-9A-Fa—-f] [0-9A-Fa—f] is replaced with its hexadecimal
interpretation.

After having resolved the backslash escapes, the byte sequence between the double quotes is interpreted as
a UTF-8 sequence and decoded into an M-text. This M-text is the value of the property.

e PLIST

Zero or more elements surrounded by a pair of parentheses represent a property whose key is Mplist.
Whitespaces before and after a parenthesis can be omitted. The value of the property is a plist, which is the
result of recursive interpretation of the elements between the parentheses.

D.1.2 SYNTAX NOTATION

In an explanation of a plist format of data, a BNF-like notation is used. In the notation, non-terminals are
represented by a string of uppercase letters (including ’-’ in the middle), terminals are represented by a string
surrounded by *"’. Special non-terminals INTEGER, SYMBOL, MTEXT and PLIST represents property integer,
symbol, M-text, or plist respectively.

D.1.3 EXAMPLE

Here is an example of database data that is read into a plist of this simple format:

DATA-FORMAT ::=
[INTEGER | SYMBOL | MTEXT | FUNC] =«

FUNC ::=
7 (" FUNC-NAME FUNC-ARG = ’)’

FUNC-NAME ::=
SYMBOL

FUNC-ARG ::=
INTEGER | SYMBOL | MTEXT | ' (’ FUNC-ARG ’)’

For instance, a data file that contains this text matches the above syntax:

abc 123 (pgr O0xff) "m\"text" (__ ("string" xyz) -456)

and is read into this plist:

1st element: key: Msymbol, value: abc

2nd element: key: Minteger, value: 123

3rd element: key: Mplist, value: a plist of these elements:
1st element: key Msymbol, value: pgr
2nd element: key Minteger, wvalue: 255

4th element: key: Mtext, value: m"text

5th element: key: Mplist, value: a plist of these elements:
1st element: key: Msymbol, value: __
2nd element: key: Mplist, value: a plist of these elements:

lst element: key: Mtext, value: string
2nd element: key: Msymbol, value: xyz
3rd element: key: Minteger, value: -456

210 Data format of the m17n database

D.2 List of character set definitions

D.2.1 DESCRIPTION

The m17n library loads a list of charset definitions from the data of tag <charset-list>. The data is loaded as a
plist of this format.

CHARSET-LIST ::= DEFINITION x

DEFINITION ::= ’ (’ NAME (KEY VALUE) % ")’
NAME ::= SYMBOL

KEY ::= SYMBOL

VALUE ::= SYMBOL | INTEGER | MTEXT | PLIST

NAME is a name of a charset to define.

KEY and VALUE pair is a property given to the function mchar_define_charset() (p. 66) as an element of the
second argument plist.

D.2.2 SEE ALSO

mdbGeneral(5) (p. 208), mchar_define_charset() (p. 66)

D.3 List of coding system definitions

D.3.1 DESCRIPTION

The m17n library loads a list of coding system definitions from the m17n database by the tags <coding-list> at
initialization time. The data is loaded as a plist of this format.

CODING-LIST ::= DEFINITION =

DEFINITION ::= ’ (’ NAME (KEY VALUE) % ")’
NAME ::= SYMBOL

KEY ::= SYMBOL

VALUE ::= SYMBOL | INTEGER | MTEXT | PLIST

NAME is a name of a coding system to define.

KEY and VALUE pair is a property given to the function mconv_define_coding() (p. 77) as the second argument.

D.3.2 SEE ALSO

mdbGeneral(5) (p. 208), mconv_define_coding() (p. 77)

D.4 List of data in a database directory. 211

D.4 List of data in a database directory.

D.4.1 DESCRIPTION

The m17n library loads a list of definitions of data of the m17n database from files of name "mdb.dir" in each
database directory at initialization time. The plist format of this file is as follows:

MDB-DIR ::= DEFINITION =

DEFINITION ::= ' (’ TAGO [TAGl [TAG2 [TAG3]]] FILE [VERSION]’)’
TAGn ::= SYMBOL

FILE ::= MTEXT

VERSION ::= MTEXT

If TAGO is neither ‘charset’ nor ‘char-table’, and TAGn (n > 0) is a symbol ‘x’, FILE can contain a wildcard
charater, and all files matching FILE accoding to the rules used by the shell are the target of database files. In that
case, each file must contain SELF-DEFINITION which is a plist element providing the actual TAGn values by
the form:

SELF-DEFINITION ::= ' (' TAGO TAGl TAG2 TAG3 [VERSION] ")’

For instance, if a database directory contains these files:

zh-py.mim:
(input-method zh py)

ko-han2.mim:
(input-method ko han2)

these lines in "mdb.dir":

(input-method zh py "zh-py.mim")
(input-method ko han2 "ko-han2.mim")

can be shortened to this single line:

(input-method » "*.mim")

VERSION is a required version number of the m17n library. The format is "XX.YY.ZZ" where XX is a major
version number, YY is a minor version number, and ZZ is a patch level.

D.S Font Layout Table

D.5.1 DESCRIPTION

For simple scripts, the rendering engine converts character codes into glyph codes one by one by consulting the
encoding of each selected font. But, to render text that requires complicated layout (e.g. Thai and Indic scripts),
one to one conversion is not sufficient. A sequence of characters may have to be drawn as a single ligature. Some
glyphs may have to be drawn at 2-dimensionally shifted positions.

To handle those complicated scripts, the m17n library uses Font Layout Tables (FLTs for short). The FLT driver
interprets an FLT and converts a character sequence into a glyph sequence that is ready to be passed to the
rendering engine.

212 Data format of the m17n database

An FLT can contain information to extract a grapheme cluster from a character sequence and to reorder the
characters in the cluster, in addition to information found in OpenType Layout Tables (CMAP, GSUB, and
GPOS).

An FLT is a cascade of one or more conversion stages. In each stage, a sequence is converted into another
sequence to be read in the next stage. The length of sequences may differ from stage to stage. Each element in a
sequence has the following integer attributes.

* code
In the first conversion stage, this is the character code in the original character sequence. In the last stage, it
is the glyph code passed to the rendering engine. In other cases, it is an intermediate glyph code.

* category

The category code defined in the CATEGORY-TABLE of the current stage, or defined in the one of the
former stages and not overwritten by later stages.

¢ combining-spec
If nonzero, it specifies how to combine this (intermediate) glyph with the previous one.

e left-padding-flag
If nonzero, it instructs the rendering function to insert a padding space before this (intermediate) glyph so
that the glyph does not overlap with the previous one.

* right-padding-flag

If nonzero, it instructs the rendering function to insert a padding space after this (intermediate) glyph so
that the glyph does not overlap with the next one.

When the layout engine draws text, it at first determines a font and an FLT for each character in the text. For each
subsequence of characters that use the same font and FLT, the layout engine generates a corresponding
intermediate glyph sequence. The code attribute of each element in the intermediate glyph sequence is its
character code, and all other attributes are zeros. This sequence is processed in the first stage of FLT as the
current run (substring).

Each stage works as follows.

At first, if the stage has a CATEGORY-TABLE, the category of each glyph in the current run is updated. If there
is a glyph that has no category, the current run ends before that glyph.

Then, the default values of code-offset, combining-spec, and left-padding-flag of this stage are initialized to zero.
Next, the initial conversion rule of the stage is applied to the current run.

Lastly, the current run is replaced with the newly produced (intermediate) glyph sequence.

D.5.2 SYNTAX and SEMANTICS

The m17n library loads an FLT from the m17n database using the tag <font, layouter, FLT-NAME>. The date
format of an FLT is as follows:

FONT-LAYOUT-TABLE ::= FLT-DECLARATION ? STAGEO STAGE =*
FLT-DECLARATION ::= ' (' "font’ ’'layouter’ FLT-NAME nil PROP =« ')’
FLT-NAME ::= SYMBOL
PROP :: = VERSION | FONT
VERSION ::= '’ (' ’version’ MTEXT ')’
FONT ::= ' (' ’"font’ FONT-SPEC ')’
FONT-SPEC ::=
’(’* [[FOUNDRY FAMILY

[WEIGHT [STYLE [STRETCH [ADSTYLE]]]1]

D.5 Font Layout Table 213

REGISTRY]
[OTF-SPEC] [LANG-SPEC] ')’
STAGEOQO ::= CATEGORY-TABLE GENERATOR
STAGE ::= CATEGORY-TABLE ? GENERATOR
CATEGORY-TABLE ::= ' (' ’category’ CATEGORY-SPEC + ')’
CATEGORY-SPEC ::= ' (’ CODE CATEGORY ')’
| (' CODE CODE CATEGORY ’)’
CODE ::= INTEGER
CATEGORY ::= INTEGER

In the definition of CATEGORY-SPEC, CODE is a glyph code, and CATEGORY is ASCII code of an upper or

P

lower letter, i.e. one of ’A’, ... ’Z’,’a’, .. 'z’.

The first form of CATEGORY-SPEC assigns CATEGORY to a glyph whose code is CODE. The second form
assigns CATEGORY to glyphs whose code falls between the two CODEs.

GENERATOR ::= ' (’ ’"generator’ RULE MACRO-DEF «x ')’
RULE ::= REGEXP-BLOCK | MATCH-BLOCK | SUBST-BLOCK | COND-BLOCK
FONT-FACILITY-BLOCK | DIRECT-CODE | COMBINING-SPEC | OTF-SPEC
| PREDEFINED-RULE | MACRO-NAME
MACOR-DEF ::= ’ (/ MACRO-NAME RULE + ')’
Each RULE specifies glyphs to be consumed and glyphs to be produced. When some glyphs are consumed, they

are taken away from the current run. A rule may fail in some condition. If not described explicitly to fail, it
should be regarded that the rule succeeds.

DIRECT-CODE ::= INTEGER

This rule consumes no glyph and produces a glyph which has the following attributes:

e code : INTEGER plus the default code-offset
* combining-spec : default value

* left-padding-flag : default value

* right-padding-flag : zero

After having produced the glyph, the default code-offset, combining-spec, and left-padding-flag are all reset to
Zero.

PREDEFINED-RULE ::= ’=' A A A B A R A N S B
They perform actions as follows.

This rule consumes the first glyph in the current run and produces the same glyph. It fails if the current run
is empty.

o X

This rule repeatedly executes the previous rule. If the previous rule fails, this rule does nothing and fails.

214 Data format of the m17n database

e <
This rule specifies the start of a grapheme cluster.
e >

This rule specifies the end of a grapheme cluster.

. @[
This rule sets the default left-padding-flag to 1. No glyph is consumed. No glyph is produced.

. @]

This rule changes the right-padding-flag of the lastly generated glyph to 1. No glyph is consumed. No
glyph is produced.

This rule consumes no glyph and produces a special glyph whose category is * * and other attributes are
zero. This is the only rule that produces that special glyph.

REGEXP-BLOCK ::= ' (' REGEXP RULE * ')’

REGEXP ::= MTEXT

MTEXT is a regular expression that should match the sequence of categories of the current run. If a match is
found, this rule executes RULEs temporarily limiting the current run to the matched part. The matched part is
consumed by this rule.

Parenthesized subexpressions, if any, are recorded to be used in MATCH-BLOCK that may appear in one of
RULESs.

If no match is found, this rule fails.

MATCH-BLOCK ::= ' (’ MATCH-INDEX RULE x ")’

MATCH-INDEX ::= INTEGER

MATCH-INDEX is an integer specifying a parenthesized subexpression recorded by the previous
REGEXP-BLOCK. If such a subexpression was found by the previous regular expression matching, this rule
executes RULEs temporarily limiting the current run to the matched part of the subexpression. The matched part
is consumed by this rule.

If no match was found, this rule fails.

If this is the first rule of the stage, MATCH-INDEX must be 0, and it matches the whole current run.

SUBST-BLOCK ::= '’ (’ SOURCE-PATTERN RULE x ')’

SOURCE-PATTERN ::= ' (’ CODE + ')’
| (" 'range’ CODE CODE ’)’

If the sequence of codes of the current run matches SOURCE-PATTERN, this rule executes RULE s temporarily
limiting the current run to the matched part. The matched part is consumed.

The first form of SOURCE-PATTERN specifies a sequence of glyph codes to be matched. In this case, this rule
resets the default code-offset to zero.

The second form specifies a range of codes that should match the first glyph code of the code sequence. In this
case, this rule sets the default code-offset to the first glyph code minus the first CODE specifying the range.

If no match is found, this rule fails.

D.5 Font Layout Table 215

FONT-FACILITY-BLOCK ::= ' (/ FONT-FACILITY RULE * ')’
FONT-FACILITY = ’ (* ’'font-facility’ CODE x ')’
| 7 (" ’"font-facility’ FONT-SPEC)’

If the current font has glyphs for CODEs or matches with FONT-SPEC, this rule succeeds and RULEs are
executed. Otherwise, this rule fails.

COND-BLOCK ::= ' (' 'cond’ RULE + ")’

This rule sequentially executes RULE s until one succeeds. If no rule succeeds, this rule fails. Otherwise, it
succeeds.

OTF-SPEC ::= SYMBOL

OTF-SPEC is a symbol whose name specifies an instruction to the OTF driver. The name has the following
syntax.

OTF-SPEC-NAME ::= ’:otf=’ SCRIPT LANGSYS ? GSUB-FEATURES ? GPOS-FEATURES ?
SCRIPT ::= SYMBOL

LANGSYS ::= '/’ SYMBOL

GSUB-FEATURES ::= ’=’ FEATURE-LIST 2

GPOS-FEATURES ::= '+’ FEATURE-LIST °?

FEATURE-LIST ::= (SYMBOL ’,’) % [SYMBOL | ’x’]

Each SYMBOL specifies a tag name defined in the OpenType specification.
For SCRIPT, SYMBOL specifies a Script tag name (e.g. deva for Devanagari).

For LANGSYS, SYMBOL specifies a Language System tag name. If LANGSYS is omitted, the Default Language
System table is used.

For GSUB-FEATURES, each SYMBOL in FEATURE-LIST specifies a GSUB Feature tag name to apply. **’ is
allowed as the last item to specify all remaining features. If SYMBOL is preceded by "~ and the last item is "%’,
SYMBOL is excluded from the features to apply. If no SYMBOL is specified, no GSUB feature is applied. If
GSUB-FEATURES itself is omitted, all GSUB features are applied.

When OTF-SPEC appears in a FONT-SPEC, FEATURE-LIST specifies features that the font must have (or
must not have if preceded by ’~’), and the last’x’, even if exists, has no meaning.

The specification of GPOS-FEATURES is analogous to that of GSUB-FEATURES.
Please note that all the tags above must be 4 ASCII printable characters.

See the following page for the OpenType specification.
<http://www.microsoft.com/typography/otspec/default.htm>

COMBINING ::= SYMBOL

COMBINING is a symbol whose name specifies how to combine the next glyph with the previous one. This rule
sets the default combining-spec to an integer code that is unique to the symbol name. The name has the following
syntax.

COMBINING-NAME ::= VPOS HPOS OFFSET VPOS HPOS

VPOS ::= 't’ | ‘¢’ | ‘b’ | "B’

216 Data format of the m17n database

HPOS ::= ’1’ | ’'c’ | 'z’
OFFSET :: = ’.’ | XOFF | YOFF XOFF ?
XOFF ::= (/<’ | ’>’) INTEGER ?

YOFF ::= ('+’ | ’'=') INTEGER ?

VPOS and HPOS specify the vertical and horizontal positions as described below.

POINT VPOS HPOS

0-——-1--—-2 <---— top 0 t 1

| | 1 t c

| | 2 t r

\ I 3 B 1

9 10 11 <---- center 4 B c

| | 5 B r
-—3-———4--——-5-- <-— baseline 6 b 1
| | 7 b c
6-——-7-——-8 <-——- bottom 8 b r

9 c 1

| | | 10 c c
left center right 11 c r

The left figure shows 12 reference points of a glyph by numbers 0 to 11. The rectangle 0-6-8-2 is the bounding
box of the glyph, the positions 3, 4, and 5 are on the baseline, 9-11 are on the vertical center of the box, 0-2 and
6-8 are on the top and on the bottom respectively. 1, 10, 4, and 7 are on the horizontal center of the box.

The right table shows how those reference points are specified by a pair of VPOS and HPOS.

The first VPOS and HPOS in the definition of COMBINING—-NAME specify the reference point of the previous
glyph, and the second VPOS and HPOS specify that of the next glyph. The next glyph is drawn so that these two
reference points align.

OFFSET specifies the way of alignment in detail. If it is *.’, the reference points are on the same position.

XOFF specifies how much the X position of the reference point of the next glyph should be shifted to the left
(’<’) orright (">’) from the previous reference point.

YOFF specifies how much the Y position of the reference point the next glyph should be shifted upward ("+’) or
downward (’-") from the previous reference point.

In both cases, INTEGER is the amount of shift expressed as a percentage of the font size, i.e., if INTEGER is 10,
it means 10% (1/10) of the font size. If INTEGER is omitted, it is assumed that 5 is specified.

Once the next glyph is combined with the previous one, they are treated as a single combined glyph.

MACRO-NAME ::= SYMBOL

MACRO-NAME is a symbol that appears in one of MACRO-DEF. It is exapanded to the sequence of the
corresponding RULEs.

D.5.3 CONTEXT DEPENDENT BEHAVIOR

So far, it has been assumed that each sequence, which is drawn with a specific font, is context free, i.e. not
affected by the glyphs preceding or following that sequence. This is true when sequence S1 is drawn with font F1
while the preceding sequence SO unconditionally requires font FO.

sequence S0 S1
currently used font FO Fl
usable font (s) FO Fl

D.6 Font Encoding 217

Sometimes, however, a clear separation of sequences is not possible. Suppose that the preceding sequence SO can
be drawn not only with FO but also with F1.

sequence SO S1
currently used font FO Fl
usable font (s) FO,F1 Fl

In this case, glyphs used to draw the preceding SO may affect glyph generation of S1. Therefore it is necessary to
access information about SO, which has already been processed, when processing S1. Generation rules in the first
stage (only in the first stage) accept a special regular expression to access already processed parts.

"REO REL"

REO and RE1 are regular expressions that match the preceding sequence SO and the following sequence S1,
respectively.

Pay attention to the space between the two regular expressions. It represents the special category * * (see above).
Note that the regular expression above belongs to glyph generation rules using font F1, therefore not only RE1
but also REQ must be expressed with the categories for F1. This means when the preceding sequence SO cannot
be expressed with the categories for F1 (as in the first example above) generation rules having these patterns
never match.

D.5.4 SEE ALSO

mdbGeneral(5) (p.208), FLT's provided by the m17n database (p. 246)

D.6 Font Encoding

D.6.1 DESCRIPTION

The m17n library loads information about the encoding of each font form the m17n database by the tags <font,
encoding>. The data is loaded as a plist of this format.

