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ABSTRACT

Our work takes place in the context of the HLA (High Level 
Architecture)  standard  and  its  application  in  real-time 
systems context. Indeed, current HLA standard is inadequate 
for  taking  into  consideration  the  different  constraints 
involved in real-time computer systems. Many works have 
been  invested in  order  to  provide  real-time capabilities  to 
RTIs (Run Time Infrastructures).  This paper describes our 
approach focusing on achieving hard real-time properties for 
HLA federations through a complete state of the art on the 
related domain. Our paper also proposes a global bottom up 
approach from basic hardware and software requirements to 
experimental  tests  for  validation  of  distributed  real-time 
simulation with our own RTI called CERTI. 

INTRODUCTION

Modern systems become more and more complex with an 
increasing  number  of  both  components  and  interactions 
between  them.  These  different  applications  often  require 
their services to be delivered within a given amount of time 
(deadline). This focus is the problematic of real-time system 
which are defined as those systems in which the correctness 
of  the  system  not  only  depends  on  the  logical  results  of 
computation, but also on the time at which these results are 
produced (Stankovic 1988).  Real-time systems are broadly 
classified  into  two  categories  based  on  the  nature  of  the 
deadline,  namely,   hard  real-time  systems,  in  which  the 
consequences of not executing a task before its deadline may 
be  catastrophic  and  soft  real-time  systems,  in  which  the 
utility  of  results  produced  by  a  task  with  a  soft  deadline 
decreases over time after the deadline expires. Examples of 
typical hard real-time systems are flight control and nuclear 
power-plant control. Telephone switching system and image 
processing  applications  are  examples  of  soft  real-time 
systems.

Distributed  computing  paradigm  proposes  a  high 
performance  solution  thanks  to  advances  in  network 
technologies.  Different  programs  located  on  several 
computers interact all together in order to achieve a global 
common  goal.  However,  designers  and  developers  of 

distributed  software  applications  have  to  face  several 
problems  such  as  heterogeneity  of  the  various  hardware 
components  as  well  as  both  operating  systems  and 
communication  protocols.  Development  of  middleware 
standards  like  CORBA  (Common  Object  Request 
Architecture) (OMG 2002) allows to consistently face these 
problems. The term middleware  describes a software agent 
operating as an intermediary between distributed processes 
(Cf. Figure  1).  This  software  must  be  considered  in  the 
domain  of  interoperability;  it  is  a  connectivity  software 
which  enables  the  execution  of  several  interacting 
applications on one or more linked computers.

Figure 1: Illustration of Middleware

Indeed,  real-time experts  investigate distributed computing 
solutions to ensure real-time behavior for complex systems 
(Stankovic 1992). However, traditional distributed standards 
and middleware architectures could not yet take into account 
real-time  constraints.  Real-time  aircraft  software  and 
hardware  embedded  components  interconnected  with 
middleware  have  led  to  some  particular  research  projects 
like  ARMADA  (Abdelzaher  et  al.  1997)  and  MIDART 
(MIDdleware  Architecture  for  distributed  Real-Time 
systems)  (Gonzalez et al. 1997) and also some advances in 
current  standards  to  include  real-times properties,  like RT 
CORBA  (Real-Time  CORBA)  (OMG  2005)  or  more 
recently DDS (Data Distribution Service) (OMG 2007). The 
main objective of our work is to use an HLA middleware, 
compliant  with  current  HLA  IEEE  1516-2010  standard 
(IEEE  2010a)  (IEEE  2010b)  (IEEE  2010c)  to  develop, 
interconnect  and  maintain  real-time  simulations  of 
embedded  system  (hardware-in-the-loop  system  or  fully 
simulated system). This article explains how we proceed to 
ensure real time behavior for our simulations. The use of a 
distributed  simulation  architecture  to  study  distributed 
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embedded  systems  should  provide  a  more  natural  and 
flexible framework for new researches in the domain. 

