
User Manual for HLA-PTII federates

(Updated after revision r73687, October, 20, 2015.)

1 Introduction

The HLA-PTII co-simulation framework leverages two open source tools: Ptolemy II and HLA/CERTI. It allows
to distribute the execution of a Ptolemy model by using the HLA standard (implemented by CERTI [7]), and is
a easy way to produce a HLA federate in a Federation using CERTI. For more information about the HLA-PTII
co-simulation framework read [2, 3, 4, 5, 6]. HLA-PTII demos are in $PTII/org/hlacerti/demo.

The HLA-PTII framework (called hlacerti in Ptolemy tree) is an on-going work. Some important changes were
made at revision 71890 (for allowing multiple instances of an object), 72233 (where instances can be dynamically
discovered) and 72943 (TAR mechanism for time management was added [6]). Revisions 71890 and 72233 broke
backward compatibility, but are an important improvement of the framework. The most important changes in this
framework can be found in section 5.

The actors can be found in the library under MoreLibrairies->Co-Simulation->HLA: HlaManager, HlaPub-
lisher and HlaSubscriber (see section 6 for installing Ptolemy). You need to install the HLA compliant RTI called
CERTI (tested with versions 3.4.2, 3.4.3, 3.5.0 and 3.5.1). See section 7 for installing CERTI and section 3 for
running a Federation. A check list for creating federates using hlacerti is presented in Appendix A.

2 Building a model with HLA-PTII co-simulation framework

Let us suppose you have already a (centralized) Ptolemy model as the one of figure 1.a. You want to simulate this
model in a distributed way using 3 simulators, one for each composite actor.

Important remark: The top-level model must use a DE director, but you can have a Continuous director in a
composite actor inside.

a) Centralized model b) Hla actors c) Naming the actors d) flat federate

Figure 1: Building Ptolemy federates (producer)

2.1 Configuring a federate with HlaPublisher

In hlacerti framework, the HlaPublisher actor provides three information to the HlaManager: Publish an object
class (HLA service publishObjectClass()), Register an object (HLA service registerObjectInstance()) and
update values of a class attribute (HLA service updateAttributeValues() or UAV).

The input port of the HlaPublisher is a multiport, and each connection is treated as a separate channel [1].
Consider that you want to create the producer federate that only sends data. The steps are the following:

1. Create a .fed file representing the FOM with the classes and attributes used in the simulation as in figure 2.c.

2. Duplicate the model of figure 1.a, removing all the blocs except the composite actor “P3 (producer)”.

3. Drag the actors HlaManager and HlaPublisher from MoreLibrairies->Co-Simulation->HLA (see figure 1.b).

4. Configuring HlaPublisher. Connect the output of the composite actor to the HlaPublisher actor, then: a)
right-click on HlaPublisher, Configure/Rename and put val1 (the name of the class attribute in the fed file as
in figure 2.a) in the field name ; the name displayed will be the same (figure 1.c); b) double-click HlaPublisher

1

(the window of figure 2.b pops out) and put MyObjectClass (the name of the class according to your fed file
in figure 2.c) in the parameter Object class in FOM 1.

5. Configuring HlaManager. Double-click this actor; the window in figure 2.d appears. Put the name of the
federation and the federate as in the fed file (figure 2.c) and browse the fed file. If you need a synchronization
point, tick the field “Require synchronizationPoint?” and choose a same name (”Simulating” in figure 2.d)
for all federates of your distributed simulation. Only the last federate to be launched must have the field “Is
synchronization point register?” ticked. You can choose NER or TAR [6] time management, and change the
values of the lookahead, the HLA time unit and the time step (only if TAR is used).

a) Renaming with attribute val b) Naming the object class in HlaPublisher

c) CoSimu.fed file (FOM) d) Configuring HlaManager

Figure 2: Configuring HLAPublisher and HlaManager.

2.2 Configuring a federate with HlaSubscriber [5]

In hlacerti framework, the HlaSubscriber actor provides three information to the HlaManager: Subscribe an
object attribute (HLA service subscribeObjectClassAttribute()), Discover an object (HLA service
discoverObjectInstance()) and receive (updated) values of a class attribute (HLA service
reflectAttributeValues() or RAV).