FONT-ENCODING ::= PER-FONT =
PER-FONT ::= ' (/ FONT-SPEC ENCODING [REPERTORY] ’)’
FONT-SPEC ::=

(" [FOUNDRY FAMILY
[WEIGHT [STYLE [STRETCH [ADSTYLE]]]]]
REGISTRY ')’

ENCODING ::= SYMBOL

FONT-SPEC is to specify properties of a font. FOUNDRY to REGISTRY are symbols corresponding to
Mfoundry (p. 125) to Mregistry (p. 126) property of a font. See Font (p. 117) for the meaning of each property.

For instance, this FONT-SPEC:

(nil aliceO\ lao 1s08859-1)

should be applied to all fonts whose family name is "alice0 lao", and registry is "is08859-1".

ENCODING is a symbol representing a charset. A font matching FONT-SPEC supports all characters of the
charset, and a character code is mapped to the corresponding glyph code of the font by this charset.

218 Data format of the m17n database

REPERTORY is a symbol representing a charset or "nil". Omitting it is the same as specifying ENCODING as
REPERTORY. If it is not "nil", the charset specifies the repertory of the font, i.e, which character it supports.
Otherwise, whether a specific character is supported by the font or not is asked to each font driver.

For so called Unicode fonts (registry is "iso10646-1"), it is recommended to specify "nil" as REPERTORY
because such fonts usually supports only a subset of Unicode characters.

D.7 Font Size

D.7.1 DESCRIPTION

In some case, a font contains incorrect information about its size (typically in the case of a hacked TrueType
font), which results in a bad text layout when such a font is used in combination with the other fonts. To
overcome this problem, the m17n library loads information about font-size adjustment from the m17n database
by the tags <font, resize>. The data is loaded as a plist of this format.

FONT-SIZE-ADJUSTMENT ::= PER-FONT =«
PER-FONT ::= ’ (/ FONT-SPEC ADJUST-RATIO ')’
FONT-SPEC ::=

(" [FOUNDRY FAMILY
[WEIGHT [STYLE [STRETCH [ADSTYLE]111]]
REGISTRY ")’
ADJUST-RATIO ::= INTEGER

FONT-SPEC is to specify properties of a font. FOUNDRY to REGISTRY are symbols corresponding to
Mfoundry (p. 125) to Mregistry (p. 126) property of a font. See Font (p. 117) for the meaning of each property.

ADJUST-RATIO is an integer number specifying by percentage how much the font-size must be adjusted. For
instance, this PER—FONT:

((devanagari-cdac) 150)

instructs the font handler of the m17n library to open a font of 1.5 times bigger than a requested size on opening a
font whose registry is "devanagari-cdac".

D.8 Fontset

D.8.1 DESCRIPTION

The m17n library loads a fontset definition from the m17n database by the tags <fontset, FONTSET-NAME>.
The plist format of the data is as follows:

FONTSET ::= PER-SCRIPT % PER-CHARSET *x FALLBACK =*
PER-SCRIPT ::= ' (’ SCRIPT PER-LANGUAGE + ")’
PER-LANGUAGE ::= ' (’ LANGUAGE FONT-SPEC-ELEMENT + ')’
PER-CHARSET ::= ’ (’ CHARSET FONT-SPEC-ELEMENT + ")’
FALLBACK ::= FONT-SPEC-ELEMENT

FONT-SPEC-ELEMENT ::= ' (/ FONT-SPEC [FLT-NAME] ')’

D.9 Input Method 219

FONT-SPEC ::=
(" [FOUNDRY FAMILY
[WEIGHT [STYLE [STRETCH [ADSTYLE 11111
REGISTRY
[OTF-SPEC] [LANG-SPEC] ')’

SCRIPT is a symbol of script name (e.g. latin, han) or nil. LANGUAGE is a two-letter symbol of language
name code defined by ISO 639 (e.g. ja, zh) or nil.

FONT-SPEC is to specify properties of a font. FOUNDRY to REGISTRY are symbols corresponding to
Mfoundry (p. 125) to Mregistry (p. 126) property of a font. See Font (p. 117) for the meaning of each property.

OTF-SPEC is a symbol specifyng the required OTF features. The symbol name has the following syntax.

OTF-SPEC-NAME ::= ’':otf=’ SCRIPT LANGSYS ? GSUB-FEATURES ? GPOS-FEATURES ?
SCRIPT ::= SYMBOL

LANGSYS ::= '/’ SYMBOL

GSUB-FEATURES ::= ’'=’ FEATURE-LIST ?

GPOS-FEATURES ::= '+’ FEATURE-LIST ?

FEATURE-LIST ::= ’'~’ ? FEATURE (',’ ’"~' ? FEATURE ’,’)

Here, FEATURE is a four-letter Open Type feature.

LANG-SPEC is a symbol specifying the required language support. The symbol name has the following syntax.

LANG-SPEC-NAME ::= ':lang=’ LANG

Here, LANG is a two or three-letter ISO-639 language code.
FLT-NAME is a name of Font Layout Table (Font Layout Table (p.211)).

D.8.2 EXAMPLE

This is an example of PER_SCRIPT.

(han
(Ja
((jisx0208.1983-0)))
(zh
((gb2312.1980-0)))
(nil
((big5-0))))

It instructs the font selector to use a font of registry "jisx0208.1983-0" for a "han" character (i.e. a character
whose Mscript (p. 26) property is "han’) if the character has Mlanguage (p. 48) text property "ja" in an M-text
and the character is in the repertories of such fonts. Otherwise, try a font of registry "gb2312.1980-0" or
"big5-0". If that "han" character does not have Mlanguage (p. 48) text property, try all three fonts.

See the function mdraw_text() (p. 145) for the detail of how a font is selected.

D.9 Input Method

D.9.1 DESCRIPTION

The m17n library provides a driver for input methods that are dynamically loadable from the m17n database (see
Input Method (basic) (p.92) (P.92)).

220 Data format of the m17n database

This section describes the data format that defines those input methods.

D.9.2 SYNTAX and SEMANTICS

The following data format defines an input method. The driver loads a definition from a file, a stream, etc. The
definition is converted into the form of plist in the driver.

INPUT-METHOD ::=
IM-DECLARATION ? IM-DESCRIPTION ? TITLE ?
VARIABLE-LIST ? COMMAND-LIST ? MODULE-LIST ?
MACRO-LIST ? MAP-LIST ? STATE-LIST ?

IM-DECLARATION ::= ' (' ’input-method’ LANGUAGE NAME EXTRA-ID ? VERSION 2 ')’
LANGUAGE ::= SYMBOL

NAME ::= SYMBOL

EXTRA-ID ::= SYMBOL

VERSION ::= ' (' ’'version’ VERSION-NUMBER ')’

IM-DESCRIPTION ::= '’ (' ’'description’ DESCRIPTION ')’

DESCRIPTION ::= MTEXT-OR-GETTEXT | 'nil’

MTEXT-OR-GETTEXT ::= [MTEXT | ' (' ’_’ MTEXT ’)’]

TITLE ::= ' (' ’'title’ TITLE-TEXT ')’

TITLE-TEXT ::= MTEXT

VARIABLE-LIST ::= ’ (' ’'variable’ VARIABLE-DECLARATION =« ')’
VARIABLE-DECLARATION ::= " (! VAR-NAME [DESCRIPTION VALUE VALUE-CANDIDATE *]’)’
VAR-NAME ::= SYMBOL

VALUE ::= MTEXT | SYMBOL | INTEGER

VALUE-CANDIDATE ::= VALUE | ' (/ RANGE-FROM RANGE-TO ')’

RANGE-FROM ::= INTEGER

RANGE-TO ::= INTEGER

COMMAND-LIST ::= ' (' 'command’ COMMAND-DECLARATION * ')’

COMMAND-DECLARATION ::= ' (’ CMD-NAME [DESCRIPTION KEYSEQ =] 7))’

CMD-NAME ::= SYMBOL

IM-DECLARATION specifies the language and name of this input method.
When LANGUAGE is t, the use of the input method is not limited to one language.

When NAME is nil, the input method is not standalone, but is expected to be used in other input methods. In
such cases, EXTRA-ID is required to identify the input method.

VERSION specifies the required minimum version number of the m17n library. The format is "XX.YY.ZZ"
where XX is a major version number, YY is a minor version number, and ZZ is a patch level.

DESCRIPTION, if not nil, specifies the description text of an input method, a variable or a command. If
MTEXT-OR-GETTEXT takes the second form, the text is translated according to the current locale by "gettext"
(if the translation is provided).

TITLE-TEXT is a text displayed on the screen when this input method is active.

There is one special input method file "global.mim" that declares common variables and commands. The input
method driver always loads this file and other input methods can inherit the variables and the commands.

VARIABLE-DECLARATION declares a variable used in this input method. If a variable must be initialized to
the default value, or is to be customized by a user, it must be declared here. The declaration can be used in two
ways. One is to introduce a new variable. In that case, VALUE must not be omitted. Another is to inherit the
variable from what declared in "global.mim", and to give the different default value and/or to make the variable
customizable specially for the current input method. In the latter case, VALUE can be omitted.

COMMAND-DECLARATION declares a command used in this input method. If a command must be bound to the
default key sequence, or is to be customized by a user, it must be declared here. Like

D.9 Input Method 221

VARIABLE-DECLARATION, the declaration can be used in two ways. One is to introduce a new command. In
that case, KEYSEQ must not be omitted. Another is to inherit the command from what declared in "global.mim",
and to give the different key binding and/or to make the command customizable specially for the current input
method. In the latter case, KEYSEQ can be omitted.

MODULE-LIST ::= ' (’ 'module’ MODULE x ")’
MODULE ::= ’ (’ MODULE-NAME FUNCTION % ')’
MODULE-NAME ::= SYMBOL

FUNCTION ::= SYMBOL

Each MODULE declares the name of an external module (i.e. dynamic library) and function names exported by
the module. If a FUNCTION has name "init", it is called with only the default arguments (see the section about
CALL) when an input context is created for the input method. If a FUNCTION has name "fini", it is called with
only the default arguments when an input context is destroyed.

MACRO-LIST ::= MACRO-INCLUSION ? ' (’ 'macro’” MACRO * ')’ MACRO-INCLUSION °?
MACRO ::= ' (’ MACRO-NAME MACRO-ACTION =* ')’

MACRO-NAME ::= SYMBOL

MACRO-ACTION ::= ACTION

TAGS ::= ‘(' LANGUAGE NAME EXTRA-ID ? ')*‘

MACRO-INCLUSION ::= ' ('’ ’"include’ TAGS ’'macro’ MACRO-NAME ?)’

MACRO-INCLUSION includes macros from another input method specified by TAGS. When MACRO—-NAME is
not given, all macros from the input method are included.

MAP-LIST ::= MAP-INCLUSION ? ' (’ ’'map’ MAP x ')’
MAP-INCLUSION ?

MAP ::= ' (' MAP-NAME RULE x ')’

MAP-NAME ::= SYMBOL

RULE ::= ' (’ KEYSEQ MAP-ACTION x ')’

KEYSEQ ::= MTEXT | ' (' [SYMBOL | INTEGER] * ')’
MAP-INCLUSION ::= ' (’ "include’ TAGS ’'map’ MAP-NAME ? ’)’

When an input method is never standalone and always included in another method, MAP-LIST can be omitted.
SYMBOL in the definitions of MAP—NAME must not be t nor nil.

MTEXT in the definition of KEYSEQ consists of characters that can be generated by a keyboard. Therefore
MTEXT usually contains only ASCII characters. However, if the input method is intended to be used, for
instance, with a West European keyboard, MTEXT may contain Latin-1 characters.

SYMBOL in the definition of KEYSEQ must be the return value of the minput_event_to_key() (p. 150) function.
Under the X window system, you can quickly check the value using the xev command. For example, the return
key, the backspace key, and the 0 key on the keypad are represented as (Return) , (BackSpace) , and (KP_0)
respectively. If the shift, control, meta, alt, super, and hyper modifiers are used, they are represented by the S-,
C-, M-, A-, s-, and H- prefixes respectively in this order. Thus, "return with shift with meta with hyper" is
(S-M-H-Return) . Note that "a with shift" .. "z with shift" are represented simply as A .. Z . Thus "a with shift
with meta with hyper" is (M-H-A) .

222 Data format of the m17n database

INTEGER in the definition of KEYSEQ must be a valid character code.

MAP-INCLUSION includes maps from another input method specified by TAGS. When MAP-NAME is not
given, all maps from the input method are included.

MAP-ACTION ::= ACTION

ACTION ::= INSERT | DELETE | SELECT | MOVE | MARK
| SHOW | HIDE | PUSHBACK | POP | UNDO
| COMMIT | UNHANDLE | SHIFT | CALL
| SET | IF | COND | ' (" MACRO-NAME ')’

PREDEFINED-SYMBOL ::=
TQQ’ | Y@L’ | T@2" | '@37 | '@4’

‘ l@5l | I@6I ‘ l@7l | ,@8, ‘ l@9l
| re<r | ore=r | re>’ | re-r | re+’ | relr | el
| ree’
| 7@=07 | re-N’ | re+N
STATE-LIST ::= STATE-INCUSION ? ’ (' ’state’ STATE * ')’ STATE-INCUSION ?
STATE ::= ' ('’ STATE-NAME [STATE-TITLE-TEXT] BRANCH * ')’
STATE-NAME ::= SYMBOL
STATE-TITLE-TEXT ::= MTEXT
BRANCH ::= ' (’ MAP-NAME BRANCH-ACTION % ')’
[" (" '"nil’” BRANCH-ACTION x ')’
[7 (" ’t’ BRANCH-ACTION x ")’
STATE-INCLUSION ::= ' ('’ ’'include’ TAGS ’'state’ STATE-NAME ? ')’

When an input system is never standalone and always included in another system, STATE-LIST can be omitted.

STATE-INCLUSION includes states from another input method specified by TAGS. When STATE-NAME is not
given, all states from the input method are included.

The optional STATE-TITLE-TEXT specifies a title text displayed on the screen when the input method is in
this state. If STATE-TITLE-TEXT is omitted, TITLE-TEXT is used.

In the first form of BRANCH, MAP-NAME must be an item that appears in MAP. In this case, if a key sequence
matching one of KEYSEQs of MAP-NAME is typed, BRANCH-ACTIONs are executed.

In the second form of BRANCH, BRANCH-ACTIONs are executed if a key sequence that doesn’t match any of
Branch’ s of the current state is typed.

If there is no BRANCH beginning with ni1 and the typed key sequence does not match any of the current
BRANCHSs, the input method transits to the initial state.

In the third form of BRANCH, BRANCH-ACTIONs are executed when shifted to the current state. If the current
state is the initial state, BRANCH-ACTIONs are executed also when an input context of the input method is
created.

BRANCH-ACTION ::= ACTION
An input method has the following two lists of symbols.

¢ marker list

A marker is a symbol indicating a character position in the preediting text. The MARK action assigns a
position to a marker. The position of a marker is referred by the MOVE and the DELETE actions.

¢ variable list

D.9 Input Method 223

A variable is a symbol associated with an integer, a symbol, or an M-text value. The integer value of a
variable can be set and referred by the SET action. It can be referred by the SET, the INSERT, the
SELECT, the UNDO, the IF, the COND actions. The M-text value of a variable can be referred by the
INSERT action. The symbol value of a variable can not be referred directly, is used the library implicitly
(e.g. candidates-charset). All variables are implicitly initialized to the integer value zero.

Each PREDEF INED-SYMBOL has a special meaning when used as a marker.

* @0,@1,Q@2,@3,04,@5,06,07,@8,Q9
The Oth, 1st, 2nd, ... 9th position respectively.
@<, @, 08>
The first, the current, and the last position.
* @-, @+
The previous and the next position.

e e[, el

The previous and the next position where a candidate list changes.

Some of the PREDEF INED—-SYMBOL has a special meaning when used as a candidate index in the SELECT
action.

* @<, @, 0>
The first, the current, and the last candidate of the current candidate group.

. @_
The previous candidate. If the current candidate is the first one in the current candidate group, then it
means the last candidate in the previous candidate group.

° @+
The next candidate. If the current candidate is the last one in the current candidate group, then it means the
first candidate in the next candidate group.

e e[, el

The candidate in the previous and the next candidate group having the same candidate index as the current
one.

And, this also has a special meaning.

* @@
Number of handled keys at that moment.

These are for supporting surround text handling.

. -0

-1 if surrounding text is supported, -2 if not.

* @-N
Here, N is a positive integer. The value is the Nth previous character in the preedit buffer. If there are only

M (M<N) previous characters in it, the value is the (N-M)th previous character from the inputting spot.
When this is used as the argument of delete action, it specifies the number of characters to be deleted.

224 Data format of the m17n database

.« Q4N

Here, N is a positive integer. The value is the Nth following character in the preedit buffer. If there are only
M (M <N) following characters in it, the value is the (N-M)th following character from the inputting spot.
When this is used as the argument of delete action, it specifies the number of characters to be deleted.

The arguments and the behavior of each action are listed below.

INSERT ::= ' (’/ ’insert’ MTEXT ')’
| MTEXT
| INTEGER
| SYMBOL

| 7 (' "insert’ SYMBOL ')’
| 7 (" "insert’ ’ (’ CANDIDATES * ’)’" ')’
| 7 (* CANDIDATES = ')’

CANDIDATES ::= MTEXT | ' (’ MTEXT * ')’

The first and second forms insert MTEXT before the current position.
The third form inserts the character INTEGER before the current position.

The fourth and fith form treats SYMBOL as a variable, and inserts its value (if it is a valid character code) before
the current position.

In the sixth and seventh forms, each CANDIDATES represents a candidate group, and each element of
CANDIDATES represents a candidate, i.e. if CANDIDATES is an M-text, the candidates are the characters in the
M-text; if CANDIDATES is a list of M-texts, the candidates are the M-texts in the list.

These forms insert the first candidate before the current position. The inserted string is associated with the list of
candidates and the information indicating the currently selected candidate.

The marker positions affected by the insertion are automatically relocated.

DELETE ::= ' (' ’'delete’ SYMBOL ')’
| 7 (" "delete’ INTEGER ')’

The first form treats SYMBOL as a marker, and deletes characters between the current position and the marker
position.

The second form treats INTEGER as a character position, and deletes characters between the current position and
the character position.

The marker positions affected by the deletion are automatically relocated.

SELECT ::= ' (' ’'select’ PREDEFINED-SYMBOL ')’
| 7 (" "select’ INTEGER ’)’
| (" ’"select’ SYMBOL ")’

This action first checks if the character just before the current position belongs to a string that is associated with a
candidate list. If it is, the action replaces that string with a candidate specified by the argument.

The first form treats PREDEF INED-SYMBOL as a candidate index (as described above) that specifies a new
candidate in the candidate list.

