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ABSTRACT: The design and implementation of an RTI includes several HLA services, a very important one being the 
time  management.  Several  time  management  protocols  exist  ranging  from  the  Chandy-Misra-Bryant  (CMB)  null  
message conservative algorithm up to optimistic  Jefferson  time warp one. We are interested in enhancing the high-  
and/or real-time performance of our open source RTI (CERTI) including the time management protocol.  In order to 
achieve  these goals we explored two complementary approaches, first, design a new conservative time management  
algorithm which avoid the time creep problem of classical CMB and then apply model-checking techniques and tools to 
specific  real-time  federation in order to formally ensure the validity and the complexity of the algorithms  on those 
federations. We will present in this paper a new conservative time management algorithm and the beginnings of model-
checking techniques applied to predict and ensure the real-time performance of specific federation.

1. Introduction

The goal of any simulation is to perform calculations 
on a model (or set of models) representing a concrete 
system of the real world. The real system that we want 
to  study  using simulation  always  respects  two  key 
principles:
(1) The determinism principle : the future of the system 
can be determined from its present state and its past. In 
other words, at any time t, there is an ε value for which 
the future behavior  of  the system  at t  +  ε  is  exactly 
known.
(2) The causality principle : the future never influences 
the  past.  Specifically,  the  system  state  at  time  t is 
independent  of  anything  that  may occur  at  a  time  t' 
greater than t.

These  two  principles  govern the  evolution  of  real 
systems  such that, any simulation  of a such a system 
must  respect  the  determinism  principle  and  the 
causality  principle.  This  last  point  and  the  technics 
used to  respect  it  are  the key interest  of  this article. 

Furthermore, in event-driven simulation (like an HLA 
one), every simulator must determine  the next  instant, 
in  the  simulated  time,  which  will  produce  a  state 
change  in  the  whole  system.  At  that  point,  it  must 
perform the treatment describing the state change and 
amends the simulated time. In the distributed context, 
the  simulators  are  located  on  different  processors  so 
that they cannot know the overall system state. They 
must make their decisions  concerning the progression 
in  the  simulated  time  from  local  state,  possibly 
calculated  using  the  contents  of  messages  it has 
received from other simulators. 

These mechanisms used to advance simulated time are 
specified by the HLA standard  [1][2][3] through time 
management services. Those services help to ensure a 
coherent global behavior (in terms of simulated time) 
by  using  different  types  of  technics  and  algorithms 
provided  by  the  HLA  middleware:  the  Run  Time 
Infrastructure (RTI). 



Middleware in computing terms is used to describe a 
software agent acting as an intermediary layer between 
different distributed processes. This software has to be 
seen  in  the  domain  of  interoperability.  It  is  a 
connectivity software which  enables the execution of 
several  interacting  applications  on  one  or  more 
networking  computers. The  RTI  (Run-Time 
infrastructure)  is  a  middleware that  is  required when 
using HLA compliant  simulation (see Figure  1).  The 
RTI is the fundamental component of HLA. It provides 
a set of software services that are necessary to support 
federates  coordinated operations  and  data  exchange 
during  an execution.  In  other  word,  it  is  the 
implementation of the HLA interface specification  [1]
[2][3] but is not itself part of the specification.

Figure 1: RTI Middleware Illustration

In  our  experiment,  we  choose  to  use  CERTI  Open 
Source  RTI  [4] developed  by  its  open  source 
community [5]  maintained  by  ONERA.  It  is  a  RTI 
which is recognizable through its original architecture 
of  communicating  processes.  CERTI  architecture 
includes a  local  RTI  Component  (RTIA)  for  each 
federate  and a central/global one (RTIG), as well as a 
library (libRTI) linked with each federate. The CERTI 
architecture  is  depicted  in  Figure  2.  Each  federate 
process  interacts  locally  with  an  RTI  Ambassador 
process (RTIA) through a Unix-domain socket (or TCP 
socket on the Windows platform). The RTIA processes 
exchange messages over the network through the RTIG 
process, via TCP (and also UDP) sockets, in order to 
run the various distributed algorithms associated with 
the  RTI  services.  The  RTIG  is  the  central  gateway 
responsible for the delivery/broadcast  of messages to 
all  RTIA.  We  will  see  in  §4  how  we  can  take 
advantage of this central entity for developing a new 
time conservative algorithm. 