The paper is structured as follows: Section 2 describes the 
problem statement. We present the targeted applications, a 
background on HLA use for  real-time and we describe  in 
detail the CERTI architecture. Section 3 outlines our global 
approach for real-time simulation purpose. We describe all 
the  techniques  and  methods  used  to  ensure  the  correct 
temporal  behavior of the simulator.  Different  experimental 
results  obtained on our specific  platform are illustrated in 
Section  4.  Finally,  a  discussion  of  results,  as  well  as 
currently  planned  extensions  of  the  infrastructure,  is 
proposed in conclusion.

PROBLEM STATEMENT

Targeted applications

Our  work  takes  place  in  a  global  project  named  PRISE 
(Plate-forme  de  Recherche  et  d'Ingénierie  des  Systèmes 
Embarqués). The main focus of this project is to study new 
embedded system concepts and techniques through a special 
hardware  and software  environment.  All  these  simulations 
could  also  be  Hardware-in-the-loop simulations  by 
connecting real actors: actuators, sensors or real embedded 
computers  in  the  simulation  loop.  Obviously,  these 
simulations  could  also  be  Human-in-the-loop simulations 
but we are focusing here on real-time aspects. 

A  collaborative  study  between  ONERA  (Office  National 
d'Etudes et de Recherches Aérosaptiales) and CNES (Centre 
National d'Etudes Spatiales) laboratories gave first elements 
to understand the use of the HLA standard and CERTI run-
time infrastructure for real-time simulations (Noulard et al. 
2008).  The  case  study,  is  a  satellite  formation  flying 
simulation  that  is  made  up  by  four  components  that  are 
embedded systems simulators for two satellites as depicted 
by figure 2 : Federate 1 is a simulator of the board computer 
on satellite 1;  Federate 2 is a simulator of the dynamics of 
the satellite 1; Federate 3 is a simulator of the dynamics of 
the satellite 2 and finally  Federate 4 is a simulator of the 
board computer on satellite 2.

Figure 2: CNES Satellites formation flying simulation

HLA real time background

Simulation is a well established technique used in the man-
machine system area for training, evaluation of performance 

and  research.  However,  works  to  include  real-time 
specifications  and  properties  to  HLA  standard  are  less 
advanced than others ones (Zhao 2001). We claim that the 
choice  of  a  distributed  computing  standard  and  its 
underlying  middleware  is  an  important  starting  point  to 
obtain high fidelity, valid and scalable real-time simulations. 
This  choice  implies  which  operating  system,  which 
programming language and which hardware could be used 
for  compliance  with  the  middleware.  The  RTI  is  the 
distributed software for interconnecting various federates to 
a  global  federation  execution.  The  RTI-NG  (RTI  Next 
Generation) (Bachinsky et al. 1999) was the first  run-time 
infrastructure developed and used by the US Department of 
Defense;   this  RTI  is  no  longer  maintained.  Since  then, 
several approaches have been investigated to add real-time 
properties to HLA standard and underlying software RTI:

1) Multi-threaded synchronous process for RTI (Zhao 
and  Georgeanas  2001)  (McLean  et  al.  2004) 
(Boukerche and Kaiyuan 2005) ;

2) Global  scheduling  services  in  RTI  (Zhao  and 
Georgeanas 2001) (Boukerche and Kaiyuan 2005) ;

3) Real-time  Optimized  RTI  services  like  time 
Management from Fujimoto and McLean (McLean 
et al. 2004) or Data Distribution Management for 
Boukerche works (Boukerche and Kaiyuan 2005) ;

4) Quality  of  service  communication  with,  for 
example, RSVP (Ressource ReSerVation Protocol)
(Zhao  2001)  or  specific  protocols  like  VRTP 
(Virtual Reality Transfer Protocol) (Brutzman et al. 
1997) ;

5) Use  a  real-time  operating  system  to  allow 
preemptive priority scheduling (Jansen et al. 2004).

These different techniques allow an improved use of system 
resources,  better  scalability and also a  higher  reactivity  of 
services provided by the RTI. However, no work proposes a 
complete  analysis  from  simulation  requirements  to 
implementation. Most of all, the run-time infrastructure used 
is  never  clearly  presented  (except  for  (Zhao  2001)  (Zhao 
2001) which used RTI-NG).