The second form treats INTEGER as a candidate index that specifies a new candidate in the candidate list.

In the third form, SYMBOL must have a integer value, and it is treated as a candidate index.
SHOW ::= ' (show)’

This actions instructs the input method driver to display a candidate list associated with the string before the
current position.

D.9 Input Method 225

HIDE ::= ' (hide)’

This action instructs the input method driver to hide the currently displayed candidate list.

MOVE ::= ' ('’ 'move’ SYMBOL ')’
| 7 (" "move’ INTEGER ')’

The first form treats SYMBOL as a marker, and makes the marker position be the new current position.

The second form treats INTEGER as a character position, and makes that position be the new current position.

MARK ::= ' ('’ "mark’ SYMBOL ')’

This action treats SYMBOL as a marker, and sets its position to the current position. SYMBOL must not be a
PREDEFINED-SYMBOL.

PUSHBACK :: = ' (’ ’'pushback’ INTEGER ')’
| 7 (" '"pushback’ KEYSEQ ’)’

The first form pushes back the latest INTEGER number of key events to the event queue if INTEGER is positive,
and pushes back all key events if INTEGER is zero.

The second form pushes back keys in KEYSEQ to the event queue.

This action pops the first key event that is not yet handled from the event queue.

UNDO :: = 7’ (’ 'undo’ [INTEGER | SYMBOL] ")’

If there’s no argument, this action cancels the last two key events (i.e. the one that invoked this command, and the
previous one).

If there’s an integer argument NUM, it must be positive or negative (not zero). If positive, from the NUMth to the
last events are canceled. If negative, the last (- NUM) events are canceled.

If there’s a symbol argument, it must be resolved to an integer number and the number is treated as the actual
argument as above.

COMMIT :: = ' (commit)’
This action commits the current preedit.
UNHANDLE :: = ’ (unhandle)’

This action commits the current preedit and returns the last key as unhandled.

SHIFT :: = ' (/ ’shift’ STATE-NAME ')’

If STATE-NAME is t, this action shifts the current state to the previous one, otherwise it shifts to STATE-NAME.
In the latter case, STATE-NAME must appear in STATE-LIST.

CALL ::= ' (" ’'call’ MODULE-NAME FUNCTION ARG % ")’

ARG ::= INTEGER | SYMBOL | MTEXT | PLIST

226 Data format of the m17n database

This action calls the function FUNCTION of external module MODULE—-NAME. MODULE—-NAME and FUNCTION
must appear in MODULE-LIST.

The function is called with an argument of the type (MPlist (p. 19) x). The key of the first element is Mt (p. 17)
and its value is a pointer to an object of the type MInputContext (p. 186). The key of the second element is
Msymbol (p. 17) and its value is the current state name. ARGs are used as the value of the third and later
elements. Their keys are determined automatically; if an ARG is an integer, the corresponding key is Minteger
(p- 23); if an ARG is a symbol, the corresponding key is Msymbol (p. 17), etc.

The function must return NULL or a value of the type (MPlist (p. 19)) that represents a list of actions to take.

SET ::= ’(’ CMD SYMBOLl EXPRESSION)’
CMD ::= ’set’ | 'add’ | ’'sub’ | ’‘mul’ | ’‘div’
EXPRESSION ::= INTEGER | SYMBOLZ2 | / (/ OPERATOR EXPRESSION * ')’
OPERATOR ::= '+’ | '=" | "' | /7 | 7| | 7&" | "1/
[7= < > = | >

This action treats SYMBOL1 and SYMBOL?2 as variables and sets the value of SYMBOL1 as below.
If CMD is ’set’, it sets the value of SYMBOL1 to the value of EXPRESSION.

If CMD is ’add’, it increments the value of SYMBOL1 by the value of EXPRESSION.

If CMD is ’sub’, it decrements the value of SYMBOL1 by the value of EXPRESSION.

If CMD is "mul’, it multiplies the value of SYMBOL1 by the value of EXPRESSION.

If CMD is °div’, it divides the value of SYMBOL1 by the value of EXPRESSION.

IF ::= ' (' CONDITION ACTION-LIST1 ACTION-LIST2 2 ')’

CONDITION ::= [’'=" | <" | '>" | ’'<=" | ’>=’] EXPRESSION1 EXPRESSION2
ACTION-LIST1 ::= ' (' ACTION * ')’

ACTION-LIST2 ::= ' ('’ ACTION x ')’

This action performs actions in ACTION-LIST1 if CONDITION is true, and performs ACTION-LIST2 (if
any) otherwise.

COND ::= ' (' ’"cond’” [' (’ EXPRESSION ACTION = ')] * ")’

This action performs the first action ACT ION whose corresponding EXPRESSION has nonzero value.

D.9.3 EXAMPLE 1

This is a very simple example for inputting Latin characters with diacritical marks (acute and cedilla). For
instance, when you type:

Comme’ die-Franc,aise, chic,,

you will get this:

The definition of the input method is very simple as below, and it is quite straight forward to extend it to cover all
Latin characters.

D.9 Input Method 227

D.94 EXAMPLE 2

This example is for inputting Unicode characters by typing C-u (Control-u) followed by four hexadecimal digits.
For instance, when you type (""u" means Control-u):

~u21907u21917u21927u2193

you will get this (Unicode arrow symbols):

The definition utilizes SET and IF commands as below:

(title "UNICODE")

(map
(starter
((C-u) "u+"))
(hex
("O0™ 20) ("1™ 21) ... ("9"™ 29) ("a" ?A) ("b" ?B) ... ("f" ?F)))
(state
(init
(starter (set code 0) (set count 0) (shift unicode)))
(unicode
(hex (set this @-)

(< this ?A
((sub this 48)
((sub this 55)))
(mul code 16) (add code this)
(add count 1)
(= count 4
((delete @<) (insert code) (shift init))))))

D.9.5 EXAMPLE 3

This example is for inputting Chinese characters by typing PinYin key sequence.

D.9.6 SEE ALSO

Input Methods provided by the m17n database (p.231), mdbGeneral(5) (p. 208)

228 Data format of the m17n database

Appendix E

Data provided by the m17n database

230 Data provided by the m17n database

¢ Character Property (p.230)
* Input method (p.231)

* Font Layout Table (p. 246)

Fontset (p.249)

The other data (p. 251)

E.1 Character Property

* CATEGORY.tab

Unicode general category for each character that is available as Mcategory (p. 27) property.

* COMBINE.tab

Unicode combining class for each character that is available as Mcombining_class (p. 27) property.

* BIDIL.tab
Unicode BIDI category for each character that is available as Mbidi_category (p.27) property.

* CASE-S.tab

Unicode case-folding mapping of each character that is available as Msimple_case_folding (p.27)
property.

* CASE-C.tab

Unicode complicated case-folding mapping of each character that is available as
Mcomplicated_case_folding (p. 27) property.

¢ NAME.tab

Unicode character name for each character that is available as Mname (p. 27) property.

* SCRIPT.tab

Unicode script name for each character that is available as Mscript (p. 26) property.

* CASED.tab

Unicode properties for case operations. Integer value 1 means cased (D47, Unicode 4.0, p.89), 2 means
case-ignorable (D47a, Unicode 4.1.0), and 3 means both. Available as Mcased (p. 28) property.

¢ SOFT-DOTTED.tab
Unicode property for case operations. Available as Msoft_dotted (p. 28) property.

* CASE-MAPPING.tab

Unicode case mapping of each character that is available as Mcase_mapping (p. 28) property.

* BLOCKS.tab

Unicode fallback script name for each character that is available as Mblock (p. 28) property. Generated
manually by referring UCD Blocks.txt.

E.2 Input method 231

E.2 Input method

See Input Method (p. 219) for the format of these files.

* am-sera.mim (language:am name:sera)

Amharic input method with SERA.
For more information, see the page http://www.geez.org/IM/.

e ar-kbd.mim (language:ar name:kbd)

Input Method for Arabic simulating Arabic keyboard (MS Windows) .

e as-itrans.mim (language:as name:itrans)

Assamese input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

* bn-itrans.mim (language:bn name:itrans)

Bengali input method by ITRANS transliteration.

Itrans Bengali Keymap Layout created by Avinash Chopde in
accordance with the details in the following link:

http://www.aczoom.com/itrans/beng/noded.html

Key Summary:

The consonant alphabets are represented as half-characters by

default i.e. k = <U+0995><U+09CD> . To complete the character please use ’a’
representing ’<U+0985>’ i.e. ka=<U+0995>. Consonant conjuncts can be created by
writing the consonant characters in sequential order. To complete

the conjunct either ’<U+0985>’ or any other dependent vowel [<U+0985> (a),
<U+09BE> (aa), <U+09BF> (i), <U+09CO>(ii), <U+09C1>(u), <U+09C2> (uu), <U+09C7>(e), <U+09C8>(ai), <U+09CB>
to be added at the end.

E.g. <U+0995><U+09CD><U+09B0><U+09BF><U+09DF><U+09BE> = k+r+i+Y+A

To write ’Khaanda-ta’ (<U+09CE>) use the key combination : t.h

Detailed instructions for typing are available at the above mentioned link

The following keysequences are not defined in the mentioned page,
but added for users’ sake:

Ch JN shh yh dny LLi L”i RRI R"I LLI L"I # $ ~ x]
Shift-SPC Control-SPC

* bn-unijoy.mim (language:bn name:unijoy)

Bengali input method simulating Unijoy keyboard layout.
<http://ekushey.org/projects/shadhinota/uni_joy.html>

* bo-tcrc.mim (language:bo name:tcrc)

Tibetan input method using the TCRC keyboard layout.
For more information, see the page:
http://www.tibet.net/download/tcrckbd.rtf

¢ bo-wylie.mim (language:bo name:wylie)

232 Data provided by the m17n database

Tibetan input method based on the Wylie transliteration.

It is actually the re-implementation of Emacs’ tibetan-wylie input method,
and is slightly different from Extended Wylie Transliteration Scheme (EWTS) .
The exact EWTS-based input method is in bo-ewts.mim.

¢ cjk-util.mim (extra-name:nil, only for inclusion)

Provide utilities for CJK input methods.
This is acutually not a standalone input method, but is expected
to be included in the other input method (e.g. zh-py).

The fullwidth mode is turned on by typing ">>", and turned off
by typing "<<".

The single fullwidth mode is turned on by typing "Z". 1In this

mode, any key typed is converted to the fullwidth character and
is inserted, then the mode is turned off.

* cmc-kbd.mim (extra-name:nil, only for inclusion) Not yet officially released.

* da-post.mim (language:da name:post)

Danish input method with postfix modifiers.

* dv-phonetic.mim (language:dv name:phonetic)

Dhivehi input method simulating the Dhivehi phonetic keyboard.

The layout is approved by the Molvidian Ministry of

Communication, Science and Technology.
<http://www.mcst.gov.mv/News_and_Events/xpfonts.htm>

* el-kbd (language:el name:kbd)
Input method for Greek simulating Greek keyboard.

11|2e|3#|48|5%|6~|7&|8%|9¢|0) [—_[=+]| "

c2|eE|pP|TT|uY|0O| I|oO|wM|L{|]}

hule

oAlcZ|8A|ed |y [nH[EZ[kK[AA] [[\]

2z x| o |wQ|pB|UN|uM|,<|.>]| /2

Figure E.1: Keyboard Layout

¢ fa-isiri.mim (language:fa name:isiri)

Farsi input method simulating ISIRI 2901-1994 keyboard layout.
This is for typing Farsi by Arabic characters.

e fr-azerty.mim (language:fr name:azerty)

E.2 Input method 233

Simulating Azerty keyboard on English keyboard.

&1 é2 "3 4 (5 -6 &7 _8 ¢9 a0)° = 2~
aA zZ eE rR tT yY uU 1iI o0 pP 7 $£
gQ sS dp fF gG hH 3JJ kK 1L mM u% x|
wW xX ¢cC vV bB nN ,? ;. :/ IS

"[" and ' {’ are used as a dead key to type a character with the
circumflex and diaeresis respectively (e.g. [’ ’'e’ —-> "&").

"Alt-2’ and ’'Alt-7’ are used as a dead key to type a character
with tilde and grave respectively (e.g. 'Alt-2' 'n’ -> "fi").

’Ctrl-Alt-2’ and 'Ctrl-Alt-7’ can be used as 'Alt-2’ and 'Alt-7’'
respectively.

Azerty keyboard has one more key at the bottom left corner for

inputting "<" and ">". As a normal English keyboard doesn’t
have such a key left, type <’ and ’>' twice for "<" and ">"
respectively.

* global.mim (extra-name:nil, only for inclusion)

<U+30B0><U+30ED><U+30FC><U+30D0><U+30EB><U+5909><U+6570><U+53CA><U+3073><U+30B0><U+30ED><U+30FC><U+30D0>
<U+3053><U+308C><U+81EA><U+4F53><U+306F><U+5165><U+529B><U+30E1><U+30BD><U+30C3><U+30C9><U+3067><U+306F>
<U+30B0><U+30ED><U+30FC><U+30D0><U+30EB><U+30B3><U+30DE><U+30F3><U+30C9><U+306E><U+8AAC><U+660E><U+3068>

¢ grc-mizuochi.mim (language:grc name:mizuochi)

Mizuochi input method for classical Greek.

omicron

pi

rho

sigma

final sigma

tau T
upsilon U
phi F
chi C
psi Y
omega w
sampi !
digamma #

stigma S
koppa & %

234 Data provided by the m17n database

ypogegrammeni J
psili ’
dasia '
oxia /
varia ?
perispomeni \
dialytika "
ano teleia :
erotimatiko ;

* gu-itrans.mim (language:gu name:itrans)

Gujarati input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

* he-kbd (language:he name:kbd)

Input method for Hebrew simulating Hebrew keyboard.

1112@(3# |43 (5% |67 |7&|8x(9(|0) [—_|=+][3"

/0| ’W|PE|R|®T|uY|1U|TI|00|aP|[{]|]}

=2

TZ|oX|2C|nV[1B|nN|ZM|D<| >,

Figure E.2: Keyboard Layout

* hi-itrans.mim (language:hi name:itrans)

Hindi input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

* hi-typewriter.mim (language:hi name:typewriter)

Hindi input method with ‘typewriter’ method.
Still experimental.

* hr-kbd (language:hr name:kbd)
Input method for Croatian.

Simulating Croatian Latin keyboard on American keyboard.

E.2 Input method 235

112" |3#|4%(5%|6&|7/(8C(|9)|6=("2+x%

Lo
o
ws)

qO|wl|rR|eE|[tT|[zZ|uU]|il|o0|pP|s

(el
o
[M
M

afA|sS|dD|fF|gG|{hH|jJ|KK]LL &C

yY [xX|cC|vV|[bB[{nN{mM|,;]|.:]|—-

Figure E.3: Keyboard Layout

* hy-kbd (language:hy name:kbd)
Input method for Armenian.

Simulating Eastern Armenian keyboard on American keyboard.

Fl N -

G113 3(,4|-9|.u|€(|})|o0|nMt|dd

L]
—

pie | Lk [ER|pr|wS|BE|pe |hE[nn|ym| e |ee

wl|ul|n| 98| F# | he|6n |yl L|pr|pe|’

q2|g8|qF|yd|pk|GL(JU|[2T|nL| &0

Figure E.4: Keyboard Layout

* ispell.mim (language:en name:ispell)

Input method for English using ISPELL as a spell checker.

It uses the loadable module libmimx-ispell.so to communicate with
ISPELL program. You can check the spelll of typed word by TAB
key. Not for an actual use, but for demonstrating what can be
done by the ml7n input method.

* ja-anthy.mim (language:ja name:anthy)

Japanese input method with Anthy as a kana-kanji converter.
Typed roma-ji is at first converted to Hiragana,

and Space key converts the Hiragana sequences

to Kanji-Hiragana mixed sequence.

This input method uses the loadable module libmimx-anthy.so to

communicate with Anthy. For more detail about Anthy, see the page
<http://sourceforge. jp/projects/anthy/>.

* ja-tcode.mim (language:ja name:tcode)

236

Data provided by the m17n database

Input method for Japanese with TCODE.

* ja-trycode.mim (language:ja name:trycode)

Input method for Japanese with TRY-CODE. See

<http://www.ml7n.org/ntakahas/npx/aggressive/aggressived.

for the details.

ka-kbd (language:ka name:kbd)

Input method for Georgian simulating Georgian keyboard.

en.html>

11|2@|3#|43(5% |67 8% | 9¢(

8)

yQ|3W|9E|@R U] ol

m0

SA[bS|wD 3H|dJ| 3K

b

%2 | bX 4B [6N|3aM

;3C

Figure E.5: Keyboard Layout

You can also input more characters by the following key sequences:

[type a key sequence to insert the corresponding character]

key char key char key char key
+tc b +z oy K3 el
+j x .c B p3 il
+s 9 .g M . ol

Figure E.6: Extra Keys

* kk-arabic.mim (language:kk name:arabic)

Kazakh (with Arabic script) input method by transliterat
1 2 3 4 5 6 7 8 9 10 11 12 13 14
a A b v g R d e 3 b4 y k q 1
18 19 20 21 22 23 24 25 26 27 28 29 30 31
[}] s t w u §) f H h c S

 kk-kbd (language:kk name:kbd)
Input method for Kazakh written in the Cyrillic script.
Simulating Kazakh keyboard.

| o= /7

char key char
u ql 3
Q .+c &

3
iig' 16 17

m n N

32 33

E.2 Input method

237

"1led]il

hH

FE

KK

eB|nh| ()

bl [l

vy

KK

eE

wll|

33

x X

bb

$® | pibl

BB

af

nll

o0

nll

afl

H¥ |23

\]

AA (UM | cC|MM|W|TT b | 6B |Hl0 [He?
Figure E.7: Keyboard Layout
* km-yannis.mim (language:km name:yannis)
Khmer input method suggested by Dr. Yannis Haralambous.
* kn-itrans.mim (language:kn name:itrans)
Kannada input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>
There are few changes from the ITRANS by Hari Prasad Nadig,
Kannada 110n Team, kannada.llOn@gmail.com
<http://kannada.sourceforge.net>
on 18 Aug 2005.
* ko-han2 (language:ko name:han?2)
Hangul input method with 2-bul style.
This input method uses this keyboard layout:

11 | 2@ | 3# | 4% | 5% | 67 | 7& | 8% | 9C | @) | — | =+ | ™
WA T A g4l { |1}
H|X|c| T XAl d] F[H|N|LT |1

olvjo 8|5 || 4| F[][5\
AIE | R ||| T | —|<|.>]| 77

Figure E.8: Keyboard Layout

* ko-romaja.mim (language:ko name:romaja)

Hangul input method with romaja keys.
The roman-transliteration rules follows that of IIIMF shown in
the page <http://www3.sympatico.ca/d.moser/hangul.html>.

