
Design and modeling techniques for
real-time RTI time management

Jean-Baptiste Chaudron
Eric Noulard
Pierre Siron

ONERA/DTIM
2 avenue E. Belin

31055 Toulouse Cedex
France

jean-baptiste.chaudron@onera.fr, eric.noulard@onera.fr, pierre.siron@onera.fr

Jean-Baptiste Chaudron
Pierre Siron

Université de Toulouse, ISAE
10 avenue E. Belin

31055 Toulouse Cedex
France

pierre.siron@isae.fr

Keywords:
High Level Architecture, Distributed Simulation, Modeling, Time Management algorithms

ABSTRACT: The design and implementation of an RTI includes several HLA services, a very important one being the
time management. Several time management protocols exist ranging from the Chandy-Misra-Bryant (CMB) null
message conservative algorithm up to optimistic Jefferson time warp one. We are interested in enhancing the high-
and/or real-time performance of our open source RTI (CERTI) including the time management protocol. In order to
achieve these goals we explored two complementary approaches, first, design a new conservative time management
algorithm which avoid the time creep problem of classical CMB and then apply model-checking techniques and tools to
specific real-time federation in order to formally ensure the validity and the complexity of the algorithms on those
federations. We will present in this paper a new conservative time management algorithm and the beginnings of model-
checking techniques applied to predict and ensure the real-time performance of specific federation.

1. Introduction

The goal of any simulation is to perform calculations
on a model (or set of models) representing a concrete
system of the real world. The real system that we want
to study using simulation always respects two key
principles:
(1) The determinism principle : the future of the system
can be determined from its present state and its past. In
other words, at any time t, there is an ε value for which
the future behavior of the system at t + ε is exactly
known.
(2) The causality principle : the future never influences
the past. Specifically, the system state at time t is
independent of anything that may occur at a time t'
greater than t.

These two principles govern the evolution of real
systems such that, any simulation of a such a system
must respect the determinism principle and the
causality principle. This last point and the technics
used to respect it are the key interest of this article.

Furthermore, in event-driven simulation (like an HLA
one), every simulator must determine the next instant,
in the simulated time, which will produce a state
change in the whole system. At that point, it must
perform the treatment describing the state change and
amends the simulated time. In the distributed context,
the simulators are located on different processors so
that they cannot know the overall system state. They
must make their decisions concerning the progression
in the simulated time from local state, possibly
calculated using the contents of messages it has
received from other simulators.

These mechanisms used to advance simulated time are
specified by the HLA standard [1][2][3] through time
management services. Those services help to ensure a
coherent global behavior (in terms of simulated time)
by using different types of technics and algorithms
provided by the HLA middleware: the Run Time
Infrastructure (RTI).

Middleware in computing terms is used to describe a
software agent acting as an intermediary layer between
different distributed processes. This software has to be
seen in the domain of interoperability. It is a
connectivity software which enables the execution of
several interacting applications on one or more
networking computers. The RTI (Run-Time
infrastructure) is a middleware that is required when
using HLA compliant simulation (see Figure 1). The
RTI is the fundamental component of HLA. It provides
a set of software services that are necessary to support
federates coordinated operations and data exchange
during an execution. In other word, it is the
implementation of the HLA interface specification [1]
[2][3] but is not itself part of the specification.

Figure 1: RTI Middleware Illustration

In our experiment, we choose to use CERTI Open
Source RTI [4] developed by its open source
community [5] maintained by ONERA. It is a RTI
which is recognizable through its original architecture
of communicating processes. CERTI architecture
includes a local RTI Component (RTIA) for each
federate and a central/global one (RTIG), as well as a
library (libRTI) linked with each federate. The CERTI
architecture is depicted in Figure 2. Each federate
process interacts locally with an RTI Ambassador
process (RTIA) through a Unix-domain socket (or TCP
socket on the Windows platform). The RTIA processes
exchange messages over the network through the RTIG
process, via TCP (and also UDP) sockets, in order to
run the various distributed algorithms associated with
the RTI services. The RTIG is the central gateway
responsible for the delivery/broadcast of messages to
all RTIA. We will see in §4 how we can take
advantage of this central entity for developing a new
time conservative algorithm.