2.2.1 The federate will discover multiple instances

Consider that you want to create the consumer federate that only subscribes to some attributes and can discover
several instances of objects, e.g, a Display federate that receives the location of three quadrotors.

a) (Ptolemy) class b) Inside the class c) Configuration window of HlaSubscriber d) Class instance

Figure 3: Building Ptolemy federates (consumer)

1At the discovering of an object instance (in the federate that subscribes to this attribute using a HlaSubscriber), the name that will
appear is ”FederateP-name Actor-name”, where FederateP is the federate (producer in figure 1.c) that publishes the object class and
Actor is the composite actor (P3 (producer) in figure 1.c) connected to the HlaPublisher. This name must be unique in the federation.

2

The steps are the following:

1. Duplicate the model of figure 1.a, removing all the blocs except the composite actor “C2 (consumer)”.

2. Drag a HlaManager from MoreLibrairies->Co-Simulation->HLA and configure it as in step 5 above.

3. For allowing the discovering of multiple instances, replace the input ports of composite actor C2(consumer)

by input multiports as in figure 3.a.

4. Create a (Ptolemy) class of object as TypedCompositeActor (see [1] section 2.6) in the federate model for
each class this federate will subscribe:

(a) Drag a CompositeClassDefinition from Utilities; right-click for editing the actor (Customize/Rename)
and rename it as a (HLA) class in the FOM in figure 2.c, MyObjectClass in this example (see figure 3.a).

(b) Right-click on CompositeClassDefinition, Open actor (command-L) and populate it with and a DE di-
rector with the parameter stopTime> 0.0. Add as many HlaSubscriber actors (MoreLibrairies->Co-Simulation->HLA)
as the attributes of the (HLA) class this Federate subscribes to. In this example, federate consumer sub-
scribes val1 and val2, so add two HlaSubscriber actors (see figure 3.b).

(c) Configure the HlaSubscriber: double-click on the first HlaSubscriber (the window of figure 3.c pops
out) put val1 in Name of the parameter to receive (the name of the attribute as in the .fed file of
figure 2.c). Put a data type for this attribute in the field type of the parameter. Do the same for the
other HlaSubscriber actor, name it val2 and put a data type.

(d) Create at least one instance of the (Ptolemy) class myObjectClass: right-click on the actor myObjectClass,
Class Actions -> Create Instance (or command-I). The actor InstanceofmyObjectClass 2 appears
(see figure 3.d). All changes in the (Ptolemy) class myObjectClass will appear automatically to its
instances.

5. If the federate that subscribes to some class attribute will receive multiple instances, connect an output port
to each HlaSubscriber actor inside the (Ptolemy) class as in figure 4.a.

a) Inside the class b) Connecting instance c) Discovering 1 instance d) A new federate e) New run

Figure 4: When multiple instances of a class will be discovered

6. Connect the outputs of InstanceofmyObjectClass to the input ports of actor C2(consumer) as depicted
in figure 4.b. After running a federation with federates producer and consumer, the instance registered by
Federate producer is discovered by Federate consumer and the name of InstanceofmyObjectClass changes
to producer P3(producer) as indicated in step 4(d) above (see figure 4.c).

7. Each new discovered object will be dynamically instantiated and connected to the same actors that the
preexistent instance was connected to. If the federation is launched with the same federates as in previous
step and another federate called otherProd (figure 4.d) then the new object instance is registered as otherProd
P2(producer) and connected to composite actor C2(consumer) as depicted in figure 4.e.

2The name displayed after running the model (i.e., after discover an instance of object) will be the concatenation of the federate name
publishing the attribute (i.e. name of the HlaManager actor) and the name of the composite actor connected to the HlaPublisher actor,
in this example, producer P3(producer).