Common to CHOSEONG and JONGSEONG:

238 Data provided by the m17n database

<U+3131>(g) <U+3132>(gg,kk,qq,c) <U+3134>(n) <U+3137>(d) <U+3139>(1l) <U+3139>(r) <U+3141>(m) <U+3142>(
<U+3146>(ss) <U+3147>(ng) <U+3147>(x) <U+3148>(7j) <U+314A>(ch) <U+314B>(k,q) <U+314C>(t) <U+314D> (p,)

CHOSEONG :
<U+3138>(dd, tt) <U+3143> (bb,vv) <U+3149>(3jJj)

JONGSEONG:
<U+3133>(gs) <U+3135>(nj) <U+3136>(nh) <U+313A>(lg) <U+313B>(1lm) <U+313C>(lb) <U+313D>(ls) <U+313E>(lt

JUNGSEONG :
<U+314F> (a) <U+3150>(ai,ae) <U+3151> (ya,ia) <U+3152>(yai,yae,iae) <U+3153>(eo) <U+3154>(e,eo0i) <U+315
<U+3156> (ye, ie,yeoi) <U+3157> (o) <U+3158>(oca,wa,ua) <U+3159>(cai,wae,uae,ocae) <U+315A> (oi,woe,uoce,oe)
<U+315B> (yo,i0) <U+315C>(u,w,o00) <U+315D> (ueo,wo,uo) <U+315E> (ue,we) <U+315F>(wi) <U+3160> (yu,iu) <U+3
<U+3162>(eui,ui) <U+3163>(1i,y,ee)

Special:

Type uppercase letter to specify CHOSEONG explicitly.

Type "I" to toggle the composed-syllable mode and isolated-jamo mode.
Type ">>" to fullwidth ASCII letter mode, "<<" to shift out the mode.
Type "Z" and a key to input fullwidth version of the key.

* latn-post (language:generic name:latn-post)

Input method for Latin script with postfix modifiers.

mark postfix examples

acute ? a’ -> &

grave ¢ a‘t -> a

circumf lex - a~ -> 3

diaeresis " a" -» 3

tilde ~ a~ -> 3

cedilla s c, > ¢

ogohek s a, —> g

breve ~ g~ -> g

caron ~ c” ->» ¢

dbl. acute : o: -> 0

ring . u. -> U

dot . zZ., => Z

stroke / I/ -> ¢t

others /y, ete. | d/ >8 t/ ->p a/ ->& of -> 08
ae/ —> @ ij -> i oe/ —> @ s/ -> B
2 > M >0 1=
<<« >4§ »>»->) o —>2? a -t

Repeating the postfix changes ambiguous combining marks:
Ex: A" -—»> A, A -> A, A™™" ->»> A"

Figure E.9: Examples

* latn-pre (language:generic name:latn-pre)

Input method for Latin script with prefix modifiers.

E.2 Input method 239

mark prefix examples

acute ’ ‘a => &, '’ =>

grave ¢ fa=>a f o= ¢

circumflex ~ “a=»a "=

diaeresis " "a =>4 "' =>

tilde ~ ~a => 3

breve - “g=> g " o=

cedilla ~ “c=>¢ Ts=>g TVo=»

caron ~ Yz => 2z Tss => S

dot above — g => 9§ Ffg=>49

misc / /a=>4 /e=>2 /h=>h /o=>u8 /oe=>a

misc "y "'s=>08 "d=>8 “t=>p Ja=>8& /e=>g /o=0
symbol ~ Trp=x d T<=>f{ Tl=> i T?P=xi YT =, T => &
symbol ~ “—=» - Y, =+ “==> | => | ~sss =>§

symbol _ _ =>* _:1=>% _0o=>2 _a=>% _y=>%

symbol - M=>1! 2222 3= *r=>0 “cc=>0

symbol / /2 =>% /3 =xk /Ji=>k [/==> 1

symbol / f=>8 [E=>m Jje=>¢ /.=> /=" [\ =>x

Figure E.10: Examples

¢ lo-kbd (language:lo name:kbd)
Input method for Lao using Lao keyboard layout.

* lo-Irt.mim (language:lo name:Irt)

Lao input method using Lao-Roman transliteration.

e ml-itrans.mim (language:ml name:itrans)

Malayalam input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

* my-kbd.mim (language:my name:kbd)
Myanmar input method simulating the Myanmar keyboard.
e or-itrans.mim (language:or name:itrans)

Oriya input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

* pa-itrans.mim (language:pa name:itrans)

Panjabi input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

¢ rfc1345.mim (language:generic name:rfc1345)

Generic input method using RFC1345 mnemonics.

Input characters by typing & (ampersand) followed by two or three
keys. It doesn’t include RFC1345 mnemonics for ASCII and
Control-1 characters (U+0000..U+009F) except for & itself which
can be input by typing & twice.

240 Data provided by the m17n database

¢ ru-kbd (language:ru name:kbd)

Input method for Russian by simulating the Russian keyboard.

L]

11(2"|3N| 4 8x|9¢|e)|-_|=+|8E

(o))
~J
-

%

L X

H|Y|K|E|JH|T|WjW]|3|X|Db

=t

Figure E.11: Keyboard Layout

* ru-phonetic (language:ru name:phonetic)

Input method for Russian simulating the keyboard layout based on

Roman transcription by phonetic resemblance.

11|2@|3&8|4E|5b|6b|7&|8%|9(|(0)Y |—_[uU]wl0

AA (BB |eE|pP|TT |wbl|y¥ | v | o0 | nM|wll | wl

X]

afleClad|ed|rr|xx |0l kK| an " a3

23 |bb |yl |x¥|6B|HH|MM]| ,<|.>|/?

Figure E.12: Keyboard Layout

* ru-yawerty (language:ru name:yawerty)

Input method for Russian simulating the keyboard layout based on

Roman transcription by phonetic resemblance.

E.2 Input method

241

11|12e|3b

4E

%

6/\

7&

8%

9¢

8) |-

0

A | BB | eE

pP

TT

bi bl

vy

71l

o0 | nMN

will | wll

aflcClad|ed|rr|xX| il |kK]|an|s:]|?" |23
33|bb |yl | X |66 |HH|MM]|, <] .>|/?
Figure E.13: Keyboard Layout
When preceded by a ’/’, the second and the third rows (number key
row) change as follows.
Keytop | @ W E R T Y U I 0 P A S D
________ +_______________________________________
input | 8 F € s I I J b b % K ¥ W

Figure E.14: Extra Keys

* sa-harvard-kyoto.mim (language:sa name:harvard-kyoto)

Sanscrit input method with Harvard-Kyoto convention.

The table is based on

<http://en.wikipedia.org/wiki/Harvard-Kyoto>

* si-samanala.mim (language:si name:samanala)

Sinhala input method using transliteration.
The transleteration system is based on the Samanala version 2
developed by Prasad Dharmasena.

<http://www.nongnu.org/sinhala/doc/transliteration/sinhala-transliteration_1.html>

* si-wijesekera.mim (extra-name:nil, only for inclusion) Not yet officially released.

* sk-kbd (language:sk name:kbd)

Input method for Slovak simulating the standard Slovak keyboard.

242 Data provided by the m17n database

+1|U2|83|¢4|t5|26|(7|a8|i9]é0|=%]"+|[;"

qO|wl|eE|rR|tT|zZ|ul|il|o0|pP|u/]|a&(

af|sS|dD(fF|gG|hH|jJ|kKK|LL|G" |§!|n)

yY | xX|[cC|vV|bB|nN[mM|,?|.: |-

Figure E.15: Keyboard Layout

You can also input more characters by the following key sequences:

key char key char kKey char key char key char key char

+C @ +L E +5 é +Y Z +r P = @
+D D +N N +T T +d +U p =l 1
+E E +R R +U U +e @& = L =r r

Figure E.16: Extra Keys

* sr-kbd (language:sr name:kbd)
Input method for Serbian.
Simulating Serbian Cyrillic keyboard on American keyboard.

11|2" (3#|4%|5%|6&|7° 8|9 |0=|/?[+x]|<>

whb | wh|eE|pP|TT |33 |y¥ || o0 |nM|wl|kb

aR|cClald|od|rT|xX|jJ|kK|nl|[uY| k] |xX

sS|(uld|ul|eB|BB|HH|MM|,5] .2 —

Figure E.17: Keyboard Layout

e sv-post.mim (language:sv name:post)

Swedish input method with postfix modifiers.

* syrc-phonetic.mim (language:generic name:syrc-phonetic)

E.2 Input method

243

Syriac input method simulating the Syriac phonetic keyboard.
The keyboard layout was published by Beth Mardutho: The Syriac Institute.
<http://www.BethMardutho.org>

* ta-itrans.mim (language:ta name:itrans)

Tamil input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

¢ ta-lk-renganathan.mim (extra-name:nil, only for inclusion) Not yet officially released.

* te-itrans.mim (language:te name:itrans)

Telugu input method by ITRANS transliteration.
For the detail of ITRANS, see the page:
<http://www.aczoom.com/itrans/>

¢ th-kesmanee.mim (language:th name:kesmanee)

Thai input method simulating the Kesmanee keyboard

with WIT 2.0 input sequence correction.

The correction algorithm follows the one shown in the following
<http://linux.thai.net/~thep/th-xim/>

¢ th-pattachote.mim (language:th name:pattachote)

Thai input method simulating the Pattachote keyboard

with WIT 2.0 input sequence correction.

The correction algorithm follows the one shown in the following
<http://linux.thai.net/~thep/th-xim/>

¢ th-tis820.mim (language:th name:tis820)

Thai input method simulating the TIS-820.2538 keyboard

with WTIT 2.0 input sequence correction.

The correction algorithm follows the one shown in the following
<http://linux.thai.net/~thep/th-xim/>

* ua-kbd (language:ua name:kbd)
Input method for Ukrainian by simulating the Ukrainian keyboard.

11 (2" [3M|4;5|5%|6:|72]|8%|9(|B)|—|=+

rr

=t

HIY|K|[E|H|T|WlWH|3]|X

Figure E.18: Keyboard Layout

244

Data provided by the m17n database

¢ ug-kbd.mim (language:ug name:kbd)

Uyghur input method simulating an Uyghur keyboard layout.
Based on <http://tarim.yulghun.com/docs/src/uyghur.xkb>

unicode.mim (language:generic name:unicode)

Unicode <U+306E> BMP <U+9818><U+57DF><U+306E><U+6587><U+5B57><U+3092><U+FF11><U+FF16><U+9032><U+3067><U+
C—u <U+306B><U+7D9A><U+3051><U+3066>Unicode <U+306E><U+6587><U+5B57><U+30B3><U+30FC><U+30C9><U+3092><U+F"
Unicode <U+6587><U+5B57><U+3092><U+5165><U+529B><U+3059><U+308B><U+3002>

vi-base.mim (extra-name:nil, only for inclusion)

Provide bases for Vietnamese input methods.
This is acutually not a standalone input method, but is expected
to be included in the other Vietnamese input method (e.g. vi-telex, vi-vni).

vi-tcvn.mim (language:vi name:tcvn)

Vietnames input method using the TCVN6064 sequence.

Typing Backslash (’\’) toggles the normal mode and English mode.

The following variables are customizable:
tone-mark-on-last: control tone mark position in equivocal cases
backspace-is-undo: control the action of Backspace key (delete or undo)

vi-telex.mim (language:vi name:telex)

Vietnames input method using the TELEX key sequence.

Typing Backslash (’\’) toggles the normal mode and English mode.

The following variables are customizable:
tone-mark-on-last: control tone mark position in equivocal cases
backspace-is-undo: control the action of Backspace key (delete or undo)

vi-vigr.mim (language:vi name:viqr)

Vietnames input method using the VIQR key sequence.

Typing Backslash (’\’) toggles the normal mode and English mode.

The following variables are customizable:
tone-mark-on-last: control tone mark position in equivocal cases
backspace-is-undo: control the action of Backspace key (delete or undo)

vi-vni.mim (language:vi name:vni)

Vietnames input method using the VNI key sequence.

Typing Backslash (’\’) toggles the normal mode and English mode.

The following variables are customizable:
tone-mark-on-last: control tone mark position in equivocal cases
backspace-is-undo: control the action of Backspace key (delete or undo)

zh-bopomofo (language:zh name:bopomofo)

Input method for Bopomofo.

E.2 Input method 245

=l NH | Y|#H|F|N]|=+

IR IR A EAC A Y

ClH|T|T(H|LH|D[B]|AL

Figure E.19: Keyboard Layout

* zh-cangjie.mim (language:zh name:cangjie)

Chinese input method with CANGJIE method.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

zh-pinyin.mim (language:zh name:pinyin)

Input method for Chinese Pinyin characters.
Note that it’s not for inputting Han characters.

 zh-py-b5.mim (language:zh name:py-b5)

Chinese Big5 input method with Pinyin sequence.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

* zh-py-gb.mim (language:zh name:py-gb)

Chinese GB2312 input method with Pinyin sequence.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

¢ zh-py.mim (language:zh name:py)

Chinese input method with Pinyin sequence.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

* zh-quick.mim (language:zh name:quick)

Chinese input method with QUICK method.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

246 Data provided by the m17n database

* zh-tonepy-bS5.mim (language:zh name:tonepy-b5)

Chinese Big5 input method with Pinyin+Tone sequence.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

* zh-tonepy-gb.mim (language:zh name:tonepy-gb)

Chinese GB2312 input method with Pinyin+Tone sequence.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

* zh-tonepy.mim (language:zh name:tonepy)

Chinese input method with Pinyin-and-tone sequence.

In addition to Chinese characters, fullwidth latin characters and
symbols are available in fullwidth mode (turns on and off by

">>" and "<<" respectively). This mode can also be turned on
temporarily by typing "Z".

* zh-util.mim (extra-name:nil, only for inclusion)

Provide utilities for Chinese input methods.
This is acutually not a standalone input method, but is expected
to be included in the other Chinese input method (e.g. zh-py).

E.3 Font Layout Table

See Font Layout Table (p.211) for the format of these files.

* ARAB-OTF-NO-GPOS fit
For Arabic OpenType fonts that don’t have GPOS table to draw the Arabic script.

* ARAB-OTEAit
For Arabic OpenType fonts to draw the Arabic script.

* ARAB flt

For Arabic fonts of Unicode encoding to draw Arabic script.

* BENG-OTFE it
For Bengali OpenType fonts to draw the Bengali script.

* BNG2-OTFAfit
For bng2 OpenType fonts to draw the Bengali script.
* CHAM-GENERIC fit

For the Cham proportional fonts to draw Cham script.

¢ COMBINING.fit
For combining diacritical marsk (U+0300..U+036F).

* DEV2-OTE it
For dev2 OpenType fonts to draw the Devanagari script.

E.3 Font Layout Table 247

* DEVA-CDAC Ait For the font DVYGOntt.ttf (developed by C-DAC, encoding is ISFOC) to draw
Devanagari script.

* DEVA-OTFE At

For Devanagari OpenType fonts to draw the Devanagari script.

* GJR2-OTF it
For gjr2 OpenType fonts to draw the Gujarati script.

* GUJR-OTFEfit
For Gujarati OpenType fonts to draw the Gujarati script.

* GUR2-OTFAfit
For gur2 OpenType fonts to draw the Gurmukhi script.

* GURU-OTFEAit
For Gurmukhi OpenType fonts to draw the Gurmukhi script.

* HEBR-FFEAfit

For Hebrew fonts of Unicode encoding to draw the Hebrew script. This is for such fonts that do not require
an explicit combining code because accents and points have negative lbearing.

« HEBR-OTF it
For Hebrew OpenType fonts to draw the Hebrew script.

» HEBR fit

For Hebrew fonts of Unicode encoding to draw Hebrew script. This is for such a font that requires explicit
combining code to draw accents and points.

« KHMR-ANLONG- fit
For the font ANLONG.TTF to draw Khmer script. The font is available at:

— infopage: http://www.freelang.com/polices/index.html
— download: http://www.freelang.com/download/fonts/ttf_khmer_anlong.zip

 KHMR-OTFEAlt

For Khmer OpenType fonts to draw Khmer. A Font is available from
<http://www.khmeros.info/drupal/?g=en/download/fonts>.

o KND2-OTF it
For knd2 OpenType fonts to draw the Kannada script.

* KNDA-OTFAfit
For Kannada OpenType fonts to draw the Kannada script.

* LAOO-ALICE fit
For the font ALICEQ.TTF to draw Lao script. The font is available at:

— infopage: http://cg.scs.carleton.ca/~luc/laos.html
— download: http://sources.asie.free.fr/aide/polices/ALICEQ.TTF

* LAOO-GENERIC fit
* LAOO-MULE it

For Lao fonts of mule encoding to draw Lao script. The font is available at:

— infopage: http://www.gnu.org/directory/localization/intlfonts.html

248

Data provided by the m17n database

— download: ftp://ftp.gnu.org/pub/gnu/intlfonts/intlfonts-1.2.1.tar.gz
LAOO-OTE fit

MLM2-OTF it
For mlm2 OpenType fonts to draw the Malayalam script.

MLYM-CDAC fit
MLYM-OTFAit

For Malayalam OpenType fonts to draw the reformed Malayalam script.

MLYM-RACHANA it

For the Rachana Malayalam fonts to draw the traditional Malayalam script. This fonts handles virtually all
ligatures with the AKHN feature without character reordering.

MYMR-MYAZEDI fit

For the Myanmar Zedi family fonts to draw Myanmar script.
— download: http://www.myazedi.com/downloads/MyaZedi_MI17N.ttf

MYMR-SIL At
For Padauk.ttf to draw the Myanmar script.

NO-CTL it

This is to suppress Complex Text Layout for many scripts. This FLT can be used for fonts that have
Unicode encoding. Even if a glyph in a font has zero width, the glyph is displayed as if it is a spacing

glyph.
ORY2-OTF At
For ory2 OpenType fonts to draw the Oriya script.

ORYA-OTEAfit
For Oriya OpenType fonts to draw the Oriya script.

SINH-OTF At

For Sinhala OpenType fonts to draw Sinhala. A Font is available from
<http://sinhala.sourceforge.net/files/>.

SYRC-OTF-fit
For Syriac OpenType fonts to draw the Syriac script.
TAML-CDAC it

TAML-OTEAfit
For Tamil OpenType fonts to draw the Tamil script.

TEL2-OTFEAit
For tel2 OpenType fonts to draw the Telugu script.

TELU-OTFEfit
For Telugu OpenType fonts to draw the Telugu script.

THAA-OTE fit
For Thaana OpenType fonts to draw the Thaana script.

THAI-GENERIC fit
For the Thai proportional fonts to draw Thai script.

E.4 Fontset 249

* THAI-NORASI fit
For the Thai Norasi family fonts to draw Thai script. The fonts are available at:
— debian package: ttf-thai-tlwg
* THAI-OTF it

* THAI-TIS620.flt
For fixed width fonts of TIS620 encoding to draw Thai script.