Figure 2: CERTI architecture

A key benefit of mastering the implementation of the
RTI is to be able to incorporate changes in its source
code, thus one may tailor it for specific research needs.
In this work, we will explain the use of CMB
algorithm, also called NULL Message Algorithm, in
CERTI Run Time Infrastructure for real-time and high
performance simulations.

The outline of this paper is the following: Paragraph 2
describe the different time management services and
algorithms used in distributed simulation research
community. In paragraph 3, we study the use of a
NULL Message algorithm in the case of real-time
periodic federates and present analytical methods to
quantify the NULL messages exchange during the
simulation run time. In paragraph 4, we will present a
new algorithm, named “NULL Message Prime
algorithm”, based on the original one of Chandy and
Misra which leverages the particular CERTI
architecture. After that, we present model-checking
models to formally verify the behavior and the validity
of our algorithms. Finally, we give some concluding
remarks and expected perspectives for future works.

2. Time Management background

2.1 General view

Time management mechanisms, inherited from ALSP
standard [6] and provided by the HLA middleware, are
one of the main benefits of this simulation standard [7].
These services allow a consistent global time
throughout the whole simulation by using different
methods and algorithms. Specifically, each simulation
message is assigned a time-stamp, and the RTI ensures
that messages are delivered to each federate in time-
stamp order, and no message is delivered to a federate
in its past. The main operation required to implement
time management services is the determination of the
GALT Greatest Available Logical Time (also called

LBTS Lower Bound on Time-Stamp for HLA 1.3
standard [1]), of each federate. The GALT value is
crucial because any message with time-stamp less than
GALT can be delivered to the federate while still
guaranteeing time-stamp order delivery. The HLA
standard does not provide or advise a specific
implementation for this Time Management service
offered by the RTI. Two types of approaches, which
ensure the causality constraint, have been proposed in
the literature :

- The optimistic strategy (or coherent-post): each
message is processed by the simulator in order of
their arrival until it detects a violation of the local
causality constraint. In this case, the simulation
requires a mechanism for turning back (roll-back
mechanism). It is a strategy based on the concept of
virtual time initially described by Jefferson [8].

- The conservative strategy: which avoid the violation
of the local causality constraint altogether. Two
generations of conservative strategy and
corresponding algorithms are usually used in RTI
implementations as explained in § 2.2.

2.2 Conservatives strategies in HLA and limitations
for real time and high performance simulations

The first generation time management services are
based on the so-called “NULL Message Algorithm”
(NMA) of Chandy and Misra [9]. This is the main
algorithm implemented in CERTI and it is used to
avoid deadlock in a conservative federation like the
one illustrated in Figure 3 (extracted from Richard
Fujimoto works).

Figure 3: Deadlock example

This approach is based on a contract for each federate
called lookahead. Each federate undertakes not to send
simulation messages with a time stamp less than its
local time plus its lookahead. The respect of this
contract enables the exchange of additional messages
called NULL messages (messages containing only
time-stamps) indicating the Lower Bound on the Time

Stamp (LBTS equivalent to GALT) of future messages
it could send (see Figure 4).

Figure 4: Classical Null Message example to avoid
Deadlock

The main shortcoming of this approach for real-time
or/and high performance simulation is the
communication overhead implied by additional
exchanges of NULL messages between all simulators.
Furthermore, if the lookahead parameter is not well
chosen, the simulation is subject to lookahead time
creep problem (see §2.3): the number of NULL
messages may become unacceptable and limits the
performance of the simulation.