Bottom-Up approach (Actions Levels)

The temporal properties of distributed real-time simulation 
are obtained from a complex combination of the application 
structure, the used HLA middleware and specific distributed 
algorithms,  the  software  infrastructure  (operating  systems 
and  communication  protocols)  and  finally  the  physical 
infrastructure  (type  of  computers,  type  of  networks  and 
distribution  topology).  The  specific  PRISE  platform 
architecture is composed of:
Hardware: 4  real-time  nodes  with  Opteron  6  core 
processors, 2 Graphical HP station computer with Intel Xeon 
processors  and  high  performance  GPUs  (Graphics 
Processing Units), an ethernet Gigabit switch on a dedicated 
network  and  also  two  input  organs  (Yoke/Throttle/Pedal 
systems).  This  global  system  also  proposes  a  particular 
advantage,  a  distributed  clock  technology  allowing  same 
clock  reference  to  each  node  (Concurrent  Computer 
Corporation 2001).
Software: Linux Red Hawk (Baietto et al. 2008) Operating 
system  compliant  with  POSIX  real-time  standard 
(Gallmeister  1995).  This  RTOS  (Real  Time  Operating 
System) has been already used in the simulation domain by 
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TNO laboratory which uses this OS to run their own RTI 
implemented in C++. Their experiments concluded that this 
operating system is suitable for real-time computing (Jansen 
et al. 2004).
Middleware: In  our  approach,  we  will  rely  on  our  Open 
Source  RTI  called  CERTI  because  we  have  a  complete 
knowledge off its implementation.

CERTI Middleware

For years, the French Aerospace Laboratory (ONERA) has 
been  developing  his  own  Open-Source  middleware  RTI 
compliant  with  HLA standard  called  CERTI (Siron  et  al. 
2009). This RTI runs on several operating systems including 
Linux and Windows. It  is recognizable through its original 
architecture  of  communicating  processes  (Cf. Figure  3). 
Each federate process interacts locally with an RTIA (RTI 
Ambassador)  process  through  a  Unix-domain  socket 
(equivalent  to  Local  Run-time  Component  or  LRC).  The 
RTIA  processes  exchange  messages  over  the  network,  in 
particular with the RTIG (RTI Gateway) process (equivalent 
to Central Run-time Component or CRC), via TCP (and also 
UDP)  sockets,  in  order  to  run  the  distributed  algorithms 
associated with the RTI services.

Figure 3: CERTI architecture

The CERTI has,  originally,  no mechanism for  taking into 
account quality of service and no tools to provide an end to 
end predictability.  In  this sense,  it  does  not  handle  events 
differently  according  to  a  priority  and  it  uses  no 
predictability mechanism whatsoever at the network or the 
operating system level. In our case, a key benefit is to master 
the  implementation  of  RTI  used  and  thus  be  able  to 
incorporate  changes in the source code to ensure temporal 
predictability of CERTI.

OUR APPROACH

Towards periodic federates

The  concept  of  periodic  federates,  named  "repeatability  
within  simulations"  has  been  introduced  by  Fujimoto  and 
McLean (Fujimoto 1997) (Fujimoto and McLean 2000) with 
their  works  on  real-time  and  distributed  simulations. 
Federates,  involved  in  this  kind  of  simulation,  repeat  the 
same pattern of execution periodically with a time step noted 
Δt. During each step, federates carry four phases: a reception 
phase,  a  computation  phase,  a  transmission  phase  and  a 
slack time phase. ONERA and CNES studies (Noulard et al. 
2008)  show  the  necessity  of  explicitly  adding  a 

synchronization phase to ensure the global coherent run time 
of the whole simulation (Cf. Figure 4 ).