» TIBT-MTIB it

For the Tibetan TrueType font developped by Dr. Tomabechi to draw Tibetan script. The font is available
at:

— donwload: http://www.ml7n.org/ml7n-lib-download/mtib.ttf

* TIBT-MULE it

For the muletibetan font developped by Dr. Tomabechi to draw Tibetan script. The font is available at:

— infopage: http://www.gnu.org/directory/Localization/intlfonts.html
— download: ftp://ftp.gnu.org/pub/gnu/intlfonts/intlfonts-1.2.1.tar.gz

» TIBT-OTF At
For TibetanMachineUniAlpha.ttf to draw Tibetan script. The font is available at:

— debian package: ttf-tmuni

o TML2-OTFfit
For tml2 OpenType fonts to draw the Tamil script.

E.4 Fontset

See Fontset (p. 218) for the format of these files.

e default.fst

The default fontset. It is the union of generic.fst and xfont.fst.

¢ xfont.fst

Fontset using only X fonts.

* truetype.fst

Fontset using only freely available TrueType fonts.

— DejaVuSans.ttf (family: DejaVu Sans)
+ debian package: ttf-dejavu-core
SILEOT.ttf (family: ezra sil; for Hebrew)
debian package: ttf-sil-ezra
ScheherazadeRegOT.ttf (family: scheherazade; for Arabic)

* debian package: ttf-sil-scheherazade

SyrCOMTalada.otf (family: estrangelo talada; for Syriac)

SyrCOMlJerusalem.otf (family: serto jerusalem; for Syriac)

SyrCOMAdiabene.otf (family: east syriac adiabene; for Syriac)

+ debian package: ttf-xfree86-nonfree-syriac

250 Data provided by the m17n database

— mvboli.ttf (family: mv boli; for Thaana)

* dowload:
http://mvlinux.blogspot.com/2010/02/thaana-font-installer-for-linux—-deb.html

— gargi.ttf (family: gargi; for Devanagari)
— lohit_hi.ttf (family: lohit hindi; for Devanagari)
debian package: ttf-devanagari-fonts
— lohit_bn.ttf (family: lohit bengali; for Bengali)
— MuktiNarrow.ttf (family: mukti narrow; for Bengali)
debian package: ttf-bengali-fonts
— lohit_pa.ttf (family: lohit punjabi; for Gurmukhi)
— Saab.ttf (family: saab; for Gurmukhi)
debian package: ttf-punjabi-fonts
— lohit_gu.ttf (family: lohit gujarati; for Gujarati)
— Rekha.ttf (family: rekha; for Gujarati)
debian package: ttf-gujarati-fonts
— utkal.ttf (family: utkal; for Oriya)
% debian package: ttf-oriya-fonts
— lohit_ta.ttf (family: lohit tamil; for Tamil)
+ debian package: ttf-tamil-fonts
— Pothana2000.ttf (family: pothana2000; for Telugu)
— Vemana.ttf (family: vemana2000; for Telugu)
+ debian package: ttf-telugu-fonts
— Kedage-n.ttf (family: kedage; for Kannada)
— Malige-n.ttf (family: mallige; for Kannada)
* debian package: ttf-kannada-fonts
— Meera_04.ttf (family: meera; for Malayalam)
— Rachana_04.ttf (family: rachana; for Malayalam)
+ debian package: ttf-malayalam-fonts
— Iklug.ttf (family: lklug; for Sinhala)
* debian package: ttf-sinhala-lklug
— TibetanMachineUniAlpha.ttf (family: tibetan machine uni; for Tibetan)
debian package: ttf-tmuni
— Norasi.ttf (family: norasi; for Thai)
* debian package: ttf-thai-tlwg
— Phetsarath_OT.ttf (family: phetsarath ot; for Lao)
+ debian package: ttf-lao
— Padauk.ttf (family: padauk; for Myanmar)
debian package: ttf-sil-padauk
— KhmerOS.ttf (family: khmer os; for Khmer)
* debian package: ttf-khmeros
— waqy-zenhei.ttf (family: wenquanyi zen hei; for Chinese)
% debian package: ttf-wqy-zenhei
— TakaoGothic.ttf (family: takaogothic)

E.5 The other data 251

+ debian package: ttf-takao-gothic
— UnDotum.ttf (family: undotum; for Korean)
+ debian package: ttf-unfonts-core
— Abyssinica_SIL.ttf (family: abyssinica sil; for Ethiopic)
* debian package: ttf-sil-abyssinica
* generic.fst

Fontset mainly using generic font specifications. See the documentation of the fontset "default" for the
information about each font.

E.5 The other data

* FONTENC.tbl

Information about encodings of fonts. See the section Font Encoding (p. 217).

* FONTSIZE.tbl

Information about how much to resize fonts. See the section Font Size (p.218).

* CHARSET.tbl

List of charset definitions. See the section List of character set definitions (p.210) for the format of this
file.

* CODING.tbl

List of coding system definitions. See the section List of coding system definitions (p. 210) for the format
of this file.

e SCRIPT-OTFE.tbl
Table of scripts vs the corresponding OTF script tags.
¢ SCRIPT-LANGUAGE.tbl

Table of scripts vs languages using the corresponding script.

* SCRIPT-LANGUAGE.tbl

Table of scripts vs languages using the corresponding script.

252 Data provided by the m17n database

Appendix F

Tutorial for writing the m17n database

254 Tutorial for writing the m17n database

This section contains tutorials for writing various database files of the m17n database.

e TutoriallM (p. 254) -- Tutorial of input method

F.1 Tutorial of input method

F.1.1 Structure of an input method file
An input method is defined in a *.mim file with this format.

(input-method LANG NAME)
(description (_ "DESCRIPTION"))

(title "TITLE-STRING")

(map
(MAP-NAME
(KEYSEQ MAP-ACTION MAP-ACTION ...) <- rule
(KEYSEQ MAP-ACTION MAP-ACTION ...) <- rule
L)
(MAP-NAME
(KEYSEQ MAP-ACTION MAP-ACTION ...) <- rule
(KEYSEQ MAP-ACTION MAP-ACTION ...) <- rule
cel)
.)
(state
(STATE-NAME
(MAP-NAME BRANCH-ACTION BRANCH-ACTION ...) <- branch

-)
(STATE-NAME
(MAP-NAME BRANCH-ACTION BRANCH-ACTION ...) <- branch
)
-)

Lowercase letters and parentheses are literals, so they must be written as they are. Uppercase letters represent
arbitrary strings.

KEYSEQ specifies a sequence of keys in this format:
(SYMBOLIC-KEY SYMBOLIC-KEY ...)

where SYMBOLIC-KEY is the keysym value returned by the xev command. For instance
(n 1)

represents a key sequence of <n> and <i>. If all SYMBOLIC-KEYs are ASCII characters, you can use the
short form

"hiw

instead. Consult Input Method (p. 219) for Non-ASCII characters.
Both MAP-ACTION and BRANCH-ACTION are a sequence of actions of this format:

(ACTION ARG ARG ...)
The most common action is insert, which is written as this:

(insert "TEXT")

F.1 Tutorial of input method 255

But as it is very frequently used, you can use the short form
"TEXT"
If "TEXT" contains only one character "C", you can write it as
(insert 2C)
or even shorter as
2C
o

So the shortest notation for an action of inserting "a" is

?a

F.1.2 Simple example of capslock
Here is a simple example of an input method that works as CapsLock.

input-method en capslock)

(

(description (_ "Upcase all lowercase letters"))

(title "a->A")

(map

(toupper ("a" "A") ("b" "B") ("c" "C") ("d" "D") ("e" "E")

("f" "F") (llg" "G") ("hll "H") ("i" "Ill) ("j" "J")
("k™ "K"™) ("1™ "L") ("m"™ "M") ("n" "N") ("o" "O")
("p" "P") (llq" "Q") ("rll "R") ("S" "Sll) ("t" "T")
(Mu™ o "g") ("v" VU)o (Mw™ "W)oo ("x"O"XM) ("y" o"Y")
("z™ "z")))

(state

(init (toupper))

When this input method is activated, it is in the initial condition of the first state (in this case, the only state
init). In the initial condition, no key is being processed and no action is suspended. When the input method
receives a key event <a>>, it searches branches in the current state for a rule that matches <a> and finds one in
the map toupper. Then it executes MAP-ACTIONS (in this case, just inserting "A" in the preedit buffer). After
all MAP-ACTIONS have been executed, the input method shifts to the initial condition of the current state.

The shift to the initial condition of the first state has a special meaning; it commits all characters in the preedit
buffer then clears the preedit buffer.

As aresult, "A" is given to the application program.

When a key event does not match with any rule in the current state, that event is unhandled and given back to the
application program.

Turkish users may want to extend the above example for "I" (U+0130: LATIN CAPITAL LETTER I WITH DOT
ABOVE). It seems that assigning the key sequence <i> <i> for that character is convenient. So, he will add this
rule in toupper.

("ii" nin)
However, we already have the following rule:
(n i n n I n)

What will happen when a key event <i> is sent to the input method?

256 Tutorial for writing the m17n database

No problem. When the input method receives <i>, it inserts "I" in the preedit buffer. It knows that there is
another rule that may match the additional key event <i>. So, after inserting "I", it suspends the normal behavior
of shifting to the initial condition, and waits for another key. Thus, the user sees "I" with underline, which
indicates it is not yet committed.

When the input method receives the next <i>, it cancels the effects done by the rule for the previous "i" (in this
case, the preedit buffer is cleared), and executes MAP-ACTIONS of the rule for "ii". So, "I" is inserted in the
preedit buffer. This time, as there are no other rules that match with an additional key, it shifts to the initial
condition of the current state, which leads to commit "I".

Then, what will happen when the next key event is <a> instead of <i>?
No problem, either.

The input method knows that there are no rules that match the <i> <a> key sequence. So, when it receives the
next <a>, it executes the suspended behavior (i.e. shifting to the initial condition), which leads to commit "I".
Then the input method tries to handle <a> in the current state, which leads to commit "A".

So far, we have explained MAP-ACTION, but not BRANCH-ACTION. The format of BRANCH-ACTION is
the same as that of MAP-ACTION. It is executed only after a matching rule has been determined and the
corresponding MAP-ACTIONSs have been executed. A typical use of BRANCH-ACTION is to shift to a different
state.

To see this effect, let us modify the current input method to upcase only word-initial letters (i.e. to capitalize).
For that purpose, we modify the "init" state as this:

(init
(toupper (shift non-upcase)))

Here (shift non-upcase) is an action to shift to the new state non-upcase, which has two branches as
below:

(non-upcase
(lower)
(nil (shift init)))

The first branch is simple. We can define the new map 1lower as the following to insert lowercase letters as they
are.

(map
(lower (lla" llaﬂ) ("bll "b") (Hc“ "C") (lld" "d") (lle" lleﬂ)
(llfll llfll) (llgll llgll) (llh" llhll) (lllll "i") (lljll lljll)
("k" "k™) ("1™ "1") ("m" "m") ("n" "n") ("o" "o")
(llpll llp") (llqll llqll) ("r" llrll) (IIS" "S") (lltll llt")
("u" "u") ("v" "v") ("w" "w") ("x" "x") ("y" "y")
(IIZII "Z")))

The second branch has a special meaning. The map name nil means that it matches with any key event that
does not match any rules in the other maps in the current state. In addition, it does not consume any key event.
We will show the full code of the new input method before explaining how it works.

input-method en titlecase)

(

(description (_ "Titlecase letters"))

(title "abc->Abc")

(map

(toupper ("a"™ "A") ("b" "B") ("c" "C") ("d" "D") ("e" "E")

("f" "F") ("g" "G") ("hll "H") ("i" "Ill) ("j" "J")
("k" IIK") (lll" "Lll) ("mll llM") (llnll "Nll) ("O" IIO")
("p" "P") ("q" "Q") (“r" "R") ("S" "Sll) ("t" "T")
("u" llU") ("V" "vll) ("W“ "W") ("X" "Xll) ("y" llY")
("z" "z"™) ("ii™ "IM))

F.1 Tutorial of input method 257

(lower ("a" "a") (llb" "b") ("C" llc") ("d" "d") (e e)
("E" MEM) ("g" "g") ("h"™ "h") ("i" "iM) ("3" 5T
("k" "k") ("l" "l") ("m" llm") ("n" "n") ("O" "O")
("p" "p") ("g" "g") ("r" "r") ("s" "s") ("t" "t")
("u" "u") ("V" "V") ("w" "w") ("X" "X") ("y" y")
("Z "ZII)))
(state
(init

(toupper (shift non-upcase)))
(non-upcase

(lower (commit))

(nil (shift init))))

Let’s see what happens when the user types the key sequence <a> < >. Upon <a>, "A" is inserted into
the buffer and the state shifts to non-upcase. So, the next is handled in the non-upcase state. As it
matches a rule in the map lower, "b" is inserted in the preedit buffer and characters in the buffer ("Ab") are
committed explicitly by the "commit" command in BRANCH-ACTION. After that, the input method is still in
the non—upcase state. So the next < > is also handled in non—upcase. For this time, no rule in this state
matches it. Thus the branch (nil (shift init)) is selected and the state is shifted to init. Please note
that < > is not yet handled because the map nil does not consume any key event. So, the input method tries to
handle it in the init state. Again no rule matches it. Therefore, that event is given back to the application
program, which usually inserts a space for that.

When you type "a quick blown fox" with this input method, you get "A Quick Blown Fox". OK, you find a typo
in "blown", which should be "brown". To correct it, you probably move the cursor after "" and type
<Backspace> and <r>. However, if the current input method is still active, a capital "R" is inserted. It is not a
sophisticated behavior.

F.1.3 Example of utilizing surrounding text support

To make the input method work well also in such a case, we must use "surrounding text support". It is a way to
check characters around the inputting spot and delete them if necessary. Note that this facility is available only
with Gtk+ applications and Qt applications. You cannot use it with applications that use XIM to communicate
with an input method.

Before explaining how to utilize "surrounding text support”, you must understand how to use variables,
arithmetic comparisons, and conditional actions.

At first, any symbol (except for several preserved ones) used as ARG of an action is treated as a variable. For
instance, the commands

(set X 32) (insert X)

set the variable X to integer value 32, then insert a character whose Unicode character code is 32 (i.e. SPACE).

The second argument of the set action can be an expression of this form:
(OPERATOR ARGl [ARG2])

Both ARG1 and ARG2 can be an expression. So,
(set X (+ (* Y 32) 2))

sets X to the value of Y * 32 + Z.

We have the following arithmetic/bitwise OPERATORS (require two arguments):

+ - % / &

258 Tutorial for writing the m17n database

these relational OPERATORS (require two arguments):

and this logical OPERATOR (requires one argument):

For surrounding text support, we have these preserved variables:

@-0, @-N, @+N (N is a positive integer)
The values of them are predefined as below and can not be altered.

. @ -0
-1 if surrounding text is supported, -2 if not.
e @—N

The Nth previous character in the preedit buffer. If there are only M (M<N) previous characters in it, the
value is the (N-M)th previous character from the inputting spot.

* @+N

The Nth following character in the preedit buffer. If there are only M (M<N) following characters in it, the
value is the (N-M)th following character from the inputting spot.

So, provided that you have this context:

ABC|def |GHI

("def" is in the preedit buffer, two "|"s indicate borders between the preedit buffer and the surrounding text) and
your current position in the preedit buffer is between "d" and "e", you get these values:

@-3 -- ?B
@-2 -- 2C
@-1 —- 2d
@+1 —-- ze
@+2 -- 2f
@+3 -- 2G

Next, you have to understand the conditional action of this form:

(cond
(EXPR1 ACTION ACTION ...)
(EXPR2 ACTION ACTION ...)
-)

where EXPRn are expressions. When an input method executes this action, it resolves the values of EXPRn one
by one from the first branch. If the value of EXPRn is resolved into nonzero, the corresponding actions are
executed.

Now you are ready to write a new version of the input method "Titlecase".

(input-method en titlecase2)
(description (_ "Titlecase letters"))
(title "abc->Abc")

(map

F.1 Tutorial of input method 259

(toupper ("a" "A") (llb" "B") ("cll "C") ("d" "D") ("e" "E")
("E£" "E") ("g" "G") ("h" "H") ("i" "I") ("3" "J")
("k" "K") (lll" "L") ("mll "M") ("n" "Nll) ("O" "O")
("p" "P") ("g" "Q") ("r" "R") ("s" "S") ("t" "T")
("u" "U“) (llv" "v") (“w" "W") ("X" "Xll) ("y" "Y“)
("Z" "Z") (llii" llill)))
(state
(init
(toupper

;7 Now we have exactly one uppercase character in the preedit
;7 buffer. So, "@-2" is the character just before the inputting

;7 sSpot.

(cond ((I (& (>= @=2 ?A) (<= @-2 ?Z))
(& (>= R-2 2a) (<= @-2 ?z)
(= @-2 21))

;; If the character before the inputting spot is A..Z,

;; a..z, or I, remember the only character in the preedit
;7 buffer in the variable X and delete it.

(set X @-1) (delete @-)

;7 Then insert the lowercase version of X.

(cond ((= X 2I) "i")

(1 (set X (+ X 32)) (insert X))))))))

The above example contains the new action delete. So, it is time to explain more about the preedit buffer. The
preedit buffer is a temporary place to store a sequence of characters. In this buffer, the input method keeps a

position called the "current position". The current position exists between two characters, at the beginning of the
buffer, or at the end of the buffer. The insert action inserts characters before the current position. For instance,

non

when your preedit buffer contains "ab.c" ("." indicates the current position),
(insert "xyz")

changes the buffer to "abxyz.c".

There are several predefined variables that represent a specific position in the preedit buffer. They are:

Q<L @=, @>

The first, current, and last positions.

e @-, @+

The previous and the next positions.
The format of the delete action is this:
(delete POS)

where POS is a predefined positional variable. The above action deletes the characters between POS and the
current position. So, (delete @-) deletes one character before the current position. The other examples of
delete include the followings:

(delete @+) ; delete the next character
(delete @<) ; delete all the preceding characters in the buffer
(delete @>) ; delete all the following characters in the buffer

You can change the current position using the move action as below:

260 Tutorial for writing the m17n database

(move @-) ; move the current position to the position before the
previous character
(move @<) ; move to the first position

Other positional variables work similarly.

Let’s see how our new example works. Whatever a key event is, the input method is in its only state, init.
Since an event of a lower letter key is firstly handled by MAP-ACTIONS, every key is changed into the
corresponding uppercase and put into the preedit buffer. Now this character can be accessed with @—1.

How can we tell whether the new character should be a lowercase or an uppercase? We can do so by checking the
character before it, i.e. @-2. BRANCH-ACTIONS in the init state do the job.