The second generation time management services is
based on different kind of algorithms. Those
algorithms are not implemented in current CERTI
version but the new algorithm proposed in §4 is
somehow equivalent. The second generation algorithm
are not subject to the time creep problem. The GALT
is calculated, at the request of each federate, by
establishing a "picture" (snapshot) of the overall state
of the distributed simulation. Yet, these kind of
algorithms are subject to another key issue called
“transient message problem” which mean there exist
any message which has been sent but not yet received.
Samadi's algorithm [10] consider these message using
acknowledgment messages to solve it. Mattern's
algorithm [11] use a coloring scheme and a vector
counter method to account these transient messages.
However, for real time purpose, computation of GALT
value realized by these algorithms cannot generally be
guaranteed to complete within a bounded time. The
reason comes from the fact that it depends on the
participation of all other federates in the execution
while transient messages can cause a GALT
computation to be aborted and retried. Fujimoto and
McLean have modified the LBTS computation in order
to respect a bounded time computation for real-time
executions [12]. The authors have then proposed an
extension for time-stamp assignment in Time
Management mechanisms called “the offset-epoch

method” to increase the efficiency of the original time
management algorithm by eliminating these transient
messages and computing an LBTS adapted to this new
method [13].

2.3 The Lookahead Time Creep problem

As we said previously, the performance of a TM
algorithm depends on the lookahead of the simulation
application [14]. With a small lookahead, a prominent
problem of asynchronous TM algorithms occurs,
which is known as “lookahead time creep” where some
(if not all) federate can only advance their logical time
by steps of a lookahead increment before the next non-
NULL message in the simulation application can be
processed (see Figure 5).

Figure 5: Time Creep Example with Inappropriate
lookahead

ONERA studies show that time management using
Chandy Misra Bryant seems good for a particular type
of real-time federates (see [17] and §3.1).

2.4 Different types of Time Management services

To respect causality principle, RTI guarantees that all
federates will not receive any simulation messages
with a time stamp less than its logical time. Various
services exist to allow the federate to express its
requests for advancing its local logical time:
• TimeAdvanceRequest(TAR),
• TimeAdvanceRequestAvailable(TARA),
• NextEventRequest(NER),
• NextEventRequestAvailable(NERA),
• FlushQueueRequest (FQR).

TAR and TARA are devoted to federates that
internally employ a time-stepped mechanism which are
the type of interest in §3. NER and NERA are suitable
for federates who run with event-driven mechanism
(analyzed in §4). The third type of service is an

additional service devoted to time advance with
optimistic strategy which is not the main interest of
this work. CERTI implements TAR, TARA, NER,
NERA using NULL message algorithm (including the
zero-lookahead case [15]) and further optimize NER
and NERA case using NULL PRIME message
algorithm presented in §4.

3. CERTI Time Management for real time
periodic federates

3.1 Periodic federates vision

The concept of periodic federates, named
"repeatability within simulations" has been introduced
by Fujimoto and McLean [15] [16] with their works on
real-time and distributed simulations. Federates,
involve in this kind of simulation, repeat the same
pattern of execution periodically with a time step noted
Δt. During each step, federates carry four phases : (1) a
reception phase, (2) a computation phase, (3) a
transmission phase and (4) a slack time phase. ONERA
and CNES studies [17] show the necessity of adding a
synchronization phase (see Figure 6) to ensure the
global coherent run time of the whole simulation.

Figure 6: illustration of periodic federate cycle

Historically, in DIS simulation standard [18], this
synchronization phase is made (for each federate) by
consulting global wall clock time (WCT) available for
each simulator. ONERA and CNES works present a
new original synchronization mechanism by sending
an interaction from the fastest federate, called “pulse”.
which rhythms whole global simulation run-time. In
Fujimoto and McLean works, synchronization and
reception phases are made in the same time by time
management mechanisms (see § 4.2). To summarize,
the synchronization phase can be done either by three
different methods :
1. Consult the hardware clock on a mono-processor

system; or use a distributed hardware clock like
Real-Time Clock and Interrupt Module (RCIM)
[19] system for distributed applications available
on our Linux Red Hawk platforms [20],

2. The federate which have the high speed cycle
sends an interaction to all each others in order to
rhythm the execution of all others federates
involved in the federation,

3. Use of Time Management HLA mechanisms to
ensure messages delivery in all federation and
synchronize every federates steps. The time
advance can be correlated to an hardware clock to
ensure the respect of real time constraints.

This synchronization phase is essential in the
distributed context where the different nodes do not
have a shared time reference (each using its own local
wall-clock time). For present work, we simply consider
periodic federates synchronized by time management
mechanisms.