Figure 4: Periodic federate scheme

Historically, in DIS simulation standard (Cheung and Loper 
1994), this synchronization phase is made (for each federate) 
by consulting global WCT (Wall Clock Time) available for 
each  simulator.  ONERA and  CNES works  present  a  new 
original  synchronization  mechanism  by  sending  an 
interaction  from  the  fastest  federate,  called  pulse,  which 
rhythms  the  whole  simulation  run-time.  In  Fujimoto  and 
McLean  works,  synchronization  and  reception  phases  are 
made in the same time by time management mechanisms. To 
summarize, the synchronization phase can be done either by 
three different methods:

1) Consult  the  hardware  clock  on  a  mono-processor 
system  or  use  a  distributed  hardware  clock  like 
RCIM  (Real-Time  Clock  and  Interrupt  Module) 
system for distributed applications available on our 
Linux Red Hawk platforms;

2) The  federate  which  has  the  highest  speed  cycle 
sends an interaction to all others in order to rhythm 
the execution of all others federates involved in the 
federation;

3) Use  of  Time  Management  HLA  mechanisms  to 
ensure  messages  delivery  in  all  federation  and 
synchronize every federates steps. Note that, these 
time  steps  could  be  different  according  to 
application requirements.

 
Execution modes

We  distinguish  two  different  run-time  modes  based  on 
periodic  federates.  The  first  one  is  the  Data  Flow model. 
This  kind  of  execution  mode  is  only  scheduled  by  the 
communication flow between each federate.  Each federate 
waits for a data to run its local algorithm and computes its 
own new data for the rest of the federation. This approach 
could only be used on synchronous distributed systems like 
PRISE  Red  Hawk  RCIM  synchronized  nodes.  Federates 
communicate  using  HLA  basic  publish  and  subscribe 
principles  through  RTI  services  calls  like 
updateAttributeValues() (Cf. Figure 5). We assume that the 
receiver  federate  is  waiting for  a  reflectAttributesValues() 
callback  in reception phase. Each federate then runs its own 
algorithm when it receives an available input data. The main 
interest of this run-time execution mode is the simplicity of 
modeling its behavior with a formal model compliant with 
real-time scheduling policies and techniques. However, the 
developers  have  to  ensure  by  programming  which  cycle 
receives which data. This approach is not very suitable for 
adding new federate or to plug existing federates to another 
federation  execution.  Most  of  all,  there  is  no  safety 
guarantee  during  the  run  time.  If  the  application  was not 
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well scheduled, a federate could always be blocked (waiting 
for an expected data). So one needs to be accurate with the 
formal  model  and  its  implementation  to  ensure  good 
execution of the whole federation.

Figure 5: Data Flow execution mode

Other  execution modes use time-management  mechanisms 
provided by HLA standard (Fujimoto 1998). During the run-
time,  each  federate  computations  and  communications  are 
scheduled by time management principles and algorithms. A 
suitable deployment of these techniques ensures a consistent 
temporal  behavior  on  a  common  time  reference  :  the 
simulated  time  axis.  This  approach  is  the  best  way  to 
maintain  consistency  between  federates  located  on 
asynchronous  computers  (no  common  Wall  Clock  Time). 
The main advantage of time management is the possibility to 
easily add some new federates. The temporal behavior and 
consistency of the whole simulation is based on simulated 
time coherence. The time advance could also be correlated 
to  an  hardware  clock  to  ensure  the  respect  of  real  time 
constraints.  Accordingly  with  the  HLA  standard,  all 
federates are both regulators and constrained. Two kinds of 
services  allow  the  federate  to  express  its  requests  for 
advancing  its  local  logical  time:  nextEventRequest(t) and 
timeAdvanceRequest(t).

The  nextEventRequest(t)  service (noted  NER(t)) allows to 
receive  the  next  event  available  for  asked  simulated  time 
NER() and  then  a  timeAdvanceGrant(t') callback  (noted 
TAG(t')) given by the RTI with a time stamp equal to the 
time stamp t' of the simulation message (t' could be less than 
t). This kind of federate is called Event Driven federates (Cf. 
Figure 6).

Figure 6: Event Driven execution mode

The  timeAdvanceRequest(t) service (noted  TAR(t)) ensures 
the delivery of all available messages. The RTI grants this 
logical time advance (guaranteeing causality constraints) by 
invoking all the available  reflectAttributeValue() callbacks 

(noted  RAV())  and  finally  by  accepting  the  time  advance 
through the invocation of the timeAdvanceGrant(t) callback. 
This kind of federate is called  Time Stepped  federates (Cf. 
Figure 7).  