Figure 2: CERTI architecture

A key benefit  of mastering the implementation of  the 
RTI  is to be able to incorporate changes in  its source 
code, thus one may tailor it for specific research needs. 
In  this  work,  we  will  explain  the  use  of  CMB 
algorithm,  also  called  NULL Message  Algorithm,  in 
CERTI Run Time Infrastructure for real-time and high 
performance simulations.

The outline of this paper is the following: Paragraph 2 
describe  the  different  time management  services  and 
algorithms  used  in  distributed  simulation  research 
community.  In  paragraph  3, we  study  the  use  of  a 
NULL Message  algorithm  in  the  case  of  real-time 
periodic  federates  and  present  analytical  methods  to 
quantify  the  NULL messages  exchange  during  the 
simulation run time. In paragraph 4, we will present a 
new  algorithm,  named  “NULL  Message  Prime 
algorithm”, based on the original one of Chandy and 
Misra  which leverages the  particular  CERTI 
architecture.  After  that,  we  present  model-checking 
models to formally verify the behavior and the validity 
of  our algorithms.  Finally, we give  some concluding 
remarks and expected perspectives for future works.

2. Time Management background

2.1 General view

Time management mechanisms, inherited from ALSP 
standard [6] and provided by the HLA middleware, are 
one of the main benefits of this simulation standard [7]. 
These  services  allow  a  consistent  global  time 
throughout  the  whole  simulation  by  using  different 
methods and algorithms. Specifically, each simulation 
message is assigned a time-stamp, and the RTI ensures 
that messages are delivered to each federate  in time-
stamp order, and no message is delivered to a federate 
in its past. The  main operation required to implement 
time management services is  the  determination of the 
GALT  Greatest  Available  Logical  Time  (also  called 



LBTS  Lower  Bound  on  Time-Stamp  for  HLA  1.3 
standard  [1]),  of  each federate.  The  GALT value  is 
crucial because any message with time-stamp less than 
GALT  can  be  delivered  to  the  federate  while  still 
guaranteeing  time-stamp  order  delivery.  The  HLA 
standard  does  not  provide  or  advise  a  specific 
implementation  for  this  Time  Management  service 
offered by the RTI.  Two types of approaches,  which 
ensure the causality constraint, have been proposed in 
the literature :

-  The  optimistic  strategy  (or  coherent-post):  each 
message  is  processed  by  the  simulator  in  order  of 
their  arrival  until  it  detects  a  violation of the local 
causality  constraint.  In  this  case,  the  simulation 
requires  a  mechanism  for  turning  back  (roll-back 
mechanism). It is a strategy based on the concept of 
virtual time initially described by Jefferson [8].

- The conservative strategy: which avoid the violation 
of the  local  causality  constraint  altogether.  Two 
generations  of  conservative  strategy  and 
corresponding  algorithms  are  usually  used  in  RTI 
implementations as explained in § 2.2.

2.2 Conservatives strategies in HLA and limitations 
for real time and high performance simulations

The  first  generation  time  management  services  are 
based  on  the  so-called  “NULL Message  Algorithm” 
(NMA)  of  Chandy  and  Misra  [9].  This  is  the  main 
algorithm  implemented  in  CERTI  and  it  is  used  to 
avoid  deadlock  in  a  conservative  federation  like  the 
one illustrated  in  Figure  3  (extracted  from  Richard 
Fujimoto works).

Figure 3: Deadlock example

This approach is based on a contract for each federate 
called lookahead. Each federate undertakes not to send 
simulation  messages  with a  time stamp less  than its 
local  time  plus  its lookahead.  The  respect  of  this 
contract  enables the exchange of additional  messages 
called  NULL messages (messages  containing  only 
time-stamps) indicating the Lower Bound on the Time 

Stamp (LBTS equivalent to GALT) of future messages 
it could send (see Figure 4).