3

2.2.2 The federate will discover only one instance of a class

In some applications a federate will receive only one instance of a class, e.g, a federate Quadrotor that subscribes
to attribute position published by a federate GPS. In the case the federate will not receive several instances
of a same attribute, and if the federate subscribe to several classes with several attributes, it can be difficult
to design a graphical model because there is a lot of links (between the output of the class instances and the
input port of the following actor) crossing. In this case, instead of connect the HlaSubscriber to an output
port (inside the CompositeClassDefinition), the HlaSubscriber is connected to a (Ptolemy) actor Publisher

and the input port of the following actor is connected to a (Ptolemy) actor Subscriber. Actors Publisher

(from Actors->Sinks->GenericSinks) and Subscriber (from Actors->Source->GenericSources), are (normal)
Ptolemy actors and are used for avoiding the use of links. Do not mix up (Ptolemy) actor Publisher and (hlacerti)
actor HlaPublisher.

The way to configure the CompositeClassDefinition and design such a federate is the following:

1. If the .fed file exists already, skip Step 1 above.

2. Step 2 is the same as above.

3. Step 3 depends on how the instances will be connected in the Federate discovering them. If each instance
is connected to a different input port, then use input port (black icon); if more than one instance will be
connected to a same input port (e.g., attributes x and y are connected to a Display inside the actor), then
use an input multiport (white icon).
FIXME: check if it works for a composite actor having ports and multiports.

4. Step 4 is the same as above.

5. Step 5 above is modified in this way: Instead of creating output ports in the (Ptolemy) class as in figure 3.c,
the HlaSubscriber actors are connected to Publisher actors from (tick parameter global and name the
channel, e.g., V1 and V2) as depicted in figure 5.a. For each object to be discovered, one instance of the
(Ptolemy) class must be created for each (object) instance that will be registered int the whole Federation.

6. Step 6 is modified in this way: Populate the Federate model with as many Subscriber actors as the
HlaSubscriber actors inside the CompositeClassDefinition (see figure 5.a). Name each Subscriber actor
as the name in the channel of the Publisher actor and connect to the corresponding input port of the actor
(C2 (consumer) in this case) as represented in figure 5.b.

a) Inside Ptolemy class b) Ptolemy model

Figure 5: Building Ptolemy federates (consumer) with Publisher and Subscriber actors instead of output ports.

2.3 Configuring a federate that publishes and subscribes to attributes

Now you can create the federate prodcons. The steps are similar.

• If Step 1 of section 2.1 is done, skip it. Do Step 2 of section 2.1 (duplicate the centralized model removing all
composite actors except PC1(producer-consumer)) and Step 3 (drag HlaManager and HlaPublisher).

• Configure the HlaManager (step 5 of section 2.1). Pay attention to name the federate as prodcons in the
configuration window of HlaManager (figure 2.d).

4

• Configure the HlaPublisher for val2 as in step 4 of section 2.1.

• If you want to discover the object published by Federate producer but also the object published by Federate
otherProd, replace the input port of PC1 by an input multiport (Step 3 of section 2.2.1).

• Do Step 4 of of section 2.2.1 for just the attribute val1 (since this Federate subscribes only to val1) 3.

• Do Step 5 of of section 2.2.1.

• Connect the output of myObjectClass val1 to PC1 actor.

Now you can run two Federations: F1 with Federates producer, consumer and prodcons and F2 with this
Federates and otherProd.

Remark: After revision 71935 flat models as in figure 1.d cannot be used anymore. For being allowed to have
multiple instances of a class a composite actor as in figure 1.c must be used.

3 Running a federation

1. Open a terminal and run cfgCerti as said in the beginning of this manual or execute the shell
source $CERTI HOME/share/scripts/myCERTI env.sh

2. Go to the folder where the 3 federate models are (or give the absolute address) and open the models:
$PTII/bin/vergil consumer.xml producer.xml prod-cons.xml &

3. Check there is no rtig process running (the first model to be run will automatically launch this process). If
there is a rtig running, kill the process

4. Check there is only one model that has the field “Is synchronization point register?” ticked. Run the other
models in any order but the last to be run is the one that has the cited field ticked.

For being sure you have myCERTI env.sh shell executed and the good path for PTII , there are two ways:

1. Put in your .bash profile:
export PTII=your-path-to-ptII

source your-CERTI HOME/share/scripts/myCERTI env.sh

You need to close the terminal and open a new one. Note that your-path-to-ptII and your-CERTI HOME

are absolute addresses.