ONERA and CNES experiments [17] with federates
based on the same periodic pattern, show that first
generation time management services (see §3.1)
implemented in CERTI, seems good for real-time.
Indeed, best results are obtained by requiring time
management services in both tests cases of study. In
fact, the overhead is compensated by the better
synchronization that these services enforce between
federates. This better synchronization between
federates reduces latency in data exchanges, reduces
the cycle duration and makes the global behavior more
regular because of great jitters reduction. In fact, the
NULL message algorithm implemented in CERTI
enforces a very good synchronization.

3.2 Reception phase with time management services

During each Δt step, a real-time periodic federate asks
their logical time advance to RTI and also all the
simulation messages available by using the
timeAdvanceRequest()service (noted TAR()). The
RTI allows this logical time advance (with respect to
causality constraint) by sending all the
reflectAttributeValue() callbacks (noted
RAV()) available for the logical time asked and
finishes by accept the time advance by using the
timeAdvanceGrant() callback (noted TAR()). These
different mechanisms, form the synchronization and
reception phase of a periodic federate using time
management mechanisms (see Figure 7).

Figure 7: illustration time management services
used by a periodic federate

3.3 Quantify Messages Exchange on Whole
simulation

For real time simulation purpose, we want to ensure
predictability of any service used. In order to add
determinism to first generation time management
technics involved in CERTI software, we propose an
analytical methodology to formally quantify the
number of null messages exchanged between each real
time periodic federates involved in a real time
simulation.

However, to apply our method, we need to make some
basic assumptions:

1) The global simulation (Federation in HLA
terms) is composed by N real-time periodic
federates indexed by an integer i Є[1, ... , N] ;

2) We consider now a federate noted Fed(i) :
1. its logical time is noted t(i);
2. its time step (the expression of its

computational periodicity in the
simulation time) is noted ts(i);

3. its communication step (the expression of
its communication periodicity in the
simulation time) is noted cs(i);

4. its look ahead is noted lk(i);
3) The PS i , j is a matrix of size

NxN to identify the different
communications between the various
simulators (equivalent to publisher-subscriber
informations).

4) The TSLCM value is the least common
multiple (LCM) of of all federate's time step;

5) The interval study, expressed in simulated
time, is usually equal to TSLCM .

The number of NULL message NM S i sent by a
federate Fed(i) beginning with t(i)=0 and concluding
by t(i) = TSLCM is :

 (1)

with i Є[1, ... , N] .

Reciprocally, the number of NULL message
NM R i received by a federate Fed(i) beginning

with t(i) =0 and concluding by t(i) = TSLCM is :

 (2)

with i,j Є[1, ... , N] and i≠j .

The number of simulation messages SimM S i
sent by a federate Fed(i) beginning with t(i) =0 and
concluding by t(i) = TSLCM is :

 (3)

with i Є[1, ... , N] .

Reciprocally, the number of NULL message
SimM R i received by a federate Fed(i)

beginning with t(i) =0 and concluding by t(i) =
TSLCM is :

 (4)

with i,j Є[1, ... , N] and i≠j .

3.3 Quantify NULL Message received between
TAR and TAG

We now present a analytical method that could be
called by one real time periodic federate to evaluate the
number of NULL Message received (see Figure 8)
between its ask of time advance using TAR service and
its validation by the CERTI RTI using TAG callback
(explicitly made by RTIA process which realizes
LBTS computations).

Figure 8: Number of Null Messages between TAR()
and TAG()

In order to apply this method for any federate involved
in the whole federation, we need to make some
additional assumptions:

1. Each federate (noted Fed(i)) have to locally
maintain a static vector noted
TimeStepFederation(i)=(ts(1), ...,ts(N)). This
allows the federate to know others federates
cycles.

2. Each federate (noted Fed(i)) have also to
maintain a dynamic vector noted
GlobalStateFederation(i)=(gt(1), ..., gt(N)).
Each gt is equal to local time plus time step
plus lookahead of each federate (gt(i) = lt(i)
+ts(i)+lk(i)). This vector is currently updated
during the simulation by NULL Message
exchange and LBTS value is computed from
this vector.