Figure 4: Classical Null Message example to avoid 
Deadlock

The main shortcoming of this approach for real-time 
or/and  high  performance  simulation  is  the 
communication  overhead  implied by  additional 
exchanges of  NULL messages between all simulators. 
Furthermore,  if  the  lookahead  parameter  is  not  well 
chosen,  the  simulation  is  subject  to  lookahead  time 
creep problem  (see  §2.3):  the  number  of  NULL 
messages  may  become unacceptable  and  limits the 
performance of the simulation.

The  second  generation  time  management  services  is 
based  on  different  kind  of  algorithms.  Those 
algorithms are  not  implemented  in  current  CERTI 
version  but  the  new  algorithm  proposed  in  §4  is 
somehow equivalent. The second generation algorithm 
are not subject to the time creep problem. The GALT 
is  calculated,  at  the  request  of  each  federate,  by 
establishing a "picture" (snapshot) of the overall state 
of  the  distributed  simulation.  Yet,  these  kind  of 
algorithms  are  subject  to  another key  issue called 
“transient  message  problem” which mean there exist 
any message which has been sent but not yet received. 
Samadi's algorithm [10] consider these message using 
acknowledgment messages  to  solve  it.  Mattern's 
algorithm  [11] use  a  coloring  scheme  and  a  vector 
counter  method to  account  these  transient  messages. 
However, for real time purpose, computation of GALT 
value realized by these algorithms cannot generally be 
guaranteed  to  complete  within  a  bounded  time.  The 
reason  comes   from  the  fact  that  it depends  on  the 
participation  of  all  other  federates  in  the  execution 
while transient  messages  can  cause  a  GALT 
computation to  be  aborted and retried.  Fujimoto and 
McLean have modified the LBTS computation in order 
to  respect  a  bounded time computation  for  real-time 
executions  [12].  The  authors  have  then  proposed  an 
extension  for  time-stamp  assignment  in  Time 
Management  mechanisms  called  “the  offset-epoch 



method” to increase the efficiency of the original time 
management  algorithm by eliminating these transient 
messages and computing an LBTS adapted to this new 
method [13].

2.3 The Lookahead Time Creep problem 

As  we  said  previously,  the  performance  of  a  TM 
algorithm depends on the  lookahead of the simulation 
application  [14]. With a small lookahead, a prominent 
problem  of  asynchronous  TM  algorithms  occurs, 
which is known as “lookahead time creep” where some 
(if not all) federate can only advance their logical time 
by steps of a lookahead increment before the next non-
NULL message  in  the  simulation  application  can  be 
processed (see Figure 5).

Figure 5: Time Creep Example with Inappropriate 
lookahead

ONERA  studies  show  that  time  management  using 
Chandy Misra Bryant seems good for a particular type 
of real-time federates (see [17] and §3.1). 

2.4 Different types of Time Management services

To respect causality principle, RTI guarantees that all 
federates  will  not  receive  any  simulation  messages 
with a time stamp less than its logical  time.  Various 
services  exist  to  allow  the  federate  to  express  its 
requests for advancing its local logical time:
• TimeAdvanceRequest(TAR),
• TimeAdvanceRequestAvailable(TARA),
• NextEventRequest(NER),
• NextEventRequestAvailable(NERA),
• FlushQueueRequest (FQR).

TAR  and  TARA are devoted  to  federates  that 
internally employ a time-stepped mechanism which are 
the type of interest in §3. NER and NERA are suitable 
for  federates  who  run  with  event-driven  mechanism 
(analyzed in  §4).  The  third  type  of  service  is  an 

additional  service  devoted  to  time  advance  with 
optimistic  strategy  which  is  not  the  main  interest  of 
this  work.  CERTI  implements  TAR,  TARA,  NER, 
NERA using NULL message algorithm (including the 
zero-lookahead case  [15])  and further  optimize NER 
and  NERA  case  using  NULL  PRIME  message 
algorithm presented in §4.