Figure 7: Time Stepped execution mode

Necessity of formal proof for real-time

To  our  knowledge,  no  related  work  from  simulation 
community  has  linked  any  formal  model  from scheduling 
theory with concepts  of distributed simulations  (especially 
with HLA standard). Thus real-time simulations are usually 
validated  by  experiments  rather  than  formal  models  and 
schedulability  analysis.  But,  we  claim  that  some  formal 
models  compliant  with  schedulability  techniques  are 
essential  to validate  real-time behavior  of our simulations. 
For  example,  researches  on  RT  CORBA  standard  have 
investigated the validation of the global end to end behavior 
by  combining  scheduling  techniques  Deadline  Monotonic 
algorithm,  DPCP  (Distributed  Priority-Ceiling  Protocol) 
(Dipippo  et  al.  2001)  and  an  algorithm  to  map  priorities 
founded  by  formal  results  to  local  priorities  provided  by 
local operating systems on each node. 

Figure 2 shows that each federate (each computation made 
by  a  federate)  is  illustrated  by  a  box.  Each  CERTI 
communication between federate is represented by an arrow. 
These  data  dependencies  could  be  modeled  by  using 
different  techniques.  In  previous  paper  (Chaudron  et  al. 
2010), we showed the feasibility to formally validate basic 
Data  Flow  simulations  on  mono-processor  system  by 
combining  Deadline  monotonic  techniques  and  simple 
precedence  constraints.  We  extend  this  formalism  to 
describe our distributed Data Flow applications by using and 
adapting  Tindell  and  Clark  holistic  method  (Tindell  and 
Clark 1994).  These techniques allows to take into account 
the  dependency  between  the  scheduling  of  tasks  and 
messages in distributed real-time systems.

In  order  to  add  determinism  to  first  generation  time 
management  mechanisms  involved  in  CERTI  software 
(based  on  Chandy-Misra-Bryant  algorithm  (Chandy  and 
Misra  1979)  ),  we  recently  propose  an  analytical 
methodology  to  formally  quantify  the  number  of  null 
messages  exchanged  between  each  time-driven  real-time 
periodic  federates  (federates  which  use 
timeAdvanceRequest() service)  involved  in  a  real  time 
simulation  (Chaudron  et  al.  2011).  We  also  add  a  new 
algorithm  called  NULL  MESSAGE  PRIME  adapted  to 
event-driven  real-time  periodic  federates  (federates  which 
use  nextEventRequest() service)  which  exhibits  very 
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interesting properties, including a solution to the time creep 
problem. We currently investigate some model checking by 
using  UPPAAL  tool  (Behrmann  et  al.  2004)  in  order  to 
exhibit  formal  proofs  and  have  better  evaluation  of  time 
management services and their implementation. The formal 
validation  part  of  our  works  is  not  described  in  present 
paper, we are here focusing on experimental aspects.

EXPERIMENTALS RESULTS

WCET and WCTT measurements

The  execution  time of  a  program  usually  depends  on  the 
input data. In the context of real-time systems, it is necessary 
to  be  able  to  estimate  the  WCET (Worst-Case  Execution 
Time). For hard real-time systems, it is necessary to assess 
the  execution  time  in  the  worst  case  to  properly  size  the 
system  and  find  the  best  allocation  of  tasks  among  the 
processors. In our case, we have made some measurements 
of  execution  time  for  a  given  temporal  complexity  of 
algorithm (Cf. Table 1). We assume that spatial complexity 
(memory) is properly dimensioned according to embedded 
systems requirements.