We consider a federate Fed(i). Under these basics
assumptions, it could compute the number of NULL
message (noted NM Cycle i) it have to receive
between its TAR and its TAG.

 (5)

and

 (6)

for i,j Є[1, ... , N] and i≠j .

Note that ⌈x ⌉ denote the largest integer taller or
equal to x

NM S i =
TS LCM

tsi

NM R i =∑ j TSLCM

ts j

SimM S i =
TS LCM

cs i

SimM R i=∑ j PS i , j ×
TS LCM

ts j

NM Cycle i=∑ j
W j

W j=⌈ t i tsi −gt j
ts j ⌉

file:///DATA/ERIC/erkit/SISO-SpringSIW-2011/(1)

3.4 Asynchronous problematic

The traditional Chandy-Misra-Bryant NULL Message
algorithm is a typical distributed asynchronous
algorithm. The different formulas describe in § 3.3
have to be adapted for taking into account this
problematic.

For example, when a federate Fed(i) compute the
number of null message it have to receive between its
TAR and its TAG (noted NM Cycle i). Others
federates could ask their time advance for their next
cycles before the RTI allows the time advance for
Fed(i). The NULL message algorithm apply to real-
time periodic federates ensure that all federates could
not have more than one cycle difference between each
others. So, precedent formula (5) have to be adapted
for asynchronous world. In this case, we could ensure a
minimal and a maximal born for NM Cycle i
computations :

(7)

 W k computed by formula (6) and i,j Є[1, ... , N]
and i≠j .

4. Time Management for real-time event
driven federate

In this section, we are concerned with federation which
contains at least two federates which use NER or
NERA time advancing method. Note that beginning
with IEEE-1516-2000 revision [2] of the HLA standard
NER and NERA services are now called NMR
(NextMessageRequest) and NMRA
(NextMessageRequestAvailable). Besides the
different names the services are identical. We must
recall that for effectively advancing time the HLA
standard indicates that the federate shall call one of the
time advance service and then give time to the RTI to
process the request before receiving the
TimeAdvanceGrant(TAG) callback. Before IEEE-
1516-2010 [3] the federate has to call tick/evoke
service in order to be able to receive the TAG callback,
this is called the EVOKE model. CERTI does not
implement the alternative IMMEDIATE model so we
will not treat this case.

4.1 NULL Message algorithm CERTI
implementation

The implementation of the CMB NULL message
algorithm in CERTI has been mapped to the CERTI
architecture (see figure 2). The CERTI LRC called

RTIA contains the heart of the time management
algorithm. When the federate call the NERx service the
RTIA is responsible for sending NULL message to all
time constrained federates in the federation. In fact,
when the federate invokes the RTI using tick/evoke
its RTIA will send a NULL message to the RTIG
process which will broadcast the message to all other
time constrained federates. Each time an RTIA
receives a NULL message from another federate he
will recompute its local LBTS.

4.2 NER, NERA and time creep problem

The lookahead time creep problem is shown one more
time as a message sequence chart presented in figure 9.
Two federates “Fed1” and “Fed2” with lookahead=1
call the NER(5) service. They are alone in the
federation so that they could theoretically advance
their local time strait to instant t=5 but the classical
NULL message algorithm gives the following
sequence.

Figure 9: Time Creep problem

The time creep problem comes from the fact that each
federate cannot send NULL message whose time
stamp is bigger that its current local LBTS plus its
lookahead. The local LBTS of each federate is growing
at the pace of their lookahead. The smaller the
lookahead the greater the number of NULL messages
will be.

∑ j
W j≤NM Cycle i ≤∑ j

W jN−1

4.3 Use Central CERTI architecture

As it can been seen on the figure 9 we abstracted away
the RTIA/RTIG distinction because the federates are
not aware of this architectural choice. In the same way,
the message sent to the RTI consist in reality of a call
to the libRTI which sends a message to RTIA which in
turns sends to RTIG. The full request/answer path is
shown in figure 10.