2. Put aliases in your .bash profile :
alias myPtII="export PTII=your-path-to-ptII"

alias cfgCerti="source your-CERTI HOME/share/scripts/myCERTI env.sh"

Do not forget to execute these aliases in each terminal you open.

4 Registering multiple instances of an attribute

Let us consider a general case where several instances of object are published, as in the example of a billiard game,
a demo of CERTI. For example, let us consider that we want to represent in a billiard table (federate display

in figure 7) two instances of class Bille with attributes positionX and positionY as indicated in the FOM on
figure 6.a. There are two ways of modeling:

• create two federates, each one registering one instance of class Bille as in figure 6.b and c, or

• create one federate that register two instances of class Bille as in figure 6.d. Notice that this is possible
because the input port of HlaPublish actor is an input multiport (white arrow).

5

a) Test.fed (FOM) b) ball1 federate c) ball2 federate d) Two instances of Bille

Figure 6: Two different Ptolemy federates sending attributes positionX, positionY of class Bille

a) The Federate model b) Run (fig. 6.b + 6.c) c) Run with fig. 6.d d) Run with fig. 6.b,6.c and 6.d

Figure 7: DisplayActor registering multiple instances of attributes PositionX and PositionY from class Bille.

And what about the discovering of multiple instances?
As indicated in the HLA standard, there is no difference if the objects come from one or more federates. The
simulation of billiard balls is a good example for the use of dynamic instances. Figure 7.a depicts the (initial)
model of Federate DisplayActor used for displaying the movement of the simulated balls (attributes positionX,

positionY of (HLA) class Bille): an instance of (Ptolemy) class Bille is connected to actor ArrayPlotterXY that
has input multiports (white icons).

Let us consider a Federation with the Federates ball1, ball2 and DisplayActor (figures 6.b, 6.c and 7.a
respectively). After running this distributed simulation, the model of Federate DisplayActor is the one represented
on figure 7.b. Note that a second instance of bille was inserted in the model, connected to same (following) actor,
and each one is named properly with the (composed) name “federate + actor”.

Figure 7.c depicts the model of Federate DisplayActor after running a distributed simulation with only Federates
billard and DisplayActor. Pay attention to the name of the instances of class bille: they are now billiard

Billiard1 and billiard Billiard2 (name of the Federate publishing + name of the composite actor inside it).
Figure 7.d depicts the model of Federate DisplayActor after running a distributed simulation with Federates

billard, ball1, ball2 and DisplayActor, which means four objects of class bille (coming from three federates).
This federation can run also C++ federates from CERTI demo (see section 7).

5 Important revisions

• Up to revision 71843: hlacerti was in $PTII/ptolemy/apps/; it was necessary to install CERTI and JCERTI;
only one instance of a class could be registered; only NER time management was implemented. Code by Gilles
Lasnier. On revision 71867 PTJCERTI JAR was added to the CLASSPATH by C. Brooks (no need to install
JCERTI anymore).

• Revision 71890: hlacerti was moved to $PTII/org; multiple instances of a class can now be registered thanks
to David Come. Some demos were updated at r71919.

3You can copy the class myObjectClass from federate consumer and remove the actors related to val2. In this case, the following
step is already done (connect to output ports).

6

• Up to revision 71935: some fixes as: fixed displayed name for HLASubscriber (r71932); encoding and de-
coding messages are in a separated class (r71924); an automatic translator for Ptolemy models was created
(oneModelUpdate.py) on r71923; new demos by Janette Cardoso.

• Revision r72005: HLASubscriber must be in a composite actor for allowing dynamic (multiple) instances;
Billard demo updated (r72045), fixed potential race condition due to non thread safe static objects (r72131),
new (HLASubscribers) actors are added on run time if necessary (r72165), opaqueIdentifier renamed to object-
Name (r72187); new (HLASubscribers) actors are connected to existing actors in the model (r72204); manual
and demo updated (r72244); HLA time unit created (r72431). All changes made by D. Come.