O(nm) m=1 m=2 m=3 m=4

n=10 0,001 0,003 0,007 0,065

n=20 0,001 0,005 0,052 1,182

n=30 0,001 0,008 0,181 5,838

n=40 0,001 0,010 0,386 18,240

n=50 0,001 0,015 0,803 44,077

Table 1: Execution time of an algorithm with O(nm) 
complexity (in milliseconds)

Calculation of WCTT (Worst Case Transit Time) values for 
any  CERTI  message  must  take  into  account  three  phases 
(Cf. Figure  8).  Phase  1  is  the  copy  on  local  host  Unix 
domain  socket  and  the  local  computation  of  the  Sender 
Federate  associated  RTIA  process.  Phase  2  describes  the 
time to read and write on different communication TCP (or 
UDP) sockets over the network or on the local host, and the 
time needed for RTIG local computation. Phase 3 is the copy 
on local host Unix domain socket and the local compute of 
Receiver Federate associated RTIA process. 

Figure 8: CERTI communication steps

We have developed a benchmark called PING-PONG used 
to  measure  CERTI communication  latency. Two federates 
PING  and  PONG  exchange  messages  (with  a  given  size 
specified  by  user)  through  CERTI.  Table  2  gathers 
experimental  measurements  (given  in  milliseconds)  of 
CERTI transit time with respect to three configurations:

− Configuration 1: Federate  PING, federate  PONG, 
both  RTIAs  and  RTIG  run  on  one  single  PRISE 
Red Hawk node;

− Configuration  2: Federate  PING,  its  RTIA  and 
RTIG run on a single PRISE Red Hawk node and 
Federate PONG and its RTIA run on another node;

− Configuration 3: Federate PING, its RTIA run on a 
single PRISE Red Hawk node, Federate PONG and 
its RTIA run on another node and finally RTIG run 
also on its own PRISE node;.

Message size Config. 1 Config. 2 Config. 3

100 bits 0,293 0,252 0,236

500 bits 0,315 0,263 0,256

1000 bits 0,353 0,281 0,286

5000 bits 0,406 0,411 0,422

10000 bits 0,422 0,478 0,522

50000 bits 1,066 1,372 1,607

Table 2: CERTI WCTT measurements (in milliseconds)

Data Flow execution mode

For CNES federation, as illustrated in Figure 2, federate 1 
and federate 4 run a loop of 50 ms (20 Hz) and federate 2 
and federate 3 run a loop of 10 ms (100 Hz). The data flow 
execution model has a good behavior for real-time purpose 
on  our  specific  plat-form.  Federate  1  and  4  compute  an 
algorithm  in  O(304) and  Federate  2  and  3  compute  an 
algorithm with complexity equal to  O(104). Table 3 shows 
that all cycles respect corresponding periods (10 ms and 50 
ms) and the global behavior is stable for all cycles.

Min Mean Max Std. Dev.

Fed. 1 49,394 49,449 49,585 0,059

Fed. 2 9,056 9,119 9,458 0,127

Fed. 3 9,058 9,131 9,501 0,146

Fed. 4 49,010 49,077 49,150 0,056

Table 3: Federate cycle duration in milliseconds (Data Flow 
periodic)

We also focus on the acceleration of the application rhythm 
to allow the federation to run as fast as possible. For these 
experiments, we keep the speed ratios between the different 
federates  cycles.  Thus  federates  1  and  4  are  five  times 
slower  than  federates  2  and  3  (and  also  corresponding 
communications).  We  retain  the  complexity  of  the 
algorithms computed by each federate.  Table 4 show that, 
with corresponding algorithms complexities, faster federates 
(2 and 3) could respect a computational period equal  2 ms 
and slower federates could ensure the respect of a period less 
than  10 ms.  These  results  show that  CERTI could  ensure 
high  frequency  communicating  processes  with  Data  Flow 
execution mode.
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Min Mean Max Std. Dev.

Fed. 1 6,108 6,136 6,292 0,056

Fed. 2 1,041 1,176 2,119 0,267

Fed. 3 1,045 1,213 2,082 0,354

Fed. 4 6,048 6,158 6,355 0,092

Table 4: Federate cycle duration in milliseconds (Data Flow 
as fast as possible)

Time Management execution mode

For time management model, we choose the Time Stepped 
execution mode to ensure consistency between the real time 
and the simulated time. In this case, classical null message 
algorithm  implemented  in  CERTI  seems  to  have  a  good 
behavior to ensure real-time properties to our simulator (Cf. 
table 5). Indeed, all computed cycles are respected (10 ms 
and 50ms); the global behavior is also very regular even if 
some  irregularities  appears  compared  to  Data  Flow 
execution mode.