The idea of our NULL PRIME Message algorithm is to
take advantage of the CERTI CRC, the RTIG. In the
classical NULL message algorithm the RTIG is only
acting as a pure gateway which distributes the NULL
message to each concerned federate. He does not even
know the content of the message, nor the fact that Fed1
(resp. Fed2) is currently in a time advancing loop.
Now, if we make the RTIG aware of the status of the
federate, i.e. whether he has called NER (he is
NERing) or TAR (he is TARing) and we make it
collect all requested date of the NERing federates then
may be RTIG can do a better job.

The algorithm is simple, when a federate is NERing it
will send a NULL PRIME message to the RTI, which
will compute an RTI-wide LBTS. Note that the RTI-
wide LBTS computation includes the NULL and
NULL PRIME message information, such that if some
federate is TARing while other are NERing the
protocol is still valid. Whenever the RTI-LBTS strictly
increases, the RTI itself (in our case RTIG) will
generate an anonymous NULL message and broadcast
it to all time constrained federates. When a federate (in

fact its RTIA) receives an anonymous NULL message
it will trigger the usual local LBTS computation. The
message sequence chart corresponding to the previous
case is given in figure 11.

Figure 11: NULL PRIME Message

In this case the number of NULL [PRIME] message
exchanged before getting TAG(5) did go from 12
down to 8. However, the number of message used by
NULL PRIME algorithm is independent of the NER
value and the lookahead (including zero lookahead
case) while classical NULL message algorithm
requires a number which is a proportion between
lookahead and the distance from current time.

The NULL PRIME Message algorithm co-exists with
the classical NULL Message, it only generates new
anonymous NULL Message when enough information
has been collected. The new algorithm was relatively
easy to implement in CERTI because we have the
RTIG which “sees” every message exchanged inside
the federation. Fully decentralized RTI may implement
the same algorithm as soon as some broadcast protocol
is available.

We think that the NULL PRIME Message algorithm is
somehow equivalent to global reduction based
algorithm like the one from Mattern [11]. Our
algorithm has several advantages:

1. It is automatically triggered as soon as
something is worth doing it. We do not have
to look for the appropriate instant to start a
wave/reduction.

2. We do not have to face the restart issue
neither because even if transient message are
in the network, the anonymous NULL
message built by the algorithm is valid.

3. The number of message generated by the
algorithm is constant and independent from
lookahead value, including zero lookahead.

Figure 10: Federate--LRC--CRC

5. Conclusion and Perspectives

We have presented two important improvements
concerning real-time HLA simulation. The first for
multi-periodic time stepped federation for which we
exhibit a formula which bounds the number of
messages exchanged, thus ensuring performance. The
second concerns event-driven federation for which we
propose a new conservative time management
algorithm, the NULL PRIME message algorithm
which exhibits very interesting properties, including a
solution to the time creep problem.

The next step of our work will be to finish the
UPPAAL modeling in order to exhibit formal proofs.
Real systems modeled by HLA simulations may have a
discrete modeling. These systems are characterized by
a given state, and its behavior over time can be
described by a sequence of state transition. Therefore,
we were interested in formalism of Finite Automata
and Temporized Automata [21] and we have worked
with the UPPAAL tool [22] to validate our approach
for each part of the problem. The current UPPAAL
models for formally validating the result of paragraphs
3 and 4 are an on-going effort

6. References

[1] Defense Modeling and Simulation Office DMSO:
“High Level Architecture Interface
Specification”, Version 1.3 NG, Washington D.C.,
1998.

[2] The Institute of Electrical and Electronics
Engineers (IEEE) Computer Society: “IEEE
Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Federate
Interface Specification”, Simulation
Interoperability Standards Committee, 2000.

[3] The Institute of Electrical and Electronics
Engineers (IEEE) Computer Society: “IEEE
Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Federate
Interface Specification”, Simulation
Interoperability Standards Committee, 2010.

[4] B. Bréholée, P. Siron: “CERTI: Evolutions of the
ONERA RTI Prototype”, Fall Simulation
Interoperability Workshop, Septembre 2002

[5] P. Siron, E. Noulard, J.-Y. Rousselot: “CERTI :
an open Source RTI, why and how”, Fall
Simulation Interoperability Workshop, 2009.