3. CERTI Time Management for real time 
periodic federates

3.1 Periodic federates vision

The  concept  of  periodic  federates,  named 
"repeatability within simulations" has been introduced 
by Fujimoto and McLean [15] [16] with their works on 
real-time  and  distributed  simulations.  Federates, 
involve  in  this  kind  of  simulation,  repeat  the  same 
pattern of execution periodically with a time step noted 
Δt. During each step, federates carry four phases : (1) a 
reception  phase,  (2)  a  computation  phase,  (3)  a 
transmission phase and (4) a slack time phase. ONERA 
and CNES studies [17] show the necessity of adding a 
synchronization  phase  (see  Figure 6)  to  ensure  the 
global coherent run time of the whole simulation.

Figure 6: illustration of periodic federate cycle

Historically,  in  DIS  simulation  standard  [18],  this 
synchronization phase is made (for  each federate) by 
consulting global wall clock time (WCT) available for 
each simulator.  ONERA and CNES works present  a 
new original  synchronization  mechanism  by  sending 
an interaction from the fastest federate, called “pulse”. 
which  rhythms whole  global  simulation  run-time.  In 
Fujimoto  and  McLean  works,  synchronization  and 
reception phases are made in the same time by time 
management mechanisms (see  § 4.2).  To summarize, 
the synchronization phase can be done either by three 
different methods :
1. Consult the hardware clock on a mono-processor 

system;  or  use a  distributed hardware  clock  like 
Real-Time Clock and Interrupt  Module  (RCIM) 
[19] system for  distributed applications  available 
on our Linux Red Hawk platforms [20],



2. The  federate  which  have  the  high  speed  cycle 
sends an interaction to all each others in order to 
rhythm  the  execution  of  all  others  federates 
involved in the federation,

3. Use  of  Time  Management  HLA  mechanisms  to 
ensure  messages  delivery  in  all  federation  and 
synchronize  every  federates  steps.  The  time 
advance can be correlated to an hardware clock to 
ensure the respect of real time constraints.

This  synchronization  phase  is  essential  in  the 
distributed  context  where  the  different  nodes  do  not 
have a shared time reference (each using its own local 
wall-clock time). For present work, we simply consider 
periodic federates  synchronized by time management 
mechanisms.

ONERA and  CNES experiments  [17]  with  federates 
based  on  the  same  periodic  pattern,  show  that  first 
generation  time  management  services  (see  §3.1) 
implemented  in  CERTI,  seems  good  for  real-time. 
Indeed,  best  results  are  obtained  by  requiring  time 
management services in both tests cases of study. In 
fact,  the  overhead  is  compensated  by  the  better 
synchronization  that  these  services  enforce  between 
federates.  This  better  synchronization  between 
federates  reduces  latency  in  data  exchanges,  reduces 
the cycle duration and makes the global behavior more 
regular because of great  jitters reduction. In  fact,  the 
NULL  message  algorithm  implemented  in  CERTI 
enforces a very good synchronization.

3.2 Reception phase with time management services

During each Δt step,  a real-time periodic federate asks 
their  logical  time  advance  to  RTI  and  also  all  the 
simulation  messages  available  by  using  the 
timeAdvanceRequest()service  (noted  TAR()).  The 
RTI allows this logical time advance (with respect to 
causality  constraint)  by  sending  all  the 
reflectAttributeValue() callbacks (noted 
RAV())  available  for  the  logical  time  asked  and 
finishes  by  accept  the  time  advance  by  using  the 
timeAdvanceGrant() callback (noted TAR()). These 
different  mechanisms,  form  the  synchronization  and 
reception  phase  of  a  periodic  federate  using  time 
management mechanisms (see Figure 7).

Figure 7: illustration time management services 
used by a periodic federate

3.3  Quantify  Messages  Exchange  on  Whole 
simulation

For real  time simulation purpose,  we want  to ensure 
predictability  of  any  service  used.  In  order  to  add 
determinism  to  first  generation  time  management 
technics involved in CERTI software, we propose an 
analytical  methodology  to  formally  quantify  the 
number of null messages exchanged between each real 
time  periodic  federates  involved  in  a  real  time 
simulation. 