• Revision 72943: TAR time management was implemented by Yanxuan LI; new demo SimpleProducerMultipleConsumer-
TAR added; variables are renamed for clarity (r73341).

• Revision r73687: Some cleanup of demo layout and minor tuning of icons.

6 Installing Ptolemy

For having Ptolemy and CERTI in a same root, you can create a folder $HOME/pthla and install Ptolemy inside.

mkdir $HOME/pthla

cd $HOME/pthla

svn co https://repo.eecs.berkeley.edu/svn-anon/projects/eal/ptII/trunk ptII

export PTII=$HOME/pthla/ptII

cd $PTII

./configure (there is a build.xml in $PTII)

ant

cd $PTII/bin

make

For open the graphical interface vergil in a terminal:

vergil $PTII/org/hlacerti/demo/Billard/FederationBillard.xml &

This demo is a federation with a billiard ball sending its location to a display.

7 Installing CERTI

-- Author: Gilles Lasnier (gilles.lasnier@isae.fr)

-- @version: $Id: INSTALL_CERTI.txt 73687 2015-10-20 00:58:57Z eal $

Install certi (an open source RTI following the hla standard) latest version. As of 10/17/15, that was version 3.5.1.

Download the gzipped tar file from:

http://download.savannah.gnu.org/releases/certi/

Here a receipe for installing certi:

mkdir $HOME/pthla (only if you did not yet created this folder)

cd $HOME/pthla

tar xvfz CERTI-3.5.1-Source.tar.gz # (or double click to expand)

mv CERTI-3.5.1-Source certi # (or create a symbolic link: ln -s CERTI-3.5.1-Source certi)

mkdir $HOME/pthla/certi-tools

cd $HOME/pthla/certi

mkdir $HOME/pthla/certi/build-certi

cd $HOME/pthla/certi/build-certi

cmake -DCMAKE_INSTALL_PREFIX=$HOME/pthla/certi-tools ../

7

make

make install

CERTI has been compiled and installed in the $HOME/pthla/certi-tools folder defined as $CERTI_HOME

folder. CERTI provides a script to set the environment (global variables, binaries, etc) to allow the

correct launch of RTIG process, RTIA process and federates. To set the CERTI environment properly

in a terminal run the command:

source $HOME/pthla/certi-tools/share/scripts/myCERTI_env.sh

or put this command in your ~/.bash_profile file:

To test the installation:

1. open 3 terminals (make sure you open new terminals or source ~/.bash_profile in already open terminals)

2. go to the first terminal and execute the command "rtig"

3. go to second terminal and call a billard federate "1" (-n name)

billard -n1 -fTest -FTest.fed -t10

DO NOT HIT ENTER YET.

4. go to the third terminal and call a billard federate "2" (-n name)

billard -n2 -fTest -FTest.fed -t10

DO NOT HIT ENTER YET.

5. go back to second terminal (of step 3) and press "ENTER"

The C++ billard demo that has been run is in $HOME/pthla/certi/test/Billard/

The Ptolemy billiard demo is in $PTII/org/hlacerti/demo/Billard

References

[1] C. Brooks, E. A. Lee, S. Neuendorffer, and J. Reekie. Building Graphical Models in System Design, Modeling,
and Simulation using Ptolemy II, Editor Claudius Ptolemaeus, 2014.

[2] Lasnier, G., Cardoso, J., Siron, P., Pagetti, C. and Derler, P.. Distributed Simulation of Heterogeneous and
Real-time Systems, 17th IEEE/ACM Inter. Symposium on Distributed Simulation and Real Time Applications
- DSRT 2013, 30 Oct. 2013 - 01 Nov. 2013 (Delft, Netherlands). Best paper award.

[3] Lasnier, G., Cardoso, J., Siron, P. and Pagetti, C. Environnement de cooperation de simulation pour la conception
de systemes cyber-physiques, Journal europeen des systemes automatises. Vol. 47 n. 1-2-3, 2013.

[4] Giles, L. Toward a Distributed and Deterministic Framework to Design Cyber-PhysicalSystems, ISAE Report
2013.

[5] Come, D. Improving Ptolemy-HLA co-simulation by allowing multiple instances. Report ISAE-SUPAERO, March
2014.