[6] A.L.Wilson, R.M. Weatherly: “The aggregate
level simulation protocol: an evolving system”,

WSC '94: Proceedings of the 26th conference on
Winter simulation,1994.

[7] R.M.Fujimoto: “Time Management in the High
Level Architecture”, Simulation 71, pp 388-400,
December 1998.

[8] D.Jefferson: “Virtual Time”, ACM Toplas, Vol.7,
No 3, 404-425, july 1985.

[9] K.M.Chandy, J.Misra: “Distributed Simulation: A
Case Study in Design and Verification of
Distributed Programs”, Software Engineering,
IEEE Transactions, 1979.

[10] B.Samadi: “Distributed simulation algorithms
andd performance analysis”, Phd thesis,
University of California, Los Angeles, 1985.

[11] F.Mattern: “Efficient algorithms for distributed
snapshots and Global Virtual Time
approximation”, Journal of Parallel and
Distributed Computing, 1993.

[12] T.McLean: “Hard Real-Time Simulations using
HLA”, Proceedings of the Simulation
Interoperability Standards Organization (SISO)
Simulation Interoperability Workshop, 2001.

[13] T.McLean, R.Fujimoto: “Predictable Time
Management for Real-Time Distributed
Simulation”, Proceedings of the seventeenth
workshop on Parallel and Distributed simulation,
2003.

[14] R. M. Fujimoto: “Lookahead in parallel discrete
event simulation”, In International Conference on
Parallel Processing, Volume 3, pages 34–41, 1988.

[15] R.M.Fujimoto: “Zero Lookahead And
Repeatability In The High Level Architecture”,
In Proceedings of the 1997 Spring Simulation
Interoperability Workshop, 1997.

[16] R.M.Fujimoto, T. McLean: “Repeatability in real-
time distributed simulation executions”
Proceedings of the fourteenth workshop on
Parallel and distributed simulation, 2000.

[17] E.Noulard, B.D'Ausbourg, P.Siron: “Running
Real Time Distributed Simulations under Linux
and CERTI”, European Simulation
Interoperability Workshop, 2007.

[18] DIS Steering Commitee, “The DIS Vision, A Map
to future of Distributed Simulation”, Tech.
Report from Institute for Simulation and Training,
1994.

[19] Concurrent Computer Corporation : “Real-Time
Clock and Interrupt Module User’s Guide”, User
Guide, August 2001.

[20] J.Baietto, “Real-Time linux: The RedHawk
Approach”, Concurrent Computer Corporation,
White Paper.

[21] J.E.Hopcroft, J.D.Ullman: “Introduction to
Automata Theory, Languages and
Computation”, Addison-Wesley, 2001.

[22] G.Behrmann, A.David, K.G.Larsen: “A Tutorial
on UPPAAL”, White Paper, Department of

Computer Science, Aalborg University, Denmark,
November 2004.

Author Biographies

PIERRE SIRON was graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1980, and received his doctorate in
1984. He is currently a Research Engineer at ONERA
and he works in parallel and distributed systems. He is
leader of the CERTI Project. He is also Professor at the
University of Toulouse, ISAE, and the head of the
computer science program of the SUPAERO formation
(French High School for Engineers in Aerospace
Sciences).

ERIC NOULARD graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1995 and received his PhD in
computer science from Versailles University in 2000.

After 7 years working in the Aerospace & Telecom
domain for BT C&SI mostly for building high
performance tests & validation systems he joined
ONERA research center in Toulouse as Research
Scientist. He works on distributed and real-time
systems and his actively involved in the development
of the CERTI and TSP Open Source projects.

JEAN-BAPTISTE CHAUDRON received the DEA
 in Artificial Intelligence (equivalent to fifth years of
University studies) in Université Paul Sabatier,
Toulouse, France. He pursues a PhD degree in
computer science at ONERA/DTIM/SER, Toulouse,
France. He is currently working on the extension of the
High Level Architecture (HLA) towards the world of
real-time.