However, to apply our method, we need to make some 
basic assumptions:

1) The  global  simulation  (Federation  in  HLA 
terms)  is  composed  by  N real-time periodic 
federates indexed by an integer i Є[1, ... , N ] ;

2) We consider now a federate noted Fed(i) :
1. its logical time is noted t(i);
2. its  time  step  (the  expression  of  its 

computational  periodicity  in  the 
simulation time) is noted ts(i);

3. its communication step (the expression of 
its  communication  periodicity  in  the 
simulation time) is noted cs(i);

4. its look ahead is noted lk(i);
3) The  PS i , j   is  a  matrix  of  size 

NxN  to  identify  the  different 
communications  between  the  various 
simulators (equivalent to publisher-subscriber 
informations).

4) The  TSLCM  value  is  the  least  common 
multiple (LCM) of of all federate's time step;

5) The  interval  study,  expressed  in  simulated 
time, is usually equal to TSLCM .



The number of NULL message NM S i   sent by a 
federate  Fed(i) beginning with   t(i)=0 and concluding 
by t(i) = TSLCM  is :

  (1)

with i Є[1, ... , N ] .

Reciprocally,  the  number  of  NULL message 
NM R i   received by a federate  Fed(i)  beginning 

with t(i) =0 and concluding by t(i) =  TSLCM is :

  (2)

with i,j Є[1, ... , N ] and i≠j .

The  number  of  simulation  messages  SimM S i   
sent by a federate  Fed(i) beginning with t(i)  =0  and 
concluding by  t(i) = TSLCM  is :

  (3)

with i Є[1, ... , N ] .

Reciprocally,  the  number  of  NULL message 
SimM R  i  received  by  a  federate  Fed(i)  

beginning  with t(i)  =0  and  concluding  by   t(i)  = 
TSLCM  is :                                          

 (4)

with i,j Є[1, ... , N ] and i≠j .

3.3 Quantify NULL Message received between 
TAR and TAG

We  now  present  a  analytical  method  that  could  be 
called by one real time periodic federate to evaluate the 
number  of  NULL  Message  received  (see  Figure  8) 
between its ask of time advance using TAR service and 
its  validation  by the CERTI RTI using  TAG callback 
(explicitly  made  by  RTIA  process  which  realizes 
LBTS computations).

Figure 8: Number of Null Messages between TAR() 
and TAG()

In order to apply this method for any federate involved 
in  the  whole  federation,  we  need  to  make  some 
additional assumptions:

1. Each federate  (noted  Fed(i)) have to  locally 
maintain  a  static  vector  noted 
TimeStepFederation(i)=(ts(1),  ...,ts(N)).  This 
allows the federate  to know others federates 
cycles.

2. Each  federate  (noted  Fed(i))  have  also  to 
maintain  a  dynamic  vector  noted 
GlobalStateFederation(i)=(gt(1),  ...,  gt(N)). 
Each gt is equal to local time plus time step 
plus lookahead of each federate (gt(i) = lt(i)
+ts(i)+lk(i)). This vector is currently updated 
during  the  simulation  by  NULL  Message 
exchange and LBTS value is computed from 
this vector.

We  consider  a  federate  Fed(i). Under  these  basics 
assumptions,  it  could compute the number of  NULL 
message  (noted  NM Cycle  i )  it  have  to  receive 
between its TAR and its TAG.

  (5)

and

  (6)

for i,j Є[1, ... , N ] and i≠j .

Note  that  ⌈x ⌉ denote  the  largest  integer  taller  or 
equal to x

NM S i =
TS LCM

tsi 

NM R i =∑ j TSLCM

ts  j  

SimM S i =
TS LCM

cs  i

SimM R  i=∑ j PS  i , j ×
TS LCM

ts j  

NM Cycle  i=∑ j
W j

W j=⌈ t i tsi −gt  j 
ts j  ⌉
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3.4 Asynchronous problematic

The traditional Chandy-Misra-Bryant NULL Message 
algorithm  is  a  typical  distributed  asynchronous 
algorithm.  The  different  formulas  describe  in  §  3.3 
have  to  be  adapted  for  taking  into  account  this 
problematic.