It first checks if the character @-2 is between A to Z, between a to z, or | by the conditional below.
(cond ((I (

(
(

(>= @-2 ?A) (<=
(>= Q-2 2a) (<=
@-2 21))

I &

If not, there is nothing to do specially. If so, our new key should be changed back into lowercase. Since the
uppercase character is already in the preedit buffer, we retrieve and remember it in the variable X by

(set X @-1)

and then delete that character by

(delete @-)

nin

Lastly we re-insert the character in its lowercase form. The problem here is that "I" must be changed into "i", so
we need another conditional. The first branch

((: X ?I) "i")

means that "if the character remembered in X is °T°, ’i’ is inserted".

The second branch

(1 (set X (+ X 32)) (insert X))

starts with "1", which is always resolved into nonzero, so this branch is a catchall. Actions in this branch increase
X by 32, then insert X. In other words, they change A...Z into a...z respectively and insert the resulting lowercase
character into the preedit buffer. As the input method reaches the end of the BRANCH-ACTION:S, the character
is committed.

This new input method always checks the character before the current position, so "A Quick Blown Fox" will be
successfully fixed to "A Quick Brown Fox" by the key sequence <BackSpace> <r>.

Appendix G

GNU Free Documentation License

262 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide,
royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You
accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF

263

and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding
the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements", "Dedications”, "Endorsements", or
"History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses

264 GNU Free Documentation License

a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission. B. List on the
Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement. C. State on the Title page the name of the
publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. F. Include,
immediately after the copyright notices, a license notice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Addendum below. G. Preserve in that license notice the
full lists of Invariant Sections and required Cover Texts given in the Document’s license notice. H. Include an
unaltered copy of this License. I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence. J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of the version
it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section
titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version. N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made by
the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

265

In the combination, you must combine any sections Entitled "History" in the various original documents, forming
one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections
Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or
on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

266 GNU Free Documentation License

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their use
in free software.

Index

active

MinputContext, 187
adjusted

MFLTGlyph, 182
advance_is_absolute

MFLTGlyphAdjustment, 183
align_head

MDrawControl, 166
allocated

MFLTGlyphString, 184
anti_alias

MDrawControl, 167
arg

MinputContext, 186

MinputMethod, 193
as_image

MDrawControl, 166
ascent

MDrawGlyph, 171

MFLTGlyph, 182

MiInputContext, 187
at_most

MConverter, 165

back

MFLTGlyphAdjustment, 183
bom

MCodingInfoUTF, 163

MConverter, 165
MFLTGlyph, 181
callback_list
MlinputDriver, 191
candidate_from
MiInputContext, 188
candidate_index
MiInputContext, 188
candidate_list
MinputContext, 188
candidate_show
MlInputContext, 188
candidate_to
MiInputContext, 188
candidates_changed
MInputContext, 188
Character, 24

Charset, 64
Chartable, 29
check_otf

MFLTFont, 180
client

MInputGUIArgIC, 192
client_win

MiInputXIMArgIC, 194
clip_region

MDrawControl, 169
close_im

MlinputDriver, 190
code

MFLTGlyph, 181
Code Conversion, 72
code_unit_bits

MCodingInfoUTF, 163
color

MFaceHLineProp, 177
color_bottom

MFaceBoxProp, 176
color_left

MFaceBoxProp, 176
color_right

MFaceBoxProp, 176
color_top

MFaceBoxProp, 176
control

MDrawTextltem, 175
CORE APL, 9
create_ic

MlnputDriver, 190
cursor_bidi

MDrawControl, 169
cursor_pos

MDrawControl, 168

MInputContext, 188
cursor_pos_changed

MInputContext, 188
cursor_width

MDrawControl, 168

Database, 60
db

MiInputXIMArgIM, 195
dbl

MConverter, 165

268

INDEX

Debugging, 156
delta
MDrawTextltem, 175
descent
MDrawGlyph, 171
MFLTGlyph, 182
MlInputContext, 187
designations
MCodingInfolS02022, 162
destroy_ic
MlinputDriver, 191
disable_caching
MDrawControl, 169
disable_overlapping_adjustment
MDrawControl, 167
display
MiInputXIMArgIM, 195
Drawing, 143
drive_otf
MFLTFont, 180
driver
MiInputMethod, 193

enable bidi

MDrawControl, 167
encoded

MFLTGlyph, 182
endian

MCodingInfoUTF, 163
Error Handling, 153

Face, 132
face

MDrawTextltem, 175
family

MFLTFont, 179
features

MFLTOtfSpec, 185
filler

M17NObjectHead, 161
filter

MlinputDriver, 191
fixed_width

MDrawControl, 167
flags

MCodingInfolS02022, 162
FLT API, 108
focus

MInputGUIArgIC, 192
focus_win

MiInputXIMArgIC, 194
Font, 117
font

MDrawGlyph, 171

MDrawGlyphlnfo, 173
font_type

MDrawGlyph, 171
fontp

MDrawGlyph, 171
Fontset, 129
fontsize

MInputContext, 187
format

MDrawControl, 168
Frame, 113
frame

MInputGUIArgIC, 192
from

MDrawGlyph, 170

MDrawGlyphlnfo, 172

MFLTGlyph, 181

get_glyph_id

MFLTFont, 179
get_metrics

MFLTFont, 179
glyph_code

MDrawGlyph, 170
glyph_size

MFLTGlyphString, 184
glyphs

MFLTGlyphString, 184
GUI AP, 112

height
MDrawMetric, 174

ignore_formatting_char
MDrawControl, 167
im
MinputContext, 186
info
MinputContext, 187
MlInputMethod, 193
initial_invocation
MCodingInfolS02022, 162
inner_hmargin
MFaceBoxProp, 176
inner_vmargin
MFaceBoxProp, 176
Input Method (basic), 92
Input Method (GUI), 150
input_style
MinputXIMArgIC, 194
internal
MFLTFont, 180
MFLTGlyph, 182
internal_info
MConverter, 165
Introduction, 5

langsys

INDEX

269

MFLTOtfSpec, 185
language

MinputMethod, 193
last_block

MConverter, 164
Ibearing

MDrawGlyph, 171

MFLTGlyph, 182
left_from

MDrawGlyphlnfo, 173
left_to

MDrawGlyphlnfo, 173
lenient

MConverter, 164
line_break

MDrawControl, 168
line_from

MDrawGlyphlnfo, 172
line_to

MDrawGlyphlnfo, 172
Locale, 89
locale

MinputXIMArgIM, 195
logical_width

MDrawGlyphlnfo, 173
lookup

MinputDriver, 191

M-text, 33
M17N_CORE_INITIALIZED

m17nlntro, 8
M17N_FINI

m17nlntro, 8
MI17N_FUNC

m17nCore, 10
MI17N_GUI_INITIALIZED

m17nlntro, 8
MI17N_INIT

m17nlntro, 7
ml17n_memory_full_handler

ml17nError, 155
MI17N_NOT_INITIALIZED

m17nlntro, 8
m17n_object

m17nObject, 11
m17n_object_ref

m17nObject, 12
m17n_object_unref

m17nObject, 12
M17N_SHELL_INITIALIZED

m17nlntro, 8
ml7n_status

m17nlntro, 8
m17nCharacter

Mbidi_category, 27

Mblock, 28

Mcase_mapping, 28
Mcased, 27

Mcategory, 27
mchar_define_property, 25
mchar_get_prop, 25
mchar_get_prop_table, 26
MCHAR_MAX, 25
mchar_put_prop, 26
Mcombining_class, 27
Mcomplicated_case_folding, 27
Mname, 26

Mscript, 26
Msimple_case_folding, 27
Msoft_dotted, 28

m17nCharset

Maliases, 70
Mascii_compatible, 70
mchar_decode, 68
mchar_define_charset, 66
mchar_encode, 68
MCHAR_INVALID_CODE, 66
mchar_list_charset, 67
mchar_map_charset, 68
mchar_resolve_charset, 67
Mcharset, 71
Mcharset_ascii, 69
Mcharset_binary, 69
Mcharset_iso_8859_1, 69
Mcharset_m17n, 69
Mcharset_unicode, 69
Mdefine_coding, 70
Mdimension, 70
Mfinal_byte, 70

Mmap, 70

Mmapfile, 70
Mmax_code, 70
Mmax_range, 70
Mmethod, 69
Mmin_char, 70
Mmin_code, 70
Mmin_range, 70
Moffset, 70

Mparents, 70

Mrevision, 70

Msubset, 71
Msubset_offset, 70
Msuperset, 71

Munify, 70

m17nChartable

Mchar_table, 32
MCharTable, 30
mchartable, 30
mchartable_lookup, 30
mchartable_map, 31
mchartable_max_char, 30
mchartable_min_char, 30

INDEX

mchartable_range, 31
mchartable_set, 31
mchartable_set_range, 31

m17nConv

Mbom, 87

Mcharsets, 87

Mcode_unit, 87

Mcoding, 88

Mcoding_iso_8859_1, 85
MCODING_ISO_DESIGNATION_CTEXT, 77
MCODING_ISO_DESIGNATION_CTEXT_-

EXT,

77
MCODING_ISO_DESIGNATION_GO, 77
MCODING_ISO_DESIGNATION_G1, 77
MCODING_ISO_EIGHT_BIT, 77
MCODING_ISO_EUC_TW_SHIFT, 77
MCODING_ISO_FLAG_MAX, 77
MCODING_ISO_FULL_SUPPORT, 77
MCODING_ISO_IS06429, 77
MCODING_ISO_LOCKING_SHIFT, 77
MCODING_ISO_LONG_FORM, 77
MCODING_ISO_RESET_AT CNTL, 77
MCODING_ISO_RESET_AT_EOL, 77
MCODING_ISO_REVISION_NUMBER, 77
MCODING_ISO_SINGLE_SHIFT, 77
MCODING_ISO_SINGLE_SHIFT_7, 77
Mcoding_sjis, 87
MCODING_TYPE_CHARSET, 76
MCODING_TYPE_ISO_2022, 76
MCODING_TYPE_MISC, 76
MCODING_TYPE_UTEF, 76
Mcoding_us_ascii, 85
Mcoding_utf_16, 86
Mcoding_utf 16be, 86
Mcoding_utf_16le, 86
Mcoding_utf_32, 86
Mcoding_utf_32be, 86
Mcoding_utf_32le, 86
Mcoding_utf_8, 86
Mcoding_utf_8_full, 86
MCodingFlagIS02022, 77
MCodingType, 76
mconv_buffer_converter, 80
mconv_decode, 82
mconv_decode_buffer, 82
mconv_decode_stream, 82
mconv_define_coding, 77
mconv_encode, 83
mconv_encode_buffer, 83
mconv_encode_range, 83
mconv_encode_stream, 84
mconv_free_converter, 81
mconv_getc, 84
mconv_gets, 85
mconv_list_codings, 80

mconv_putc, 85

mconv_rebind_buffer, 81

mconv_rebind_stream, 81

mconv_reset_converter, 81

mconv_resolve_coding, 80

mconv_stream_converter, 80

mconv_ungetc, 84

MCONVERSION_RESULT_INSUFFICIENT_-
DST,
76

MCONVERSION_RESULT_INSUFFICIENT_-
SRC,
76

MCONVERSION_RESULT_INVALID_BYTE,
76

MCONVERSION_RESULT_INVALID_CHAR,
76

MCONVERSION_RESULT_IO_ERROR, 76

MCONVERSION_RESULT_SUCCESS, 76

MConversionResult, 76

Mdesignation, 87

Mdesignation_ctext, 88

Mdesignation_ctext_ext, 88

Mdesignation_g0, 88

Mdesignation_g1, 88

Meight_bit, 88

Meuc_tw_shift, 88

Mflags, 87

Mfull_support, 88

Minvocation, 87

Miso_2022, 87

Miso_6429, 88

Mlittle_endian, 87

Mlocking_shift, 88

Milong_form, 88

Mmaybe, 88

Mreset_at_cntl, 88

Mreset_at_eol, 88

Mrevision_number, 88

Msingle_shift, 88

Msingle_shift_7, 88

Mtype, 87

Mutf, 87

m17nCore

M17N_FUNC, 10
M17NFunc, 10

m17nDatabase

MDatabase, 61
mdatabase_define, 61
mdatabase_dir, 62
mdatabase_find, 61
mdatabase_list, 61
mdatabase_load, 62
mdatabase_tag, 62

m17nDebug

mdebug_dump_all_symbols, 159

INDEX

271

mdebug_dump_chartab, 157
mdebug_dump_face, 157
mdebug_dump_font, 157
mdebug_dump_fontset, 157
mdebug_dump_im, 158
mdebug_dump_mtext, 158
mdebug_dump_plist, 158
mdebug_dump_symbol, 158
mdebug_hook, 158
m17nDraw
mdraw_clear_cache, 149
mdraw_coordinates_position, 147
mdraw_default_line_break, 148
mdraw_glyph_info, 148
mdraw_glyph_list, 148
mdraw_image_text, 146
mdraw_line_break_option, 149
mdraw_per_char_extents, 149
mdraw_text, 145
mdraw_text_extents, 146
mdraw_text_items, 148
mdraw_text_per_char_extents, 147
mdraw_text_with_control, 146
MDrawRegion, 144
MDrawWindow, 144
m17nError
m17n_memory_full_handler, 155
MERROR_CHAR, 154
MERROR_CHARSET, 154
MERROR_CHARTABLE, 154
merror_code, 155
MERROR_CODING, 154
MERROR_DB, 155
MERROR_DEBUG, 155
MERROR_DRAW, 155
MERROR_FACE, 155
MERROR_FLT, 155
MERROR_FONT, 155
MERROR_FONT_FT, 155
MERROR_FONT_OTF, 155
MERROR_FONT_X, 155
MERROR_FONTSET, 155
MERROR_FRAME, 155
MERROR_GD, 155
MERROR_IM, 155
MERROR_IO, 155
MERROR_LANGUAGE, 154
MERROR_LOCALE, 154
MERROR_MAX, 155
MERROR_MEMORY, 155
MERROR_MISC, 154
MERROR_MTEXT, 154
MERROR_NONE, 154
MERROR_OBIJECT, 154
MERROR_PLIST, 154
MERROR_RANGE, 154

MERROR_SYMBOL, 154
MERROR_TEXTPROP, 154
MERROR_WIN, 154
MERROR_X, 154
MErrorCode, 154

m1l7nFace

Mbackground, 138
Mbox, 138

MPFace, 135

Mface, 142

mface, 135
mface_black, 141
mface_blue, 142
mface_bold, 140
mface_bold_italic, 140
mface_copy, 136
mface_cyan, 142
mface_equal, 136
mface_from_font, 136
mface_get_hook, 137
mface_get_prop, 136
mface_green, 142
mface_italic, 140
mface_large, 141
mface_magenta, 142
mface_medium, 140
mface_merge, 136
mface_normal_video, 139
mface_normalsize, 141
mface_put_hook, 137
mface_put_prop, 137
mface _red, 141
mface_reverse_video, 139
mface_small, 140
mface_underline, 139
mface_update, 137
mface white, 141
mface_x_large, 141
mface_x_small, 140
mface_xx_large, 141
mface_xx_small, 140
mface_yellow, 142
MPFaceHookFunc, 135
Mfontset, 138
Mforeground, 137
Mhline, 138
Mhook_arg, 139
Mhook_func, 139
Mnormal, 139
Mratio, 138
Mreverse, 139
Mvideomode, 138

ml7nFLT

mdebug_dump_fit, 110
MFLT, 109
mflt_coverage, 109

272

INDEX

mflt_dump_gstring, 110
mflt_enable_new_feature, 110
mflt_find, 109

mflt_font_id, 111

mflt_get, 109

mflt_iterate_otf feature, 110
mflt_name, 109

mflt_run, 110

mflt_try_otf, 111

m17nFont

Madstyle, 126

Mfamily, 125

MFont, 121

mfont, 121

mfont_check, 124
mfont_close, 125
mfont_copy, 122
mfont_encapsulate, 125
mfont_find, 123
mfont_freetype_path, 128
mfont_from_name, 123
mfont_get_prop, 122
mfont_list, 124
mfont_list_family_names, 124
mfont_match_p, 124
mfont_name, 123
mfont_open, 125
mfont_parse_name, 121
mfont_put_prop, 122
mfont_resize ratio, 124
mfont_selection_priority, 122
mfont_set_encoding, 123
mfont_set_selection_priority, 123
mfont_unparse_name, 122
Mfontconfig, 127
Mfontfile, 127

Mfoundry, 125
Mfreetype, 127
Mmax_advance, 127
Motf, 127

Mregistry, 126
Mresolution, 127

Msize, 126

Mspacing, 126

Mstretch, 126

Mstyle, 126

Mweight, 126

Mx, 127

Mxft, 128

m17nFontset

mfontset, 129
mfontset_copy, 130
mfontset_lookup, 130
mfontset_modify_entry, 130
mfontset_name, 130

ml7nFrame

Mcolormap, 116
Mdepth, 116
Mdevice, 116
Mdisplay, 116
Mdrawable, 116
Mfont, 116
Mfont_ascent, 116
Mfont_descent, 116
Mfont_width, 116
MFrame, 114
mframe, 114
mframe_default, 116
mframe_get_prop, 115
Mgd, 116