Min Mean Max Std. Dev.

Fed. 1 48,640 49,765 50,807 0,532

Fed. 2 9,514 9,592 10,618 0,172

Fed. 3 9,372 9,624 10,959 0,248

Fed. 4 48,029 49,474 50,787 0,841

Table 5: Federate cycle duration in milliseconds (Time 
Management periodic)

One  more  time,  we  accelerate  the  application  rhythm  to 
allow  the  federation  to  run  as  fast  as  possible  by  using 
classical CERTI time management implementation. The use 
of TAR() (HLA services calls) for each federate steps seems 
to  generate  some  overhead  (compared  with  Data  flow 
model).  In  this  case,  the  number  of  NULL  messages 
generated by original  algorithm is acceptable for real-time 
specification (hard real time deadline). Table 6 shows that, 
with corresponding algorithms complexities, faster federates 
(2 and 3) could respect a computational period equal  7 ms 
and  slower  federates  could  ensure  the  respect  of  15  ms 
period (for the worst case). These results show that CERTI 
could  ensure  high  frequency  communicating  processes  as 
well  with  Time  management  execution.  As  a  conclusion, 
time  management  mechanisms  provided  by  CERTI 
middleware enforce a good synchronization for our kind of 
real-time federates.

Min Mean Max Std. Dev.

Fed. 1 13,266 13,376 13,607 0,100

Fed. 2 1,582 2,676 6,487 1,883

Fed. 3 1,544 2,678 6,587 1,875

Fed. 4 13,293 13,427 13,766 0,139

Table 6: Federate cycle duration in milliseconds (Time 
Management as fast as possible)

PERPECTIVES AND CONCLUSION

We  propose,  in  this  paper,  experimental  results  from  our 
work on real-time simulations with our CERTI middleware. 
However, real-time analysis requires the modeling of several 
aspects  of  a  distributed  simulation.  Different  static 
scheduling and run time analysis have been studied under 
different  hypothesis  (single  processor,  distributed 
synchronous  processors,  distributed  asynchronous 
processors,  ...).  Interested  reader  could  refer  to  previous 
papers (Chaudron et al. 2010) (Chaudron et al. 2011) to get a 
more complete description of formal part of our work.

This paper shows that current CERTI performances are very 
good for real-time and/or high performance simulations. We 
have also developed and updated a lot of tools to manage the 
allocation of both federate and CERTI processes over PRISE 
processors  and  modify  the  priority  of  each  one  for 
compliance  with  scheduling  technique  used.  These  new 
implementations,  that  are  not  described  in  present  paper, 
help  to  ensure  better  responsiveness  of  HLA  services. 
Indeed, we pursue our efforts and we currently work on HP-
CERTI (High-Performance CERTI) approach (Adelantado et 
al. 2004) to replace Unix and TCP communication sockets 
through shared memories (for exchange on the same node). 
In addition, we will evaluate the use of multi-threading for 
process  RTIG  and  ensure  real-time  properties  for  all 
messages passing through it. As well, we plan to use real-
time  dynamic  memory  allocators  from  TLSF  (Two-Level 
Segregate  Fit)  library  (Masmano  et  al.  2004)  and  first 
experiments show promising results. 

We have recently implemented and tested an HLA aircraft 
component-based  federation  composed  by  nine  federates, 
each  representing  a  specific  part  of  the  aircraft  or 
environment  (article  under  submission  process).  This 
simulation  is  human-in-the-loop  and  the  operator  could 
interact with the simulation by a federate which acquires the 
user orders transmitted by a real yoke/throttle/pedals system. 
Now,  we  think  that  our  work  on  real-time  simulations  is 
mature  (as  well  as  our  middleware  CERTI).  Indeed,  hard 
real-time properties of our architecture (and both techniques 
to manage it) could allow the connection of simulators with 
real  physical  actuators  and  sensors  and/or  real  embedded 
systems to run hardware-in-the-loop simulations with high-
frequency requirements. 
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