For  example,  when  a  federate  Fed(i)  compute  the 
number of null message it have to receive between its 
TAR and  its  TAG (noted  NM Cycle  i ).  Others 
federates  could ask their  time advance  for  their next 
cycles  before  the  RTI  allows  the  time  advance  for 
Fed(i).  The  NULL message  algorithm apply to  real-
time periodic federates ensure that all federates could 
not have more than one cycle difference between each 
others.  So, precedent  formula (5) have to be adapted 
for asynchronous world. In this case, we could ensure a 
minimal  and  a  maximal  born  for  NM Cycle  i
computations :

(7)

 W k computed by formula (6) and i,j Є[1, ... , N ] 
and i≠j .

4.  Time  Management  for  real-time  event 
driven federate

In this section, we are concerned with federation which 
contains  at  least  two  federates  which  use  NER  or 
NERA  time  advancing  method.  Note  that  beginning 
with IEEE-1516-2000 revision [2] of the HLA standard 
NER  and  NERA  services  are  now  called  NMR 
(NextMessageRequest)  and  NMRA 
(NextMessageRequestAvailable).  Besides  the 
different  names  the  services  are  identical.  We  must 
recall  that  for  effectively  advancing  time  the  HLA 
standard indicates that the federate shall call one of the 
time advance service and then give time to the RTI to 
process  the  request  before  receiving  the 
TimeAdvanceGrant(TAG) callback. Before IEEE-
1516-2010  [3] the  federate  has to  call  tick/evoke 
service in order to be able to receive the TAG callback, 
this  is  called  the  EVOKE  model.  CERTI  does  not 
implement the alternative IMMEDIATE model so we 
will not treat this case.

4.1  NULL  Message  algorithm  CERTI 
implementation

The  implementation  of  the  CMB  NULL  message 
algorithm in CERTI has been mapped to the CERTI 
architecture  (see  figure 2).  The  CERTI  LRC  called 

RTIA  contains  the  heart  of  the  time  management 
algorithm. When the federate call the NERx service the 
RTIA is responsible for sending NULL message to all 
time  constrained  federates  in  the  federation.  In  fact, 
when the federate invokes the RTI using tick/evoke 
its  RTIA  will  send  a  NULL  message  to  the  RTIG 
process which will broadcast the message to all other 
time  constrained  federates.  Each  time  an  RTIA 
receives  a  NULL  message  from  another  federate  he 
will recompute its local LBTS.

4.2 NER, NERA and time creep problem

The lookahead time creep problem is shown one more 
time as a message sequence chart presented in figure 9. 
Two federates  “Fed1”  and “Fed2” with lookahead=1 
call  the  NER(5)  service.  They  are  alone  in  the 
federation  so  that  they  could  theoretically  advance 
their  local  time strait  to  instant  t=5 but  the classical 
NULL  message  algorithm  gives  the  following 
sequence.

Figure 9: Time Creep problem

The time creep problem comes from the fact that each 
federate  cannot  send  NULL  message  whose  time 
stamp  is  bigger  that  its  current  local  LBTS  plus  its 
lookahead. The local LBTS of each federate is growing 
at  the  pace   of  their  lookahead.  The  smaller  the 
lookahead the greater the number of NULL messages 
will be.

∑ j
W j≤NM Cycle i ≤∑ j

W jN−1 



4.3 Use Central CERTI architecture

As it can been seen on the figure 9 we abstracted away 
the RTIA/RTIG distinction  because  the federates  are 
not aware of this architectural choice. In the same way, 
the message sent to the RTI consist in reality of a call 
to the libRTI which sends a message to RTIA which in 
turns sends to RTIG.  The full request/answer path is 
shown in figure 10.