Mscreen, 116
Mwidget, 116

M17NFunc

m17nCore, 10

m17nInputMethod

Mconfigured, 106

Mcustomized, 106

Minherited, 106

minput_assign_command_keys, 104

minput_callback, 105

MINPUT_CANDIDATES_CHANGED_MAX,
96

Minput_candidates_done, 106

Minput_candidates_draw, 106

MINPUT_CANDIDATES_INDEX_CHANGED,
96

MINPUT_CANDIDATES_LIST_CHANGED, 96

MINPUT_CANDIDATES_SHOW_CHANGED,
96

Minput_candidates_start, 106

minput_close_im, 96

minput_config_command, 100

minput_config_file, 102

minput_config_variable, 101

minput_create_ic, 96

minput_default_driver, 106

Minput_delete_surrounding_text, 106

minput_destroy_ic, 97

Minput_driver, 107

minput_driver, 107

minput_filter, 97

Minput_focus_in, 106

Minput_focus_move, 106

Minput_focus_out, 106

minput_get_command, 99

minput_get_commands, 104

minput_get_description, 98

Minput_get_surrounding_text, 106

minput_get_title_icon, 98

minput_get_variable, 101

minput_get_variables, 103

minput_lookup, 97

INDEX 273

Minput_method, 105 MText, 36

minput_open_im, 96 mtext, 37

Minput_preedit_done, 106 mtext_case_compare, 46

Minput_preedit_draw, 106 mtext_casecmp, 46

Minput_preedit_start, 105 mtext_cat, 39

Minput_reset, 106 mtext_cat_char, 39

minput_reset_ic, 98 mtext_character, 43

minput_save_config, 102 mtext_chr, 43

Minput_set_spot, 106 mtext_cmp, 44

minput_set_spot, 97 mtext_compare, 44

minput_set_variable, 103 mtext_copy, 41

Minput_status_done, 106 mtext_cpy, 40

Minput_status_draw, 106 mtext_cspn, 45

Minput_status_start, 106 mtext_data, 38

Minput_toggle, 106 mtext_del, 41

minput_toggle, 98 mtext_dup, 39

MiInputCallbackFunc, 96 mtext_duplicate, 40

MInputCandidatesChanged, 96 MTEXT_FORMAT_MAX, 36
m17nInputMethodWin MTEXT_FORMAT_US_ASCII, 36

minput_event_to_key, 150 MTEXT_FORMAT _UTF_16, 48

minput_gui_driver, 151 MTEXT_FORMAT _UTF_16BE, 36

Mxim, 151 MTEXT_FORMAT_UTF_16LE, 36
m17nlntro MTEXT_FORMAT _UTF_32, 48

M17N_CORE_INITIALIZED, 8 MTEXT_FORMAT_UTF_32BE, 36

MI17N_FINI, 8 MTEXT_FORMAT_UTF_32LE, 36

MI17N_GUI_INITIALIZED, 8 MTEXT_FORMAT_UTF_8, 36

MI17N_INIT, 7 mtext_from_data, 37

MI17N_NOT_INITIALIZED, 8 mtext_ins, 41

M17N_SHELL_INITIALIZED, 8 mtext_ins_char, 42

m17n_status, 8 mtext_insert, 42

M17NLIB_MAJOR_VERSION, 7 MTEXT_LBO_AI_AS_ID, 37

M17NLIB_MINOR_VERSION, 7 MTEXT_LBO_KOREAN_SP, 37

MI17NLIB_PATCH_LEVEL, 7 MTEXT_LBO_MAX, 37

MI17NLIB_VERSION_NAME, 7 MTEXT_LBO_SP_CM, 37

M17NStatus, 8 mtext_len, 38
MI17NLIB_MAJOR_VERSION mtext_line_break, 37

m17nlntro, 7 mtext_lowercase, 47
M17NLIB_MINOR_VERSION mtext_ncasecmp, 46

m17nlntro, 7 mtext_ncat, 39
MI17NLIB_PATCH_LEVEL mtext_ncmp, 44

m17nlntro, 7 mtext_ncpy, 40
M17NLIB_VERSION_NAME mtext_pbrk, 45

m17nlntro, 7 mtext_rchr, 43
ml7nLocale mtext_ref char, 38

Mcodeset, 91 mtext_replace, 42

MLocale, 89 mtext_search, 46

mlocale_get_prop, 90 mtext_set_char, 38

mlocale_set, 90 mtext_spn, 44

Mmodifier, 91 mtext_text, 45

Mterritory, 91 mtext_titlecase, 47

mtext_coll, 91 mtext_tok, 45

mtext_ftime, 90 mtext_uppercase, 47

mtext_getenv, 90 MTextFormat, 36

mtext_putenv, 91 MTextLineBreakOption, 36
m17nMtext m17nObject

Mlanguage, 48 m17n_object, 11

274

INDEX

m17n_object_ref, 12
m17n_object_unref, 12

M17NObjectHead, 161
filler, 161

m17nPlist
Minteger, 23
MPlist, 19
Mplist, 23
mplist, 20
mplist_add, 21
mplist_copy, 20
mplist_deserialize, 20
mplist_find_by_key, 22
mplist_find_by_value, 22
mplist_get, 21
mplist_get_func, 21
mplist_key, 23
mplist_length, 23
mplist_next, 22
mplist_pop, 22
mplist_push, 21
mplist_put, 20
mplist_put_func, 21
mplist_set, 22
mplist_value, 23
Mtext, 23

M17NStatus
m17nlntro, 8

m17nSymbol
Mnil, 17
Mstring, 17
MSymbol, 14
Msymbol, 17
msymbol, 14
msymbol_as_managing_key, 14
msymbol_exist, 15
msymbol_get, 16
msymbol_get_func, 16
msymbol_is_managing_key, 15
msymbol_name, 15
msymbol_put, 15
msymbol_put_func, 16
Mt, 17

m17nTextProperty
mtext_attach_property, 57
mtext_deserialize, 58
mtext_detach_property, 57
mtext_get_prop, 52
mtext_get_prop_keys, 53
mtext_get_prop_values, 52
mtext_get_properties, 56
mtext_get_property, 56
mtext_pop_prop, 54
Mtext_prop_deserializer, 58
mtext_prop_range, 55
Mtext_prop_serializer, 58

mtext_property, 55
mtext_property_end, 56
mtext_property_key, 56
mtext_property_mtext, 55
mtext_property_start, 56
mtext_property_value, 56
mtext_push_prop, 54
mtext_push_property, 57
mtext_put_prop, 53
mtext_put_prop_values, 53
mtext_serialize, 57
MTEXTPROP_CONTROL_MAX, 52
MTEXTPROP_FRONT_STICKY, 51
MTEXTPROP_NO_MERGE, 52
MTEXTPROP_REAR_STICKY, 51
MTEXTPROP_VOLATILE_STRONG, 52
MTEXTPROP_VOLATILE_WEAK, 51
MTextPropDeserializeFunc, 51
MTextProperty, 51
MTextPropertyControl, 51
MTextPropSerializeFunc, 51
Madstyle
m17nFont, 126
Maliases
m17nCharset, 70
Managed Object, 11
Mascii_compatible
m17nCharset, 70
max_line_ascent
MDrawControl, 167
max_line_descent
MDrawControl, 167
max_line_width
MDrawControl, 167
Mbackground
m1l7nFace, 138
Mbidi_category
m17nCharacter, 27
Mblock
m17nCharacter, 28
Mbom
m17nConv, 87
Mbox
ml7nFace, 138
Mcase_mapping
m17nCharacter, 28
Mcased
m17nCharacter, 27
Mcategory
m17nCharacter, 27
mchar_decode
m17nCharset, 68
mchar_define_charset
m17nCharset, 66
mchar_define_property
m17nCharacter, 25

INDEX 275

mchar_encode Mcoding
m17nCharset, 68 m17nConv, 88

mchar_get_prop Mcoding_iso_8859_1
m17nCharacter, 25 m17nConv, 85

mchar_get_prop_table MCODING_ISO_DESIGNATION_CTEXT
m17nCharacter, 26 m17nConv, 77

MCHAR_INVALID_CODE MCODING_ISO_DESIGNATION_CTEXT_EXT
m17nCharset, 66 m17nConv, 77

mchar_list_charset MCODING_ISO_DESIGNATION_GO
m17nCharset, 67 m17nConv, 77

mchar_map_charset MCODING_ISO_DESIGNATION_G1
m17nCharset, 68 m17nConv, 77

MCHAR_MAX MCODING_ISO_EIGHT_BIT
m17nCharacter, 25 m17nConv, 77

mchar_put_prop MCODING_ISO_EUC_TW_SHIFT
m17nCharacter, 26 m17nConv, 77

mchar_resolve_charset MCODING _ISO_FLAG _MAX
m17nCharset, 67 m17nConv, 77

Mchar_table MCODING_ISO_FULL_SUPPORT
m17nChartable, 32 m17nConv, 77

Mcharset MCODING_ISO_IS06429
m17nCharset, 71 m17nConv, 77

Mcharset_ascii MCODING_ISO_LOCKING_SHIFT
m17nCharset, 69 m17nConv, 77

Mcharset_binary MCODING_ISO_LONG_FORM
m17nCharset, 69 m17nConv, 77

Mcharset_iso_8859 1 MCODING_ISO_RESET_AT_CNTL
m17nCharset, 69 m17nConv, 77

Mcharset_m17n MCODING_ISO_RESET_AT EOL
m17nCharset, 69 m17nConv, 77

Mcharset_unicode MCODING _ISO_REVISION_NUMBER
m17nCharset, 69 m17nConv, 77

Mcharsets MCODING_ISO_SINGLE_SHIFT
m17nConv, 87 m17nConv, 77

MCharTable MCODING_ISO_SINGLE_SHIFT_7
m17nChartable, 30 m17nConv, 77

mchartable Mcoding_sjis
m17nChartable, 30 m17nConv, 87

mchartable_lookup MCODING_TYPE_CHARSET
m17nChartable, 30 m17nConv, 76

mchartable_map MCODING_TYPE_ISO_2022
m17nChartable, 31 m17nConv, 76

mchartable_max_char MCODING_TYPE MISC
m17nChartable, 30 m17nConv, 76

mchartable_min_char MCODING_TYPE_UTF
m17nChartable, 30 m17nConv, 76

mchartable_range Mcoding_us_ascii
m17nChartable, 31 m17nConv, 85

mchartable_set Mcoding_utf_16
m17nChartable, 31 m17nConv, 86

mchartable_set_range Mcoding_utf_16be
m17nChartable, 31 m17nConv, 86

Mcode_unit Mcoding_utf_16le
m17nConv, 87 m17nConv, 86

Mcodeset Mcoding_utf_32

ml7nLocale, 91 m17nConv, 86

276

INDEX

Mcoding_utf_32be
m17nConv, 86
Mcoding_utf_32le
m17nConv, 86
Mcoding_utf 8
m17nConv, 86
Mcoding_utf_8_full
m17nConv, 86
MCodingFlagIS02022
m17nConv, 77
MCodingInfolS02022, 162
designations, 162
flags, 162
initial_invocation, 162
MCodingInfoUTF, 163
bom, 163
code_unit_bits, 163
endian, 163
MCodingType
m17nConv, 76
Mcolormap
ml7nFrame, 116
Mcombining_class
m17nCharacter, 27
Mcomplicated_case_folding
m17nCharacter, 27
Mconfigured
m17nInputMethod, 106
mconv_buffer converter
m17nConv, 80
mconv_decode
m17nConv, 82
mconv_decode_buffer
m17nConv, 82
mconv_decode_stream
m17nConv, 82
mconv_define_coding
m17nConv, 77
mconv_encode
m17nConv, 83
mconv_encode_buffer
m17nConv, 83
mconv_encode_range
m17nConv, 83
mconv_encode_stream
m17nConv, 84
mconv_free_converter
m17nConv, 81
mconv_getc
m17nConv, 84
mconv_gets
m17nConv, 85
mconv_list_codings
m17nConv, 80
mconv_putc
m17nConv, 85

mconv_rebind_buffer

m17nConv, 81
mconv_rebind_stream

m17nConv, 81
mconv_reset_converter

m17nConv, 81
mconv_resolve_coding

m17nConv, 80
mconv_stream_converter

m17nConv, 80
mconv_ungetc

ml7nConv, 84
MCONVERSION_RESULT_INSUFFICIENT_DST

m17nConv, 76
MCONVERSION_RESULT_INSUFFICIENT_SRC

m17nConv, 76
MCONVERSION_RESULT _INVALID_BYTE

m17nConv, 76
MCONVERSION_RESULT_INVALID_CHAR

m17nConv, 76
MCONVERSION_RESULT_IO_ERROR

m17nConv, 76
MCONVERSION_RESULT_SUCCESS

m17nConv, 76
MConversionResult

m17nConv, 76
MConverter, 164

at_most, 165

c, 165

dbl, 165

internal_info, 165

last_block, 164

lenient, 164

nbytes, 165

nchars, 165

ptr, 165

result, 165

status, 165
Mcustomized

m17nInputMethod, 106
MDatabase

m17nDatabase, 61
mdatabase_define

m1l7nDatabase, 61
mdatabase_dir

m1l7nDatabase, 62
mdatabase_find

m1l7nDatabase, 61
mdatabase_list

ml7nDatabase, 61
mdatabase_load

m17nDatabase, 62
mdatabase_tag

m17nDatabase, 62
mdebug_dump_all_symbols

m17nDebug, 159

INDEX

277

mdebug_dump_chartab
m17nDebug, 157
mdebug_dump_face
m17nDebug, 157
mdebug_dump_fit
m17nFLT, 110
mdebug_dump_font
m17nDebug, 157
mdebug_dump_fontset
m17nDebug, 157
mdebug_dump_im
ml17nDebug, 158
mdebug_dump_mtext
m17nDebug, 158
mdebug_dump_plist
ml17nDebug, 158
mdebug_dump_symbol
ml7nDebug, 158
mdebug_hook
m17nDebug, 158
Mdefine_coding
m17nCharset, 70
Mdepth
ml7nFrame, 116
Mdesignation
m17nConv, 87
Mdesignation_ctext
m17nConv, 88
Mdesignation_ctext_ext
m17nConv, 88
Mdesignation_g0
m17nConv, 88
Mdesignation_g1
m17nConv, 88

Mdevice
ml7nFrame, 116
Mdimension
m17nCharset, 70
Mdisplay

ml7nFrame, 116
mdraw_clear_cache
m17nDraw, 149

mdraw_coordinates_position

ml7nDraw, 147

mdraw_default_line_break

ml7nDraw, 148
mdraw_glyph_info
ml7nDraw, 148
mdraw_glyph_list
ml7nDraw, 148
mdraw_image_text
ml7nDraw, 146

mdraw_line_break_option

m1l7nDraw, 149
mdraw_per_char_extents
ml7nDraw, 149

mdraw_text

m17nDraw, 145

mdraw_text_extents

ml7nDraw, 146

mdraw_text_items

ml7nDraw, 148

mdraw_text_per_char_extents

ml7nDraw, 147

mdraw_text_with_control

m1l7nDraw, 146

Mdrawable

ml7nFrame, 116

MDrawControl, 166

align_head, 166
anti_alias, 167
as_image, 166
clip_region, 169
cursor_bidi, 169
cursor_pos, 168
cursor_width, 168
disable_caching, 169

disable_overlapping_adjustment, 167

enable_bidi, 167
fixed_width, 167
format, 168

ignore_formatting_char, 167

line_break, 168
max_line_ascent, 167
max_line_descent, 167
max_line_width, 167
min_line_ascent, 167
min_line_descent, 167
orientation_reversed, 167
partial_update, 169
tab_width, 168
two_dimensional, 166
with_cursor, 168

MDrawGlyph, 170

ascent, 171
descent, 171
font, 171
font_type, 171
fontp, 171
from, 170
glyph_code, 170
Ibearing, 171
rbearing, 171
to, 170
X_advance, 170
x_off, 170
y_advance, 170
y_off, 170

MDrawGlyphlnfo, 172

font, 173
from, 172
left_from, 173

278

INDEX

left_to, 173
line_from, 172
line_to, 172
logical_width, 173
metrics, 173
next_to, 173
prev_from, 173
right_from, 173
right_to, 173
to, 172
X, 172
y, 172
MDrawMetric, 174
height, 174
width, 174
x, 174
y, 174
MDrawRegion
m1l7nDraw, 144
MDrawTextltem, 175
control, 175
delta, 175
face, 175
mt, 175
MDrawWindow
m1l7nDraw, 144
measured
MFLTGlyph, 182
Meight_bit
m17nConv, 88
MERROR_CHAR
ml17nError, 154
MERROR_CHARSET
m17nError, 154
MERROR_CHARTABLE
m17nError, 154
merror_code
ml7nError, 155
MERROR_CODING
m17nError, 154
MERROR_DB
m17nError, 155
MERROR_DEBUG
ml7nError, 155
MERROR_DRAW
ml17nError, 155
MERROR_FACE
m17nError, 155
MERROR_FLT
m17nError, 155
MERROR_FONT
ml17nError, 155
MERROR_FONT_FT
m17nError, 155
MERROR_FONT_OTF
ml7nError, 155

MERROR_FONT_X
m17nError, 155
MERROR_FONTSET
ml7nError, 155
MERROR_FRAME
m17nError, 155
MERROR_GD
m17nError, 155
MERROR_IM
m17nError, 155
MERROR_IO
ml17nError, 155

MERROR_LANGUAGE

ml7nError, 154
MERROR_LOCALE
m17nError, 154
MERROR_MAX
ml7nError, 155
MERROR_MEMORY
m17nError, 155
MERROR_MISC
m17nError, 154
MERROR_MTEXT
ml7nError, 154
MERROR_NONE
ml17nError, 154
MERROR_OBIJECT
m17nError, 154
MERROR_PLIST
m17nError, 154
MERROR_RANGE
m17nError, 154
MERROR_SYMBOL
m17nError, 154

MERROR_TEXTPROP

m17nError, 154
MERROR_WIN

ml7nError, 154
MERROR_X

m17nError, 154
MErrorCode

m17nError, 154
metrics

MDrawGlyphlnfo, 173

Meuc_tw_shift

m17nConv, 88
MFace

m17nFace, 135
Mface

m1l7nFace, 142
mface

m17nFace, 135
mface_black

m17nFace, 141
mface_blue

m1l7nFace, 142

INDEX

279

mface_bold
m17nFace, 140
mface_bold_italic
m17nFace, 140
mface_copy
m17nFace, 136
mface_cyan
m1l7nFace, 142
mface_equal
m1l7nFace, 136
mface from_font
m17nFace, 136
mface_get_hook
m17nFace, 137
mface_get_prop
m1l7nFace, 136
mface_green
m1l7nFace, 142