[6] Yanxuan LI. A Distributed Simulation Environment for Cyber-physical systems. Report ISAE-SUPAERO, Oc-
tober 2015.

[7] E. Noulard, J.-Y. Rousselot, and P. Siron, CERTI, an open source RTI, why and how? Spring Simulation
Interoperability Workshop, 2009.

8

Appendices

A Check list for creating Federates using hlacerti

1. Have CERTI installed and a .fed file with the FOM.

2. The top level director must be DE (Discrete Event). There must be only one Composite actor for each instance
of object.

3. Add a HlaManager decorator from MoreLibrairies->Co-Simulation->HLA and configure it: name the Fed-
erate (must be unique in the Federation) and the Federation (the same for all federates), browse the .fed file,
choose the time management NER or TAR (if TAR, choose also the time step), put values for Lookahead
and HLA time unit. If federates have a synchronization point, tick the field and choose a same name for
all federates in this federation. Choose a federate to be the last one to be launched, and tick the field “Is
synchronization point register”?

4. If the Federate will send values (of an attribute) for other federates, add a HLAPublisher for each attribute
(in the FOM) to be Published to the Federation. If a same Federate has several object instances to be sent
(e.g. figure 6.d), just connect each output port corresponding to the attribute to a same HlaPublisher. Name
it with the attribute, put the class name, choose the good data type in its input port.

5. If the Federate will receive values (of an attribute) from other federate(s), there is two steps:

(a) Drag a CompositeClassDefinition from Utilities, rename it with the class (in the FOM), populate it
with a DE director and stopTime> 0 and a HLASubscriber to each attribute the Federate will subscribe;
name the HLASubscriber with the attribute name. If the Federate will discover multiple instances of
an attribute, connect an output port to each HLASubscriber. Otherwise, see section 2.2.2. Choose the
good data type.

(b) Create at least one instance of each (Ptolemy) class the Federate will subscribe and connect its outputs
to the actors in the Federate.

Remark: In the case of multiple instances to be discovered, the output port of the (Ptolemy) class must be
connected to an (input) multiport of the composite actor (if there are more than one actor in the model) or
an atomic actor.

B Error messages

The error messages bellow were obtained running the models of figures 1.c, 4.d and 4.b.

B.1 RTIinternalError ”Connection to RTIA failed”

When: trying to run the first federate.

ptolemy.kernel.util.IllegalActionException: RTIinternalError. If the error is "Connection to RTIA

failed", then the problem is likely that the rtig binary could not be started by CertRtig. One way

to debug this is to set the various environment variables by sourcing certi/share/scripts/myCERTI_env.sh,

then invoking rtig on the .fed file then rerunning the model.

in .producerP1.HlaManager

Because:

Connection to RTIA failed. libRTI: Network Read Error

at org.hlacerti.lib.HlaManager.initialize(HlaManager.java:580)

(...)

Raison: $CERTI HOME is not set.
Solution: source the file myCERTI env.sh. If you used the recipe presented in section 7, do:
source $HOME/pthla/certi/share/scripts/myCERTI env.sh

9

B.2 RTIinternalError 4

When: after running a Federation. The error message comes from the Federate name-of-federate that subscribes
some attribute. The HlaManager become red and the message is:

ptolemy.kernel.util.IllegalActionException: RTIinternalError

in .name-of-federate.HlaManager

Because:

4

at org.hlacerti.lib.HlaManager.proposeTime(HlaManager.java:768)

(...)

Caused by: hla.rti.RTIinternalError: 4 serial:0

Raison: The input port of the HLAPublisher (named attribute) of some federate publishing this attribute has
data type ”unknown”, or the wrong data type.
Solution: Check if the data type of the input port of all HlaPublisher of all federates are correctly set.