The idea of our NULL PRIME Message algorithm is to 
take advantage of the CERTI CRC, the RTIG. In the 
classical  NULL message algorithm the RTIG is only 
acting as a pure gateway which distributes the NULL 
message to each concerned federate. He does not even 
know the content of the message, nor the fact that Fed1 
(resp.  Fed2)  is  currently  in  a  time  advancing  loop. 
Now, if we make the RTIG aware of the  status of the 
federate,  i.e.  whether  he  has  called  NER  (he  is 
NERing)  or  TAR  (he  is  TARing)  and  we  make  it 
collect all requested date of the NERing federates then 
may be RTIG can do a better job.

The algorithm is simple, when a federate is NERing it 
will send a NULL PRIME message to the RTI, which 
will compute an RTI-wide LBTS. Note that the RTI-
wide  LBTS  computation  includes  the  NULL  and 
NULL PRIME message information, such that if some 
federate  is  TARing  while  other  are  NERing  the 
protocol is still valid. Whenever the RTI-LBTS strictly 
increases, the  RTI  itself (in  our  case  RTIG)  will 
generate an anonymous NULL message and broadcast 
it to all time constrained federates. When a federate (in 

fact its RTIA) receives an anonymous NULL message 
it will trigger the usual local LBTS computation.  The 
message sequence chart corresponding to the previous 
case is given in figure 11.

Figure 11: NULL PRIME Message

In  this case the number of NULL [PRIME] message 
exchanged  before  getting  TAG(5)  did  go  from  12 
down to 8. However, the number of message used by 
NULL PRIME algorithm is independent  of  the NER 
value  and  the  lookahead  (including  zero  lookahead 
case)  while  classical  NULL  message  algorithm 
requires  a  number  which  is  a  proportion  between 
lookahead and the distance from current time.

The NULL PRIME Message algorithm co-exists with 
the  classical  NULL  Message,  it  only  generates  new 
anonymous NULL Message when enough information 
has been collected.  The new algorithm was relatively 
easy  to  implement  in  CERTI  because  we  have  the 
RTIG which  “sees”  every message  exchanged  inside 
the federation. Fully decentralized RTI may implement 
the same algorithm as soon as some broadcast protocol 
is available.

We think that the NULL PRIME Message algorithm is 
somehow  equivalent  to  global  reduction  based 
algorithm  like  the  one  from  Mattern  [11].  Our 
algorithm has several advantages: 

1. It  is  automatically  triggered  as  soon  as 
something is worth doing it. We do not have 
to  look for  the appropriate  instant  to  start  a 
wave/reduction.

2. We  do  not  have  to  face  the  restart  issue 
neither because even if transient message are 
in  the  network,  the  anonymous  NULL 
message built by the algorithm is valid.

3. The  number  of  message  generated  by  the 
algorithm  is  constant  and  independent  from 
lookahead value, including zero lookahead.

Figure 10: Federate--LRC--CRC



5. Conclusion and Perspectives

We  have  presented  two  important  improvements 
concerning  real-time  HLA  simulation.  The  first  for 
multi-periodic  time  stepped  federation  for  which  we 
exhibit  a  formula  which  bounds  the  number  of 
messages exchanged, thus ensuring performance. The 
second concerns event-driven federation for which we 
propose  a  new  conservative  time  management 
algorithm,  the  NULL  PRIME  message  algorithm 
which exhibits very interesting properties, including a 
solution to the time creep problem.

The  next  step  of  our  work  will  be  to  finish  the 
UPPAAL modeling in order to exhibit formal proofs. 
Real systems modeled by HLA simulations may have a 
discrete modeling. These systems are characterized by 
a  given  state,  and  its  behavior  over  time  can  be 
described by a sequence of state transition. Therefore, 
we were  interested  in  formalism  of  Finite  Automata 
and Temporized Automata  [21]  and we have worked 
with the UPPAAL tool  [22] to validate our approach 
for  each  part  of  the  problem.  The  current  UPPAAL 
models for formally validating the result of paragraphs 
3 and 4 are an on-going effort
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