MFACE_HLINE_BOTTOM
MFaceHLineProp, 177
MFACE_HLINE_OVER
MFaceHLineProp, 177
MFACE_HLINE_STRIKE_THROUGH
MFaceHLineProp, 177
MFACE_HLINE_TOP
MFaceHLineProp, 177
MFACE_HLINE_UNDER
MFaceHLineProp, 177

mface_italic
m17nFace, 140
mface_large
ml7nFace, 141
mface_magenta
ml7nFace, 142
mface_medium
m17nFace, 140
mface_merge
m17nFace, 136
mface_normal_video
m17nFace, 139
mface_normalsize
m1l7nFace, 141
mface_put_hook
m1l7nFace, 137
mface_put_prop
m17nFace, 137
mface_red
m1l7nFace, 141
mface_reverse_video
m17nFace, 139
mface_small
m17nFace, 140
mface_underline
m17nFace, 139
mface_update
m17nFace, 137

mface_white
m17nFace, 141
mface_x_large
ml7nFace, 141
mface x_small
m17nFace, 140
mface_xx_large
m17nFace, 141
mface_xx_small
m17nFace, 140
mface_yellow
ml7nFace, 142
MFaceBoxProp, 176

color_bottom, 176

color_left, 176
color_right, 176
color_top, 176

inner_hmargin, 176
inner_vmargin, 176
outer_hmargin, 176
outer_vmargin, 176

width, 176

MFaceHLineProp, 177

color, 177

MFACE_HLINE_BOTTOM, 177
MFACE_HLINE_OVER, 177
MFACE_HLINE_STRIKE_THROUGH, 177
MFACE_HLINE_TOP, 177
MFACE_HLINE_UNDER, 177
MFaceHLineType, 177

type, 177
width, 177
MFaceHLineType

MFaceHLineProp, 177

MFaceHookFunc
m17nFace, 135
Mfamily
m1l7nFont, 125
Mfinal_byte

m17nCharset, 70

Mflags
m17nConv, 87
MFLT
m17nFLT, 109
mflt_coverage
m17nFLT, 109
mflt_dump_gstring
m17nFLT, 110

mflt_enable new_feature

m17nFLT, 110
mflt_find

m17nFLT, 109
mflt_font_id

ml17nFLT, 111
mflt_get

m17nFLT, 109

280

INDEX

mflt_iterate_otf feature

ml17nFLT, 110
mflt_ name

m17nFLT, 109
mflt_run

m17nFLT, 110
mflt_try_otf

ml17nFLT, 111
MFLTFont, 179

check_otf, 180

drive_otf, 180

family, 179

get_glyph_id, 179

get_metrics, 179

internal, 180

x_ppem, 179

y_ppem, 179
MFLTGlyph, 181

adjusted, 182

ascent, 182

c, 181

code, 181

descent, 182

encoded, 182

from, 181

internal, 182

Ibearing, 182

measured, 182

rbearing, 182

to, 181

xadv, 181

xoff, 182

yadv, 182

yoff, 182
MFLTGlyphAdjustment, 183

advance_is_absolute, 183

back, 183

set, 183

xadv, 183

xoff, 183

yadv, 183

yoff, 183
MFLTGlyphString, 184

allocated, 184

glyph_size, 184

glyphs, 184

121, 184

used, 184
MFLTOtfSpec, 185

features, 185

langsys, 185

script, 185

sym, 185
MFont

m17nFont, 121
Mfont

ml7nFrame, 116
mfont
m17nFont, 121
Mfont_ascent
ml7nFrame, 116
mfont_check
m17nFont, 124
mfont_close
m17nFont, 125
mfont_copy
ml7nFont, 122
Mfont_descent
ml7nFrame, 116
mfont_encapsulate
m17nFont, 125
mfont_find
m1l7nFont, 123
mfont_freetype_path
m17nFont, 128
mfont_from_name
m17nFont, 123
mfont_get_prop
m17nFont, 122
mfont_list
m17nFont, 124
mfont_list_family_names
m17nFont, 124
mfont_match_p
m17nFont, 124
mfont_name
m1l7nFont, 123
mfont_open
m17nFont, 125
mfont_parse_name
m17nFont, 121
mfont_put_prop
ml7nFont, 122
mfont_resize_ratio
m17nFont, 124
mfont_selection_priority
m17nFont, 122
mfont_set_encoding
m1l7nFont, 123
mfont_set_selection_priority
ml17nFont, 123
mfont_unparse_name
m17nFont, 122
Mfont_width
ml7nFrame, 116
Mfontconfig
m1l7nFont, 127
Mfontfile
m17nFont, 127
Mfontset
m1l7nFace, 138
mfontset

INDEX

281

m17nFontset, 129
mfontset_copy

m17nFontset, 130
mfontset_lookup

m17nFontset, 130
mfontset_modify_entry

m17nFontset, 130
mfontset_name

m17nFontset, 130
Mforeground

m17nFace, 137
Mfoundry

m17nFont, 125
MFrame

ml7nFrame, 114
mframe

ml7nFrame, 114
mframe_default

ml7nFrame, 116
mframe_get_prop

ml7nFrame, 115
Mfreetype

m1l7nFont, 127
Mfull_support

m17nConv, 88
Mgd

ml7nFrame, 116
Mhline

ml7nFace, 138
Mhook_arg

m17nFace, 139
Mhook_func

m17nFace, 139
min_line_ascent

MDrawControl, 167
min_line_descent

MDrawControl, 167
Minherited

m17nlnputMethod, 106
minput_assign_command_keys

m17nInputMethod, 104
minput_callback

m17nInputMethod, 105
MINPUT_CANDIDATES_CHANGED_MAX

m17nlnputMethod, 96
Minput_candidates_done

m17nInputMethod, 106
Minput_candidates_draw

m17nInputMethod, 106
MINPUT_CANDIDATES_INDEX_CHANGED

m17nlnputMethod, 96
MINPUT_CANDIDATES_LIST_CHANGED

m17nInputMethod, 96
MINPUT_CANDIDATES_SHOW_CHANGED

m17nInputMethod, 96
Minput_candidates_start

m17nInputMethod, 106
minput_close_im
m17nInputMethod, 96
minput_config_command
m17nInputMethod, 100
minput_config_file
m17nInputMethod, 102
minput_config_variable
m17nInputMethod, 101
minput_create_ic
m17nInputMethod, 96
minput_default_driver
m17nInputMethod, 106
Minput_delete_surrounding_text
m17nInputMethod, 106
minput_destroy_ic
m17nInputMethod, 97
Minput_driver
m17nInputMethod, 107
minput_driver
m17nInputMethod, 107
minput_event_to_key
m17nInputMethodWin, 150
minput_filter
m17nInputMethod, 97
Minput_focus_in
m17nInputMethod, 106
Minput_focus_move
m17nInputMethod, 106
Minput_focus_out
m17nlnputMethod, 106
minput_get_command
m17nInputMethod, 99
minput_get_commands
m17nInputMethod, 104
minput_get_description
m17nInputMethod, 98
Minput_get_surrounding_text
m17nInputMethod, 106
minput_get_title_icon
m17nInputMethod, 98
minput_get_variable
m17nInputMethod, 101
minput_get_variables
m17nInputMethod, 103
minput_gui_driver
m17nInputMethodWin, 151
minput_lookup
m17nInputMethod, 97
Minput_method
ml7nInputMethod, 105
minput_open_im
m17nInputMethod, 96
Minput_preedit_done
m17nInputMethod, 106
Minput_preedit_draw

282

INDEX

m17nInputMethod, 106
Minput_preedit_start

m17nInputMethod, 105
Minput_reset

m17nlnputMethod, 106
minput_reset_ic

m17nInputMethod, 98
minput_save_config

m17nInputMethod, 102
Minput_set_spot

m17nlnputMethod, 106
minput_set_spot

m17nlnputMethod, 97
minput_set_variable

m17nInputMethod, 103
Minput_status_done

m17nInputMethod, 106
Minput_status_draw

m17nlnputMethod, 106
Minput_status_start

m17nInputMethod, 106
Minput_toggle

m17nInputMethod, 106
minput_toggle

ml7nlnputMethod, 98
MiInputCallbackFunc

m17nInputMethod, 96
MInputCandidatesChanged

m17nInputMethod, 96
MiInputContext, 186

active, 187

arg, 186

ascent, 187

candidate_from, 188

candidate_index, 188

candidate_list, 188

candidate_show, 188

candidate_to, 188

candidates_changed, 188

cursor_pos, 188

cursor_pos_changed, 188

descent, 187

fontsize, 187

im, 186

info, 187

mt, 187

plist, 188

pos, 187

preedit, 188

preedit_changed, 188

produced, 186

spot, 187

status, 187

status_changed, 187

x, 187

y, 187

MinputDriver, 190
callback_list, 191
close_im, 190
create_ic, 190
destroy_ic, 191
filter, 191
lookup, 191
open_im, 190

MInputGUIArgIC, 192
client, 192
focus, 192
frame, 192

MlInputMethod, 193
arg, 193
driver, 193
info, 193
language, 193
name, 193

MinputXIMArgIC, 194
client_win, 194
focus_win, 194
input_style, 194
preedit_attrs, 194
status_attrs, 194

MinputXIMArgIM, 195
db, 195
display, 195
locale, 195
modifier_list, 195
res_class, 195
res_name, 195

Minteger
m17nPlist, 23

Minvocation
m17nConv, 87

MISC API, 152

Miso_2022
m17nConv, 87

Miso_6429
m17nConv, 88

Mlanguage
m17nMtext, 48

Mlittle_endian
m17nConv, 87

MLocale
m17nLocale, 89

mlocale_get_prop
m17nLocale, 90

mlocale_set
m17nLocale, 90

Mlocking_shift
m17nConv, 88

Mlong_form
m17nConv, 88

Mmap
m17nCharset, 70

INDEX

283

Mmapfile

m17nCharset, 70
Mmax_advance

m17nFont, 127
Mmax_code

m17nCharset, 70
Mmax_range

m17nCharset, 70
Mmaybe

m17nConv, 88
Mmethod

m17nCharset, 69
Mmin_char

m17nCharset, 70
Mmin_code

m17nCharset, 70
Mmin_range

m17nCharset, 70
Mmodifier

ml7nLocale, 91
Mname

m17nCharacter, 26
Mnil

m17nSymbol, 17
Mnormal

m17nFace, 139
modifier_list

MInputXIMArgIM, 195
Moffset

m17nCharset, 70
Motf

m17nFont, 127
Mparents

m17nCharset, 70
MPlist

m17nPlist, 19
Mplist

m17nPlist, 23
mplist

m17nPlist, 20
mplist_add

m17nPlist, 21
mplist_copy

m17nPlist, 20
mplist_deserialize

m17nPlist, 20
mplist_find_by_key

m17nPlist, 22
mplist_find_by_value

m17nPlist, 22
mplist_get

m17nPlist, 21
mplist_get_func

m17nPlist, 21
mplist_key

m17nPlist, 23

mplist_length

m17nPlist, 23
mplist_next

m17nPlist, 22
mplist_pop

m17nPlist, 22
mplist_push

m17nPlist, 21
mplist_put

m17nPlist, 20
mplist_put_func

m17nPlist, 21
mplist_set

m17nPlist, 22
mplist_value

m17nPlist, 23
Mratio

ml7nFace, 138
Mregistry

m17nFont, 126
Mreset_at_cntl

m17nConv, 88
Mreset_at_eol

m17nConv, 88
Mresolution

m17nFont, 127
Mreverse

m17nFace, 139
Mrevision

m17nCharset, 70
Mrevision_number

m17nConv, 88
Mscreen

ml7nFrame, 116
Mscript

m17nCharacter, 26
Msimple_case_folding

m17nCharacter, 27
Msingle_shift

m17nConv, 88
Msingle_shift_7

m17nConv, 88
Msize

m17nFont, 126
Msoft_dotted

m17nCharacter, 28
Mspacing

m17nFont, 126
Mstretch

ml7nFont, 126
Mstring

m17nSymbol, 17
Mstyle

m17nFont, 126
Msubset

m1l7nCharset, 71

284

INDEX

Msubset_offset
m17nCharset, 70
Msuperset
m17nCharset, 71
MSymbol
ml17nSymbol, 14
Msymbol
m17nSymbol, 17
msymbol
m17nSymbol, 14
msymbol_as_managing_key
ml17nSymbol, 14
msymbol_exist
m17nSymbol, 15
msymbol_get
m17nSymbol, 16
msymbol_get_func
ml17nSymbol, 16
msymbol_is_managing_key
m17nSymbol, 15
msymbol_name
m17nSymbol, 15
msymbol_put
m17nSymbol, 15
msymbol_put_func
ml17nSymbol, 16
Mt
m17nSymbol, 17
mt
MDrawTextltem, 175
MInputContext, 187
Mterritory
ml7nLocale, 91
MText
m17nMtext, 36
Mtext
m17nPlist, 23
mtext
m17nMtext, 37
mtext_attach_property
m17nTextProperty, 57
mtext_case_compare
m17nMtext, 46
mtext_casecmp
m17nMtext, 46
mtext_cat
m17nMtext, 39
mtext_cat_char
m17nMtext, 39
mtext_character
m17nMtext, 43
mtext_chr
m17nMtext, 43
mtext_cmp
m17nMtext, 44
mtext_coll

m1l7nLocale, 91
mtext_compare

m17nMtext, 44
mtext_copy

ml7nMtext, 41
mtext_cpy

m17nMtext, 40
mtext_cspn

m17nMtext, 45
mtext_data

m1l7nMtext, 38
mtext_del

m17nMtext, 41
mtext_deserialize

m17nTextProperty, 58
mtext_detach_property

m17nTextProperty, 57
mtext_dup

m17nMtext, 39
mtext_duplicate

m17nMtext, 40
MTEXT_FORMAT_MAX

m17nMtext, 36
MTEXT_FORMAT_US_ASCII

m17nMtext, 36
MTEXT_FORMAT_UTF_16

m17nMtext, 48
MTEXT_FORMAT_UTF_16BE

m17nMtext, 36
MTEXT_FORMAT _UTF_16LE

m17nMtext, 36
MTEXT_FORMAT_UTF_32

m17nMtext, 48
MTEXT_FORMAT_UTF_32BE

m17nMtext, 36
MTEXT_FORMAT _UTF_32LE

m17nMtext, 36
MTEXT_FORMAT_UTF_8

m17nMtext, 36
mtext_from_data

m17nMtext, 37
mtext_ftime

m17nLocale, 90
mtext_get_prop

ml17nTextProperty, 52
mtext_get_prop_keys

m17nTextProperty, 53
mtext_get_prop_values

m17nTextProperty, 52
mtext_get_properties

ml7nTextProperty, 56
mtext_get_property

m17nTextProperty, 56
mtext_getenv

m17nLocale, 90
mtext_ins

INDEX

285

m17nMtext, 41
mtext_ins_char
m17nMtext, 42
mtext_insert
m1l7nMtext, 42
MTEXT_LBO_AI_AS_ID
m17nMtext, 37
MTEXT_LBO_KOREAN_SP
m17nMtext, 37
MTEXT_LBO_MAX
m17nMtext, 37
MTEXT_LBO_SP_CM
m17nMtext, 37
mtext_len
m17nMtext, 38
mtext_line break
m17nMtext, 37
mtext_lowercase
m17nMtext, 47
mtext_ncasecmp
m17nMtext, 46
mtext_ncat
m17nMtext, 39
mtext_ncmp
ml7nMtext, 44
mtext_ncpy
m17nMtext, 40
mtext_pbrk
m17nMtext, 45
mtext_pop_prop
ml7nTextProperty, 54
Mtext_prop_deserializer
m17nTextProperty, 58
mtext_prop_range
m17nTextProperty, 55
Mtext_prop_serializer
m17nTextProperty, 58
mtext_property
ml7nTextProperty, 55
mtext_property_end
m17nTextProperty, 56
mtext_property_key
m17nTextProperty, 56
mtext_property_mtext
ml7nTextProperty, 55
mtext_property_start
m17nTextProperty, 56
mtext_property_value
m17nTextProperty, 56
mtext_push_prop
ml7nTextProperty, 54
mtext_push_property
m17nTextProperty, 57
mtext_put_prop
m17nTextProperty, 53
mtext_put_prop_values

m17nTextProperty, 53
mtext_putenv

m1l7nLocale, 91
mtext_rchr

ml7nMtext, 43
mtext_ref _char

m17nMtext, 38
mtext_replace

m17nMtext, 42
mtext_search

m17nMtext, 46
mtext_serialize

ml7nTextProperty, 57
mtext_set_char

m17nMtext, 38
mtext_spn

ml7nMtext, 44
mtext_text

m17nMtext, 45
mtext_titlecase

m17nMtext, 47
mtext_tok

m17nMtext, 45
mtext_uppercase

m17nMtext, 47
MTextFormat

m17nMtext, 36
MTextLineBreakOption

m17nMtext, 36
MTEXTPROP_CONTROL_MAX

ml17nTextProperty, 52
MTEXTPROP_FRONT_STICKY

m17nTextProperty, 51
MTEXTPROP_NO_MERGE

m17nTextProperty, 52
MTEXTPROP_REAR_STICKY

m17nTextProperty, 51
MTEXTPROP_VOLATILE_STRONG

m17nTextProperty, 52
MTEXTPROP_VOLATILE_WEAK

m17nTextProperty, 51
MTextPropDeserializeFunc

m17nTextProperty, 51
MTextProperty

ml7nTextProperty, 51
MTextPropertyControl

m17nTextProperty, 51
MTextPropSerializeFunc

m17nTextProperty, 51
Mtype

ml7nConv, 87
Munify

m17nCharset, 70
Mutf

m17nConv, 87
Mvideomode

286

m17nFace, 138
Mweight

m17nFont, 126
Mwidget

ml7nFrame, 116
Mx

m17nFont, 127
Mxft

m17nFont, 128
Mxim

m17nInputMethodWin, 151

name

MinputMethod, 193
nbytes

MConverter, 165
nchars

MConverter, 165
next_to

MDrawGlyphlnfo, 173

open_im
MlInputDriver, 190
orientation_reversed
MDrawControl, 167
outer_hmargin
MFaceBoxProp, 176
outer_vmargin
MFaceBoxProp, 176

partial_update

MDrawControl, 169
plist

MinputContext, 188
pos

MinputContext, 187
preedit

MlinputContext, 188
preedit_attrs

MiInputXIMArgIC, 194
preedit_changed

MInputContext, 188
prev_from

MDrawGlyphlnfo, 173
produced

MinputContext, 186
Property List, 18
ptr

MConverter, 165

121

MFLTGlyphString, 184
rbearing

MDrawGlyph, 171

MFLTGlyph, 182
res_class

MinputXIMArgIM, 195

res_name

MiInputXIMArgIM, 195

result

MConverter, 165

right_from

MDrawGlyphlnfo, 173

right_to

MDrawGlyphlnfo, 173

script

set

MFLTOtfSpec, 185

MFLTGlyphAdjustment, 183

SHELL API, 63

spot

MInputContext, 187

status

MConverter, 165
MinputContext, 187

status_ attrs

MiInputXIMArgIC, 194

status_changed

sym

MinputContext, 187

MFLTOtfSpec, 185

Symbol, 13

tab_width

Text
to

MDrawControl, 168
Property, 49

MDrawGlyph, 170
MDrawGlyphlnfo, 172
MFLTGlyph, 181

two_dimensional

type

used

MDrawControl, 166

MFaceHLineProp, 177

MFLTGlyphString, 184

width

MDrawMetric, 174
MFaceBoxProp, 176
MFaceHLineProp, 177

with_cursor

MDrawControl, 168

X
MDrawGlyphlnfo, 172
MDrawMetric, 174
MinputContext, 187

x_advance
MDrawGlyph, 170

x_off

INDEX

287

MDrawGlyph, 170
X_ppem

MFLTFont, 179
xadv

MFLTGlyph, 181

MFLTGlyphAdjustment, 183

xoff
MFLTGlyph, 182

MFLTGlyphAdjustment, 183

MDrawGlyphlnfo, 172

MDrawMetric, 174

MlInputContext, 187
y_advance

MDrawGlyph, 170
y_off

MDrawGlyph, 170
y_ppem

MFLTFont, 179
yadv

MFLTGlyph, 182

MFLTGlyphAdjustment, 183

yoff
MFLTGlyph, 182

MFLTGlyphAdjustment, 183