B.3 RTIinternalError

When: trying to run a Federation.
Message:

ptolemy.kernel.util.IllegalActionException: RTIinternalError

in .consumerC3Singleport.HlaManager

Because: Received a RAV but could not put in any object. Means the ChangeRequest has not been

processed

Raison: TBD
Solution: TBD

B.4 Ptolemy message ”Cannot find class:”

When: after successfully running a Federation, trying to save a Federate consumerC3Multiport that subscribes
to class ”myObjectClass” from the FOM, with a CompositeClassDefinition named myObjectClass. otherProd

P2(producer) is the name of the instance of myObjectClass discovered by the Federate (after running the Feder-
ation).
Message :

Error encountered in XML element:

<entity name="otherProd P2(producer)" class= ".consumerC3Multiport.myObjectClas...

ptolemy.kernel.util.IllegalActionException:

Cannot find class: .consumerC3Multiport.myObjectClass. In Ptolemy, classes are typically Java

.class files. Entities like actors may instead be defined within a .xml file. In any case, the

class was not found. If the class uses a third party package, then the class would be present

only if the third party package was found at compile time. It may be necessary to upgrade

Java or install the third party package, reconfigure and recompile.

Because:

-- /consumerC3Multiport/myObjectClass.xml (No such file or directory)

-- XML file not found relative to classpath.

-- /Users/j.cardoso/PtolemyHLA/manual/modelsR73687//consumerC3Multiport/myObjectClass.xml

/consumerC3Multiport/myObjectClass.xml (No such file or directory)

in file:/Users/j.cardoso/PtolemyHLA/manual/modelsR73687/consumerC3Multiportxx.xml at line 222 and column 75

Raison: The class is not defined in the library (??)
Solution: do not use ”File/Save as”; duplicate the model before save then use ”File/Save”. Change the name of the
original model or the saved model.

10

B.5 Nothing is received from the Federate that subscribes and there is no error message

When: running a Federation with one producer and one consumer.
Message: No error message but no attribute value is received. Raison: the output ports of a CompositeClassDefinition
containing HLASubscriber must be connected to a multiport.
Solution: replace the single (input) port by a multipart (white icon) on the side of the Consumer federate.

B.6 Ptolemy message ”Attempt to link more than one relation to a single port.”

When: trying to run a Federation with two producers and one consumer. A class instance is automatically created
but its output is not connected to the expected actor.
Message :

ptolemy.kernel.util.IllegalActionException: Attempt to link more than one relation to a single port.

in .consumerC3Singleport.CompositeActor.in and .consumerC3Singleport.prod2 prod val

Raison: the output ports of a CompositeClassDefinition containing HLASubscriber must be connected to a
multiport.
Solution: replace the single (input) port by a multipart (white icon) on the side of the Consumer federate.

B.7 Ptolemy message ”Error encountered in XML element:”

When: Opening a Federate model (that subscribes to some attribute). If you skip all elements, it should work
anyway. But is advised to correct the model.
Message :

Error encountered in XML element:

<param name="opaqueIdentifier" value="fed"/>

ptolemy.kernel.util.IllegalActionException: Error evaluating expression:

fed

in .PoolTable2OneInstance.InstanceOfBille.HlaSubscriber.opaqueIdentifier

Because:

The ID fed is undefined.

in .PoolTable2OneInstance.InstanceOfBille.HlaSubscriber.opaqueIdentifier

(...)

Raison: You opened an model from a previous revision (that used fed for discovering multiple instances).
Solution: Note the name of the attribute and data type of the HlaSubscriber, remove the HlaSubscriber, drag a
new one and configure it.

11

	Introduction
	Building a model with HLA-PTII co-simulation framework
	Configuring a federate with HlaPublisher
	Configuring a federate with HlaSubscriber come
	The federate will discover multiple instances
	The federate will discover only one instance of a class

	Configuring a federate that publishes and subscribes to attributes

	Running a federation
	Registering multiple instances of an attribute
	Important revisions
	Installing Ptolemy
	Installing CERTI
	Appendices
	Check list for creating Federates using hlacerti
	Error messages
	RTIinternalError "Connection to RTIA failed"
	RTIinternalError 4
	RTIinternalError
	Ptolemy message "Cannot find class:"
	Nothing is received from the Federate that subscribes and there is no error message
	Ptolemy message "Attempt to link more than one relation to a single port."
	Ptolemy message "Error encountered in XML element:"

